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Abstract
An analytic expression describing the complex voltage measured between
the pickup points of a four-point probe, in contact with the surface of a
half-space conductor, is derived. The driving current is assumed to be
time harmonic. There are two contributions to the measured voltage. One
arises from the potential drop due to electric current flowing in the
conductor. The other arises from induction in the loop of the pickup circuit.
Both terms are obtained by integrating analytic expressions for the electric
field, derived previously, along appropriate paths. Theory is compared with
experimental data for co-linear and rectangular arrangements of the probe
points, and very good agreement is obtained.

1. Introduction

Four-point direct current potential drop (DCPD) methods
for the measurement of material conductivity are well
established in the fields of geophysics [1, 2], semiconductor
characterization [3] and nondestructive evaluation [4, 5].
Alternating current potential drop (ACPD) measurements
permit additional, depth-dependent information to be obtained
through the phenomenon of the electromagnetic skin effect, in
which the current is confined to flow in a ‘skin’ at the surface
of the conductor, whose depth is approximately inversely
proportional to the square root of the excitation frequency.
The ACPD technique therefore has application in assessing
materials whose electromagnetic parameters vary with depth,
for example, in the case of electrically conductive surface
treatments and coatings. From a practical point of view, an
advantage of ACPD over DCPD is that a lower measuring
current can be applied in order to achieve a given sensitivity [4]
(section 8). This reduces the risk of heating of the specimen
and associated changes in electrical conductivity.

In previous work, Mitrofanov has derived an expression
for the complex voltage measured between the pickup points
of a four-point probe, in contact with the surface of a half-
space conductor [6]. The solution was expressed in terms of

an infinite series expansion in powers of k, where

k = 1 + i

δ
with δ =

(
2

ωµσ

)1/2

, (1)

δ being the electromagnetic skin depth in the conductor. In
equation (1), ω = 2πf is the angular frequency of the
injected current and µ and σ are the magnetic permeability
and electrical conductivity of the half-space, respectively.

Here, an analytic expression describing the complex
voltage measured between the pickup points of a four-point
probe, in contact with the surface of a half-space conductor,
is derived in closed form. There are two contributions to the
measured voltage. One arises from the potential drop due
to electric current flowing in the conductor. The other arises
from induction in the loop of the pickup circuit. Both terms
are obtained by integrating analytic expressions for the electric
field, derived previously [7, 8], along appropriate paths. It is
shown that the closed-form expression obtained here for the
potential drop due to current flowing in the conductor can
be expressed as a power series in k, giving the same result
as that presented in [6]. The contribution to the measured
complex voltage due to inductance in the pickup circuit was
not analysed in [6].

Theory is compared with experimental data for co-linear
and rectangular arrangements of the four probe points in
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Figure 1. Four point probe in contact with a conductive half-space.
The path of integration, C (- - - -), may occupy any plane of
constant y. Here the plane y = 0 is shown. l is the dimension of
the pickup circuit perpendicular to the conductor surface.

contact with a thick aluminium block and very good agreement
is obtained in both cases.

2. Analysis

The ACPD method measures a complex voltage, V , which has
two contributions:

V = v + ε. (2)

The first term, v, is the potential drop between the two points
on the plate at which the measurement circuit makes contact
with its surface. The source of v is the current in the plate
injected by the other two points of the four-point probe. At
arbitrary frequency, v is complex. The second contribution, ε,
is proportional to the inductance of the measurement circuit. It
arises from the changing magnetic flux within the loop of the
measurement circuit due to harmonic variation of the applied
current, of the form e−iωt . ε is purely inductive, therefore
imaginary. In the static limit of direct current, only v remains.
For the geometry given in figure 1,

v =
∫ (p,0,0)

(q,0,0)

E · dl, (3)

and

ε =
∮

C

E · dl, (4)

where C is a closed loop in the case where p′ and q ′ coincide,
as happens when the pickup wires are twisted together at their
point of meeting. At low frequency, the measured potential
drop is almost exclusively due to the conductor. In an ACPD
measurement on a conductive plate, the contribution to V from
the plate is most significant at lower frequencies, with the
contribution from ε becoming larger, and eventually dominant,
as the frequency increases. Strictly, the quantities V , v, ε and
E are complex amplitudes. For brevity, the time dependence is
not shown explicitly in equations (2) to (4) or in the equations
that follow.

2.1. Electric field

For current injected into a half-space conductor by a single wire
held perpendicular to the conductor surface, the components
of the electric field in the conductor are [7]

Es
ρ(r) = − I

2πσ

ik

ρ

{
eikz − eikr

ikr

[
1 +

(ikz)2

ikr

(
1 − 1

ikr

)]}
,

z > 0, (5)

Es
z(r) = I

2πσ

z

r3
eikr (1 − ikr), z > 0, (6)

in which ρ and z are the variables of a cylindrical co-ordinate
system centred on the current wire and r2 = ρ2 + z2. The
electric field in air may be expressed [8] as

Es = Ew + Ec, ρ > 0, z � 0, (7)

where

Ew = ẑ
I

2π
iωµ0 ln ρ, ρ > 0, z � 0 (8)

and

Ec = I

2πσ

∫ ∞

0
γ eκz[ρ̂J1(κρ) − ẑJ0(κρ)] dκ, z � 0.

(9)
In equation (9), γ 2 = κ2 − k2 and Ji(x) is the ith-order Bessel
function of the first kind. Ew is the electric field in air due to
the current flowing in the injection wire. Ec is the electric field
in air due to the current flowing in the half-space conductor.

For a system of two current-carrying wires in contact
with the metal surface at co-ordinates (±S, 0, 0), as shown
in figure 1, the electric field E can be obtained by the
superposition of the field due to a single wire, Es, whose
components are given above:

E(r) = Es(r+) − Es(r−) (10)

with r± =
√

(x ± S)2 + y2 + z2.

2.2. Calculation of v

2.2.1. Closed form. In general, the line of the pickup points
may be off-set from the line of the current injection points. Let
y = c = constant and then choose the path of the integral in
equation (3) such that

v = −
∫ q

p

Ex(x, c, 0) dx. (11)

Now,

Ex(x, c, 0) = (x + S)

ρ+
Es

ρ(ρ+, 0) − (x − S)

ρ−
Es

ρ(ρ−, 0), (12)

where ρ± =
√

(x ± S)2 + c2. Combining the above two
equations and making the change of variable X = x ± S gives

v = −I+ + I−, (13)

where

I± =
∫ q±S

p±S

X√
X2 + c2

Es
ρ(X, c, 0) dX. (14)

Putting Es
ρ(X, c, 0) from equation (5) into the integrand of

equation (14) gives

I± = − ikI

2πσ

∫ q±S

p±S

[
X

X2 + c2
− Xeik

√
X2+c2

ik(X2 + c2)3/2

]
dX. (15)

Integration of the first term in equation (15) is straightforward.
The second term in equation (15) may be evaluated by making
a further change of variable, α =

√
X2 + c2, and using the

following identity (equation (2.325.2) in [9]):∫
eax

x2
dx = −eax

x
− aE1(−ax), (16)
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in which E1(z) is the exponential integral function, defined
(equation (5.1.1) in [10]) as

E1(z) =
∫ ∞

z

e−t

t
dt, |arg z| < π. (17)

Ultimately, the following expression for v is obtained:

v= I

2πσ
[fi(S+q, c)−fi(S−q, c)−fi(S+p, c)+fi(S−p, c)],

(18)
where, as will be shown subsequently, fi(x, y) can take several
forms. In exact, closed form,

fexact(x, y) = fexact(ρ =
√

x2 + y2)

= eikρ

ρ
+ ik[ln ρ + E1(−ikρ)]. (19)

2.2.2. Series form. The result presented in equations (18)
and (19) can be expressed in terms of a power series in k.
In this way it can be shown that the result is in agreement
with that of an independent calculation [6]. The two relations
(equations (4.2.1) and (5.1.11) in [10])

ez =
∞∑

n=0

zn

n!
, (20)

E1(z) = −γe − ln z −
∞∑

n=1

(−1)nzn

nn!
, |arg z| < π, (21)

applied to the exponential and exponential integral functions
in equation (19) give

fexact(ρ) = −ik[γe + ln(−ik) − 1] + fseries(ρ) (22)

in which γe = 0.577 216 . . . is Euler’s constant and

fseries(ρ) = 1

ρ

[
1 −

∞∑
n=1

(ikρ)n+1

n(n + 1)!

]
. (23)

Note that the terms present in the relation between fexact and
fseries (equation (22)) are independent of ρ. This means that
they drop out when inserted into equation (18). Hence fseries

(equation (23)) may be inserted directly into equation (18)
as an alternative to fexact (equation (19)). The resulting
series representation for v given by combining equations (18)
and (23) agrees with that presented in [6].

2.2.3. Special cases. One commonly-used probe
configuration is that in which the four probe points are
arranged along a straight line, with the voltage pickup points
positioned symmetrically about the midpoint between the
current injection points. In the case of this co-linear, symmetric
probe, p = −q and c = 0. Equation (18) reduces to

vLS = I

πσ
[fi(S + q, 0) − fi(S − q, 0)]. (24)

For a rectangular probe configuration, in which the line
between the current injection points forms one side of the
rectangle and that between the voltage pickup points forms
the opposite side, p = −S and q = S so that

vR = I

πσ
[fi(2S, c) − fi(0, c)]. (25)

Figure 2. Dimensionless pickup voltage, πσvLSS/I , as a function
of dimensionless frequency, ωµσS2, in the case of a co-linear,
symmetric probe, for q/S = 1/3(0.333), 3/5 (0.600), 5/7 (0.714),
7/9 (0.778) and 9/11 (0.818).

In the limit of direct current, k → 0 and

f DC
exact(ρ) = f DC

series(ρ) = 1

ρ
, (26)

in agreement with results presented in [3, 5, 11].
In figure 2, the real and imaginary parts of the

dimensionless voltage, πσvLSS/I , are plotted versus
dimensionless frequency, ωµσS2, for various values of the
ratio of pickup length to current injection length, q/S, for a
co-linear, symmetric probe. It can be seen that the voltage
increases as the pickup points approach the current injection
points more closely, i.e. as q/S increases. Voltage values
calculated using the series representation for v, equation (23),
are also shown for the probe with equally-spaced probe points,
q/S = 1/3. To achieve agreement to within 2% of values
calculated using the exact solution at the highest frequency
considered, 30 terms in the series are required. As q/S

increases, yet more terms are needed.
In figure 3, the real and imaginary parts of the

dimensionless voltage, πσvRS/I , are plotted versus
dimensionless frequency, ωµσS2, for various values of the
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Figure 3. Dimensionless pickup voltage, πσvRS/I , as a function of
dimensionless frequency, ωµσS2, in the case of a rectangular probe,
for c/S = 2, 2/3 (0.667), 2/5 (0.400), 2/7 (0.286), 2/9 (0.222) and
2/11 (0.182).

aspect ratio of a rectangular probe, c/(2S). Again, the pickup
voltage increases as the pickup points approach the current
injection points more closely, i.e. as c/S decreases. To achieve
agreement within 2% between values calculated using the exact
solution (equation (19)) and the series solution (equation (23))
for a square-head probe (c/S = 2) at the highest frequency
considered, 70 terms in the series are required.

In both figures 2 and 3 it is evident that, below a
certain frequency, the pickup voltage is approximately real and
constant. In this low-frequency regime, the measured voltage
matches that obtained in the dc limit and equation (26) applies.
Hence, in the low-frequency regime, v is independent of µ, and
σ may be determined independently of µ by adjusting the value
of σ until theory matches low-frequency experimental data.
Once σ is known, µ may be determined by fitting theory with
experimental data taken at higher frequencies. This procedure
is demonstrated in [12] in characterizing metal plates which
are somewhat thinner than the probe length [13].

Comparing results shown in figures 2 and 3 it can be
seen that the co-linear and rectangular probes perform more
similarly as the pickup points approach the current injection
points more closely, as is to be expected.

Figure 4. Imaginary part of the dimensionless pickup voltage,
πσV LSS/I , as a function of dimensionless frequency, ωµσS2, in
the case of a co-linear, symmetric probe, with q/S = 1/3. Curves are
plotted for various values of the parameter l, the height of the pickup
loop above the conductor surface (figure 1). The area of the pickup
loop, and hence the inductance of the loop, is proportional to l.

2.3. Calculation of ε

It can easily be shown that Ec (equation (9)) is conservative
(∇ × Ec = 0) and therefore does not contribute to the integral
around the closed loop from which ε is derived (equation (4)).
Hence, with equations (7) and (10),

ε =
∮

C

[Ew(r+) − Ew(r−)] · dl. (27)

Considering the form of Ew (equation (8)) evaluation of the
integral in equation (27) is straightforward, yielding

ε = I

2π
iωµ0l ln

[√
(S + q)2 + c2

√
(S − p)2 + c2√

(S − q)2 + c2
√

(S + p)2 + c2

]
. (28)

The self-inductance of the pickup circuit, L, may therefore be
expressed as

L = I

2π
µ0l ln

[√
(S + q)2 + c2

√
(S − p)2 + c2√

(S − q)2 + c2
√

(S + p)2 + c2

]
. (29)

2.4. Complex voltage V

Combining results (18) and (28) in accordance with
equation (2) gives, finally,

V = I

2πσ
[F(S+q, c)−F(S−q, c)−F(S+p, c)+F(S−p, c)],

(30)
where

F(x, y) = F(ρ =
√

x2 + y2)

= eikρ

ρ
+ ik

[(
1 − ikl

µr

)
ln ρ + E1(−ikρ)

]
, (31)

and µr = µ/µ0 is the relative permeability of the half-space.
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Table 1. Probe parameters.

Configuration S (mm) p (mm) q (mm) c (mm) l (mm) (fitted value)

Co-linear 20.03 ± 0.07 −17.5 ± 0.2 17.6 ± 0.4 0 2.98 ± 0.01
Rectangular 17.64 ± 0.07 −17.47 ± 0.07 17.55 ± 0.07 2.5 ± 0.2 2.15 ± 0.01

Table 2. Half-space parameters conductivity, σ , thickness, T and
lateral dimensions, w × d.

Metal Alloy σ (MSm−1) T (mm) w × d (mm)

Aluminium 2024 17.6 ± 0.2 101 149 × 202

In figure 4 the effect of varying l on V is shown in the
case of a co-linear, symmetric probe with equally-spaced probe
points (q/S = 1/3). Only the imaginary part of V is shown
since ε is purely imaginary and has no influence on the real
part of V . It can be seen that, as l increases, Im(V ) becomes
linear in frequency due to the dominance of |ε| over |Im(v)|.
From a practical point of view, it is important to minimize l so
that the component of V which carries information about the
specimen, v, is not swamped by the inductive term, ε.

3. Experiment

In this section, the theoretical expression for the complex
voltage (equations (30) and (31)) is validated by comparison
with experimental data. Two different four-point probes,
one with co-linear arrangement of the probe points and one
rectangular, were used. The probes were constructed by
mounting four sprung, point contacts in a plastic support
block. The separation of the contacts was measured using
digital callipers. With reference to figure 1, the dimensions
of the probe are listed in table 1. The uncertainty in the
dimensions derives primarily from some lateral play in the
pin position which can occur as the springs are compressed.
Measurements of complex voltage were made with the probes
in contact with a thick, alloy 2024 aluminium block, whose
parameters are listed in table 2. The conductivity of the
block was measured independently using an eddy-current coil.
Details of the conductivity measurement and further details of
the experimental procedure for the ACPD measurements can
be found in [12, 14].

The dimensions of the aluminium block, with respect to
the dimensions of the probes, are such that some discrepancy
between theory and experiment due to edge effects is expected.
For the co-linear probe placed centrally on the largest face of
the aluminium block, the error due to edge effects is minimized
by orienting the line of the probe so that it is parallel with the
shorter side of the block face (w = 149 mm) [4, 15]. The
error is also reduced by employing a probe in which the four
points are not equally-spaced, but in which the pickup points
are closer to the current injection points. In fact, for the co-
linear probe used in this experiment, (q − p)/(2S) ≈ 0.88
and w/(2S) ≈ 3.7. For these ratios, and assuming that the
aluminium block is ‘infinite’ in the direction perpendicular to
the line of the probe (dimension d), edge effects are expected
to lead to a discrepancy of approximately 2% between theory
and experiment in the dc limit [15]. Since in practice this block
is finite in the direction perpendicular to the line of the probe

Figure 5. Impedance (V/I ) measured by a co-linear, four-point
probe (table 1) in contact with an aluminium block (table 2),
compared with theory expressed in equation (30), as a function of
frequency.

(d = 202 mm), a discrepancy a little larger than 2% is expected
between theory and experiment in the dc limit, becoming
smaller as frequency increases, due to greater confinement
of the electric field in the region of the probe. According
to calculations of DCPD as a function of the ratio of plate
thickness to probe dimension (here T/S ≈ 5) [13], the
thickness of the block is expected to approximate a half-space
very well, with no significant error arising due to its finite
thickness.

Experimental measurements made with co-linear and
rectangular probes are compared with theory in figures 5 and 6,
respectively. In both cases there is very good agreement
between theory and experimental data. The calculated curves
shown for the imaginary part of the impedance have been
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Figure 6. Impedance (V/I ) measured by a rectangular, four-point
probe (table 1) in contact with an aluminium block (table 2),
compared with theory expressed in equation (30), as a function of
frequency.

obtained by adjusting the value of the vertical dimension
of the pickup circuit, l (see figure 1), to give the best fit
to the experimental data. For the co-linear probe, l =
2.98 mm. For the rectangular probe, l = 2.15 mm. Both
these values are similar to the physical values of l for these
probes. No free parameters are involved in obtaining the
theoretical curves for the real part of the impedance shown
in figures 5 and 6. The discrepancy between theory and
experiment in the low-frequency regime is approximately 4%
for both sets of measurements. The fact that the measured
real part of V is larger than that predicted by theory, rather
than smaller, indicates that edge effects are likely responsible
for the discrepancy. Other significant sources of error are the

uncertainty in the probe dimensions and in the conductivity of
the sample. For a full discussion of uncertainties associated
with this measurement method, see [14].

4. Conclusion

An exact solution for the complex, frequency-dependent
voltage measured between the pickup points of a four-point
probe in contact with a metal half-space has been derived.
Very good agreement between theory and experiment on
an aluminium block has been obtained, for co-linear and
rectangular arrangements of the four probe points. As well as
providing a method for measuring electrical conductivity and
effective magnetic permeability of thick metal specimens, this
work forms a foundation for theoretical analysis of four-point
ACPD on stratified planar conductors, for the practical purpose
of nondestructive evaluation of conductive surface treatments
and coatings.
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