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Closed form analytical expressions for the electric field interior and exterior to a metal plate, due to
alternating current injected at its surface, are derived. Assuming that the current is injected and
extracted by wires oriented perpendicular to the surface of the plate, the problem is decomposed into
two cylindrically symmetric systems in which a single current-carrying wire lies on the coordinate
axis. This simplified problem is formulated in terms of a single magnetic potential and the solution
obtained by use of the Hankel transform. The resulting expression for the electric field in the plate
takes the form of an analytic series. In exterior regions, the electric field is expressed in terms of
Hankel transforms. The result for the physical system with two current-carrying wires is obtained by
superposition. ©2004 American Institute of Physics. [DOI: 10.1063/1.1793332]

I. INTRODUCTION

Analytical expressions for the electric field interior and
exterior to a metal plate, due to alternating current injected at
its surface, are derived. A schematic diagram of the system is
shown in Fig. 1. This work is motivated by applications of
the alternating-current potential difference(ACPD) method
on metal plates, in which a four-point probe is used. Of the
four contact points, two inject and extract alternating current
and two form part of a high impedance circuit which mea-
sures potential drop. An accurate description of the electric
field, interior and exterior to the plate, is necessary for proper
interpretation of ACPD measurements.

This work extends that of a previous article1 in which an
analytic expression for the electric field in a half-space con-
ductor was derived. Here, it is shown that the introduction of
a second surface(the back plane of the conductor) leads to
an analytic series expression for the electric field in the con-
ductor, of which the first term is the solution for the half
space. In addition, an expression for the electric field exterior
to the conductor is derived here. In ACPD measurements it is
important to consider the effect of inductance in the pick-up
circuit since, being proportional to frequency, this contribu-
tion dominates when the frequency is sufficiently high.
Knowledge of the electric field in region of the probe(air)
permits evaluation of the inductive contribution to the ACPD
measurement.

The form of the electric field external to a conductor is
rarely considered in the literature. Dyakin and Kaibicheva
present a general formulation based on solving for a
d-function distribution of harmonically varying source cur-
rent situated outside a metal region.2 Solutions for a number
of current-carrying elements may be summed to give a spe-
cific configuration. Particular examples given in Ref. 2 are: a
vertical semi-infinite thin wire in contact with a conductive
half space, a vertical semi-infinite wall in contact with a half
space, and a vertical cylinder connected to a half space.

Penchenkov and Shcherbinin analyze a system with two
current-carrying wires in perpendicular contact with a con-
ductive half space.3 The half space in which the wires are
situated is also permitted to be conductive. Fourier-space
representations for the electric and magnetic fields in both
regions are obtained. In a complementary problem, the elec-
tric field external to a conductive spherical shell excited by
an external dipole is examined by Mrozynski and Baum.4

II. FORMULATION

The electric field problem is formulated as a superposi-
tion of two cylindrically symmetric systems. In one, current
flows into the plate by means of a wire contact perpendicular
to the surface of the conductor, Fig. 2. In the second, the
current flows out of the conductor through a similar wire.
The total electric fieldE j

T is then determined according to

E j
Tsr d = E jsr +d-E jsr −d, s1d

where the subscriptj denotes either region 1, 2, or 3, and
r±=Îsx±Sd2+y2+z2. Analysis of the problem shown in Fig.
2 follows the method described in Ref. 1, in which an ex-
pression for the electric field in a half-space conductor, due
to a similar excitation, was derived. The analysis is simpli-
fied by expressing the electric field in terms of a single,
transverse magnetic, potential.

a)Electronic mail: nbowler@cnde.iastate.edu
FIG. 1. Two wires carrying currentI, in contact with one surface of a
conductive plate.
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Consider a time-harmonic current source varying as the
real part ofJsr dexps−ivtd, wherev is the angular frequency
of the excitation. In this case the source is essentially a wire
carrying currentI as shown in Fig. 2. It is assumed that the
material properties are linear and that the conductor has con-
ductivity s2 and scalar permeabilitym2. From Maxwell’s
equations, the electric field in each of the three regionsV1,
V2, andV3 is a solution of

= 3 = 3 E1sr d = iv m0Jsr d, zø 0,

= 3 = 3 E2sr d − k2E2sr d = 0, 0ø zø T, s2d

= 3 = 3 E3sr d = 0, zù T,

wherem0 is the permeability of free space andk2= iv m2s2.
As discussed in Refs. 1 and 5, the electric field will be writ-
ten in terms of two scalar potentials defined with respect to
the direction perpendicular to the air-conductor interface:

E jsr d = iv m j = 3 fẑc j8sr d − = 3 ẑc j9sr dg. s3d

In Eq. (3), m j is the scalar permeability,ẑ is a unit vector in
thez direction,c8 is a transverse electric(TE) potential, and
c9 is a transverse magnetic(TM) potential.

As described in Ref. 5, uncoupled equations for the po-
tentials may be obtained by substituting the expression for
the electric field, given in Eq.(3), into Eq. (2). It is found
that, in a case where the source is directed in thez direction
alone,

J = Jzẑ, z, 0, s4d

only the TM potential is required to describe the field.1 Equa-
tion (4) is certainly true sufficiently far form the conducting
plate but will be assumed true asz→0−. As z→0−, Eq.(4)
is valid for the problem under consideration if the radius of
the wire a is sufficiently small. Practically, the assumption
expressed in Eq.(4) is reasonable ifa!2S, the separation
between the wires.

Having established that the electric field may be fully
described by the TM potential alone, the governing equations
are

¹2¹z
2c19sr d = − ẑ ·Jsr d, zø 0, s5d

s¹2 + k2d¹z
2c29sr d = 0, 0ø zø T, s6d

¹2¹z
2c39sr d = 0, zù T, s7d

in which the transverse differential operator=z is defined as

=z ; = − ẑ
]

] z
.

It is assumed thatc j9 vanishes asur u→`. For Eq.(6) to be
satisfied it is sufficient thatc29 satisfies the Helmholtz equa-
tion. Similarly, c39 satisfies the Laplace equation, as doesc19
in source-free regions.

In order to simplify the solution, a new potential is de-
fined as follows:

C j = ¹z
2c j9. s8d

Equations(5) to (7) become

¹2C1sr d = − ẑ ·Jsr d, zø 0, s9d

s¹2 + k2dC2sr d = 0, 0ø zø T. s10d

=2C3sr d = 0, zù T. s11d

From Eq.(3), retaining only the TM potential, the two com-
ponents of the electric field can be expressed as

Ezjsr d = ivm jC jsr d, s12d

Er jsr d = − ivm j

]2cj9sr d
] r ] z

, s13d

wherer andz are coordinates of the cylindrical system. It is
not convenient to expressEr in terms ofC. Rather,Er will
be obtained from Eq.(13) by means of relationship(8).

In this article, expressions for the electric field in regions
V1 (away from the current source), V2, andV3 will be de-
rived.

III. SCALAR POTENTIAL IN THE PLATE

A. Governing equation and boundary conditions

Helmholtz equation(10) will now be solved for the sca-
lar potentialC2 in the conductor, subject to certain boundary
conditions at its surface. Assuming thatC2 is independent of
azimuthal anglef, Eq. (10) may be written as

S ]2

] r2 +
1

r

]

] r
+

]2

] z2 + k2DC2sr,zd = 0. s14d

As argued in Ref. 1, consideration of the normal component
of the current density at the surfacez=0 gives rise to the
following boundary condition:

C2sr,0d = Csrd, s15d

where

Csrd = 5 I

pskad2 , r , a,

0, r . a.

s16d

Implicit in Eq. (16) is the assumption that the current density
in the wire is uniform with respect to the radial coordinater.
This is a reasonable assumption provided that the radius of

FIG. 2. Cross section of a wire, radiusa, carrying currentI, in contact with
a conductive plate. The system in cylindrically symmetric.
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the wire is somewhat smaller than the electromagnetic skin
depth in the wire. In the limita→0, to be taken later, it is
reasonable to assume uniform current density in the wire for
arbitrary frequency.

At z=T, the component of current density normal to the
air-conductor interface is zero everywhere. Hence

C2sr,Td = 0. s17d

B. Solution

The solution of Eq.(14), subject to the boundary condi-
tions expressed in Eqs.(15), (16), and (17), proceeds along
similar lines to that for the half-space conductor.1 The radial
variable r is removed by application of the Hankel trans-
form. The Hankel transform of orderm of a function fsrd is
given by6,7

f̃skd =E
0

`

fsrdJmskrdrdr, s18d

with the inverse being of the same form. Now apply the
zero-order Hankel transform to Eq.(14), making use of the
following identity6

E
0

` FS ]2

] r2 +
1

r

]

] r
D fsrdGJ0skrdrdr ; − k2f̃skd, s19d

where fsrd is assumed to be such that the terms
rJ0skrd] fsrd /]r andrfsrd]J0skrd /]r vanish at both limits.
The result is a one-dimensional Helmholtz equation:

S ]2

] z2 − g2DC̃2sk,zd = 0, 0ø zø T, s20d

whereing2=k2-k2. For g the root with positive real part is
taken.

The general solution of Eq.(20), to which the inverse
Hankel transform has been applied, is

C2sr,zd =E
0

`

fAskde−gz + BskdegzgJ0skrdkdk. s21d

The relationship betweenAskd and Bskd is found from the
boundary condition atz=T, Eq. (17):

Bskd = − Askde−2gT. s22d

Hence,

C2sr,zd =E
0

`

Askdfe−gz − egsz−2TdgJ0skrdkdk. s23d

Askd will now be sought from the boundary condition given
in Eqs.(15) and (16). At z=0,

Csrd =E
0

`

Askds1 − e−2gTdJ0skrdkdk. s24d

Askd is extracted from Eq.(24) by using the Fourier-Bessel
integral (Ref. 8, result 6.3.62). Multiply both sides of Eq.
(24) by e0

`J0sk8rdrdr. Reverse the order of integration on
the right-hand side and simplify. This yields

Askds1 − e−2gTd =
I

pskad2E
0

a

J0skrdrdr. s25d

Evaluation of the integral in Eq.(25) (Ref. 9, result 9.1.30)
results in the following expression forAskd:

Askd =
I

pk2

J1skad
kas1 − e−2gTd

. s26d

Now insert the above expression forAskd into Eq. (23) to
obtain

C2sr,zd =
I

pk2a
E

0

` fe−gz − egsz−2Tdg
s1 − e−2gTd

J1skadJ0skrddk.

s27d

The integral in Eq.(27) cannot be evaluated analytically for
arbitrary z, but puttingz=0 it is found that(Ref. 10, result
6.512.3)

C2sr,0d = 5 I

pskad2 , r , a,

0, r . a,

s28d

in accordance with boundary condition(15).
In order to make further progress, the limita→0 is now

taken. This is justified by noting that, practically, the inequal-
ity a!2S usually holds. As discussed in Ref. 1,
limz→0fJ1szd /zg,1/2. Hence,

lim
a→0

Askd ,
I

2pk2s1 − e−2gTd
. s29d

If Askd, as given in Eq.(29), is now inserted into Eq.(23),
the following expression forC2 is obtained:

C2sr,zd =
I

2pk2E
0

`

e−gzF1 − e2gsz−Td

1 − e−2gT G J0skrdkdk, s30d

wherein the limita→0 has been taken. IfT→`, the term in
square brackets tends to unity and the resulting integral is
identical to that obtained in the case of a half-space
conductor.1

It is possible to evaluate the integral in Eq.(30) analyti-
cally by expanding the term in the denominator as a binomial
series(Ref. 9, result 3.6.10):

s1 − e−2gTd−1 = 1 +e−2gT + e−4gT + e−6gT + e−8gT + ¯

= o
n=0

`

e−2ngT. s31d

Multiplying the right-hand side of Eq.(31) by the factor
e−gzf1−e2gsz−Tdg, and substituting the result into Eq.(30),
yields

C2sr,zd =
I

2pk2o
n=0

` E
0

`

he−gsz+2nTd

− egfz−2sn+1dTgjJ0skrdkdk, s32d

where the order of summation and integration has been re-
versed. The first term in braces in the integrand of Eq.(32),
e−gz, gives rise to the result for the TM potential in a half-
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space conductor, which has been derived elsewhere:1

C2sr,zd = −
I

2p

ikz

sikrd3eikrs1 − ikrd, z. 0, T → `,

s33d

with r2=r2+z2. The second term −egsz−2Td accounts for the
primary reflection of the field from the back surface of the
plate atz=T. Higher terms deal with multiple reflections be-
tween the surfaces of the plate. By analogy with the result for
the half-space conductor, Eq.(33), or by multiple use of the
analytic result given in Ref. 7(result 8.2.23), the terms in Eq.
(32) can be integrated. It is found that

C2sr,zd = −
I

2p
o
n=0

` H iksz+ 2nTd
sikrnd3 eikrns1 − ikrnd

+
ikfz− 2sn + 1dTg

sikrn8d
3 eikrn8s1 − ikrn8dJ,

0 , zø T, s34d

with rn=Îr2+sz+2nTd2 andrn8=Îr2+fz−2sn+1dTg2.

C. Truncation of the series

For the purpose of practical computation, the infinite se-
ries of result(34) must be suitably truncated. The accuracy
with which the boundary conditions are fulfilled can be used
as a guide in this process. Consider first the boundary con-
dition at z=0, Eqs.(15) and (16). The form of result(34)
reveals thatC2sr ,0d is identically zero forr.0 (away from
the current source) provided that the series has an odd num-
ber of terms. Explicitly, a suitable form for the truncated
series is

C2sr,zd < −
I

2p
So

n=0

N H iksz+ 2nTd
sikrnd3 eikrns1 − ikrndJ

+o
n=0

N−1H ikfz− 2sn + 1dTg
sikrn8d

3 eikrn8s1 − ikrn8dJD,

0 , zø T. s35d

This choice gives greatest accuracy near the conductor sur-
face atz=0. With this truncation the residual error in the
potentialC2 at z=T is given by

C2sr,Td = −
I

2p

s2N + 1dikT

sikrNTd3 eikrNTs1 − ikrNTd, s36d

where rNT
2 =r2+fs2N+1dTg2. The form of Eq.(36) reveals

that boundary condition(17) is matched most closely by ex-
pression(35) when T is large,r→`, and N→`. This be-
havior is shown in Figs. 3 and 4.

Conversely, an exact match with the boundary condition
at z=T can be achieved by truncating the series in Eq.(34) to
an even number of terms. Then, a residual error in the value
of C2 exists atz=0.

IV. ELECTRIC FIELD IN THE PLATE

For the purpose of deriving expression for the electric
field in air, following section, it is useful to express the elec-
tric field in the plate in integral form. From Eqs.(30), (12),
and (13),

Ez2sr,zd =
I

2ps2
E

0

`

ke−gzF1 − e2gsz−Td

1 − e−2gT G J0skrddk,

0 ø zø T, s37d

and

Er2sr,zd =
I

2ps2
E

0

`

ge−gzF1 + e2gsz−Td

1 − e−2gT G J1skrddk,

0 ø zø T. s38d

Next, following the method of Ref. 1, or by analogy with the
results for the half-space conductor, real-space analytic
forms for the two components of the electric field in the plate
can be obtained. It is a trivial matter to obtainEz from results
(35) and (28) since Ezj and C j are simply related by the
factor ivm j, Eq. (12);

FIG. 3. uC2sr ,Tdu as a function ofr for various values of maximum index
N. T=d . uC2sr ,Tdu reduces whenN andr increase.

FIG. 4. uC2sr ,Tdu, given in Eq.(36), as a function ofr for various values of
plate thicknessT. N=1. It can be seen thatuC2sr ,Tdu reduces whenT andr
increase.
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Ez2srd = −
ivm2I

2p
So

n=0

N H iksz+ 2nTd
sikrnd3 eikrns1 − ikrndJ

+ o
n=0

N−1H ikfz− 2sn + 1dTg
sikrn8d

3 eikrn8s1−ikrn8dJD,

0 , zø T s39d

and

Ez2sr,0d = 0, r . 0. s40d

To obtain Er2 via relations (13) and (8) requires some
manipulation.1 The result is

Er2sr d = −
ikI

2ps2r
So

n=0

N Heiksz+2nTd

−
eikrn

ikrn
F1 +

fiksz+ 2nTdg2

ikrn
S1 −

1

ikrn
DGJ

+ o
n=0

N−1He−ikfz−2sn+1dTg

−
eikrn8

ikrn8
F1 +

hikfz− 2sn + 1dTgj2

ikrn8
S1 −

1

ikrn8
DGJD,

0 ø zø T. s41d

Considering the forms ofEz2 andEr2 given in Eqs.(39) and
(41), respectively, it can be seen that the electric field exhib-
its correct behavior in certain simple cases.Ez2 is symmetric
with respect tor and bothEz2 andEr2→0 asr →`. On the
z axis,Er2s0,zd=0 whereas

Ez2s0,zd → I

2ps2z
2 asz→ 0.

In the far field, the electric field is dominated by terms of the
form eikz/r in Eq. (41). The associated current density is

Jrsr d < −
ikI

2pr
So

n=0

N−1

heiksz+2nTd + e−ikfz−2sn+1dTgj + eiksz+2NTdD,

asr → `. s42d

If the far-field current density, given in Eq.(42), is integrated
over a cylindrical surface of large radius extending fromz
=0 toT, the result isIf1+eiks2N+1dTg. This expression tends to
I asN→`, as it should. For a field point in a thin plate, it is
often the case thatT and, consequently,z are much smaller
than the other variablesx andy defining the position of the
point of interest. Under these circumstances, the far-field ap-
proximation given in Eq.(42) is also applicable in this “thin
plate” regime. In the case in whichT→0 and the thickness
of the plate becomes infinitesimal, the electric field in the
conductor is divergent. This behavior is shown in the diver-
gence of the series summations in Eqs.(39), (41), and, in-
deed, (42). Finally, in the static limit of direct current,k
→0 and the following expressions for the current densitiesJz

andJr are obtained from Eqs.(39) and (41):

Jzsr d =
I

2p
Ho

n=0

N
sz+ 2nTd

rn
3 + o

n=0

N−1
fz− 2sn + 1dTg

srn8d
3 J , s43d

Jrsr d =
I

2p
rSo

n=0

N
1

rn
3 + o

n=0

N−1
1

srn8d
3D . s44d

The term containingr0 is the solution for the half-space con-
ductor, in which the current density radiates uniformly from
the point of injection andJrsr d= I / s2pr2d. Higher terms rep-
resent contributions to the current density due to internal
reflections from the plate surfaces. These contributions act as
through originating at image sources located ats0,0, ±2nTd,
with n=1, . . . ,N.

For interest, contour plots ofuEr
Tu on the conductor sur-

face sz=0d and of uEz
Tu in the planey=0, Eq.(1), are shown

in Figs. 5 and 6, for a representative case. The components of
E, Eqs.(39) and(41), have been combined according to Eq.
(1). Lengths are normalized to the electromagnetic skin
depth in the conductor;d=s2/vm2s2d1/2.

V. ELECTRIC FIELD IN AIR

In region V1, Fig. 2, there are two contributions to the
electric field. One is from the current flowing the wire,Ew,
and the other is from the current density in the half-space
conductor,Ec. These contributions will be analyzed sepa-
rately and then combined to give the electric field in region
V1, E1. Again, it is assumed thata→0.

FIG. 5. Contour plot ofuEr
Tu on the surface of a conductive plate, conduc-

tivity s2=1.13107 S/m. Frequency,f =1 kHz andT=d. Current is injected/
extracted atx= ±0.5d.

FIG. 6. Contour plot ofuEz
Tu in the planey=0. Parameters are as for Fig. 5.
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E1 = Ew + Ec, zø 0. s45d

An expression for the magnetic field in air due to the
wire, Hw, can be obtained by applying the well-known inte-
gral form of Ampere’s law in the regionzø0. It is found that

Hw =
I

2pr
f̂, r . 0, zø 0. s46d

Symmetry dictates thatEw has only aẑ component. Conti-
nuity of the tangential electric field at the surface of the wire
dictates thatEw has the same direction as the current density
J in the wire. Applying Faraday’s law it is found that

Ew = ẑ
ivm1I

2p
ln r, r . 0, zø 0, s47d

for J= ẑJz. Clearly the electric field expressed in Eq.(47)
diverges asr→0 and asr→`. Divergence in the former
case is a consequence of the assumption that the radius of the
wire is infinitesimal. Divergence in the latter case is a con-
sequence of the fact that only one current-carrying wire is
considered at this stage in the analysis. Closing the current
loop by superposing the fields due to two wires carrying
opposing currents, as expressed in Eq.(1), yields the nondi-
vergent field which is obtained in practice asr→`.

A solution for the electric field in air(due to the current
in the metal plate), Ec, is obtained by solving for the modi-
fied transverse magnetic potentialC1 defined in Eq.(8). The
boundary conditions onEc are

Er1
c sr,0d = Er2sr,0d s48d

and

uEcsr,zdu → 0 asz→ − `. s49d

Hence, through Eq.(48), the solution for the electric field in
the conductor is needed to determine the field in air.

The potentialC1 obeys Laplace’s equation in source-
free regions, Eq.(9). If Eq. (9) is written in cylindrical co-
ordinates andC1 is independent of azimuthal anglef, then

S ]2

] r2 +
1

r

]2

] r
+

]2

] z2DC1sr,zd = 0, r . 0, zø 0.

s50d

Now apply the zero-order Hankel transform to Eq.(50). The
result is a one-dimensional Helmholtz equation,

S ]2

] z2 − k2DC̃1sk,zd = 0, zø 0, s51d

the solution of which is

C̃1sk,zd = Askde−kz + Bskdekz, zø 0. s52d

HereAskd is zero sinceC1 must remain finite asz→−`, Eq.

(49). Applying the inverse transform toC̃1 yields

C1sr,zd =E
0

`

BskdekzJ0skrdkdk. s53d

The coefficientBskd will be sought from the continuity con-
dition on the tangential component of the electric field at the

air-conductor interface,z=0, Eq.(48). This will be done with
the electric field written as an infinite integral with respect to
k. To expressEr1

c in this form, first note that[Ref. 1, Eq.
(35)]

c̃ j9sk,zd = −
C̃ jsk,zd

k2 . s54d

This relation is obtained by applying the Hankel transform to
Eq. (8). Then, from relations(53), (54), and(13),

Er1
c sr,zd = − ivm1E

0

`

BskdekzJ1skrdkdk. s55d

Putting z=0 in Eqs. (38) and (55) and equating gives the
following result forBskd:

Bskd = −
I

2pk2

m2

m1

g

k
coth sgTd. s56d

On substituting this expression forBskd into Eq. (53) it is
found that

C1sr,zd = −
I

2pk2

m2

m1
E

0

`

g coth sgTdekzJ0skrddk,

zø 0. s57d

From relation(12),

Ez1
c sr,zd = –

I

2ps2
E

0

`

g coth sgTdekzJ0skrddk, zø 0.

s58d

Finally an expression forEr1
c is obtained by substitutingBskd

into Eq. (55):

Er1
c sr,zd =

I

2ps2
E

0

`

g coth sgTdekzJ1skrddk, zø 0.

s59d

Comparing Eqs.(30), (37), and (38), for the potential
and electric field in the conductor, with Eqs.(57), (58), and
(59), for the potential and electric field in air, it is clear that
the exponential decay in theẑ direction is governed byg in
the conductor andk in air. Comparing Eqs.(38) and(59) it is
obvious that boundary condition(48) is satisfied. While ana-
lytic forms for the electric field in the conductor were ob-
tained previously by evaluating the integrals in Eqs.(37) and
(38) to give Eqs.(39) and(41),1 it is not possible to evaluate
the integrals in Eqs.(58) and (59) analytically. The electric
field in regionV1 is hence given by Eqs.(47), (58), and(59).
The terms in Eq.(47) and(58) are summed to give the fullẑ
component while Eq.(59) alone describes ther̂ component
of E.

For completeness, expressions for electric field in region
V3 can be obtained following the same method by which
Eqs.(58) and (59) were obtained. The result is

Ez3sr,zd =
I

4ps2
E

0

`

g cschsgTde−ksz−TdJ0skrddk,

zù T, s60d
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Er3sr,zd =
I

4ps2
E

0

`

g cschsgTde−ksz−TdJ1skrddk,

zù T. s61d

The result for a half-space conductor is obtained by tak-
ing the limit T→` in Eqs. (58) and (59). Then cothsgTd
→1 and the results are equivalent to those reported in Ref. 2.

VI. CONCLUSION

Analytic expressions for the electric field due to alternat-
ing current injected at the surface of a metal plate have been
derived. In the plate, the electric field is expressed in terms
of a real-space series expansion whose terms originate in
internal reflections at the plate surfaces. In air, ther̂ and ẑ
components of the electric field are expressed as first- and
zero-order Hankel transforms, respectively. The results fa-
cilitate proper interpretation of four-point ACPD measure-
ments since, by integrating the electric field around the loop
of the pick-up circuit, all contributions to the measured volt-
age can be evaluated. This is the subject of a future article.
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