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Electric field due to alternating current injected at the surface
of a metal plate
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Closed form analytical expressions for the electric field interior and exterior to a metal plate, due to
alternating current injected at its surface, are derived. Assuming that the current is injected and
extracted by wires oriented perpendicular to the surface of the plate, the problem is decomposed into
two cylindrically symmetric systems in which a single current-carrying wire lies on the coordinate
axis. This simplified problem is formulated in terms of a single magnetic potential and the solution
obtained by use of the Hankel transform. The resulting expression for the electric field in the plate
takes the form of an analytic series. In exterior regions, the electric field is expressed in terms of
Hankel transforms. The result for the physical system with two current-carrying wires is obtained by
superposition. €2004 American Institute of PhysidgDOI: 10.1063/1.1793332

I. INTRODUCTION Penchenkov and Shcherbinin analyze a system with two
Analytical expressions for the electric field interior and currgnt—carrymg WIres in perpendmglar c_ontact W't.h a con-
. . . uctive half spacé.The half space in which the wires are
exterior to a metal plate, due to alternating current injected a(tj.

its surface, are derived. A schematic diagram of the system %tuated is also permitted to be conductive. Fourier-space

shown in Fig. 1. This work is motivated by applications of representations for the electric and magnetic fields in both

the alternating-current potential differenc&CPD) method regions are obtained. In a complementgry problem, the elec-
: . . . tric field external to a conductive spherical shell excited by
on metal plates, in which a four-point probe is used. Of the

four contact points, two inject and extract alternating currenf” external dipole is examined by Mrozynski and Baum.
and two form part of a high impedance circuit which mea-
sures potential drop. An accurate description of the eIectri(ﬁ_ FORMULATION
field, interior and exterior to the plate, is necessary for proper
interpretation of ACPD measurements. The electric field problem is formulated as a superposi-
This work extends that of a previous artitla which an  tion of two cylindrically symmetric systems. In one, current
analytic expression for the electric field in a half-space conflows into the plate by means of a wire contact perpendicular
ductor was derived. Here, it is shown that the introduction ofto the surface of the conductor, Fig. 2. In the second, the
a second surfacéhe back plane of the conducjdeads to  current flows out of the conductor through a similar wire.
an analytic series expression for the electric field in the conThe total electric fieIdEJ-T is then determined according to
ductor, of which the first term is the solution for the half ET(r) = Ei(r,)-Ei(r.) (1)
space. In addition, an expression for the electric field exterior ) =R
to the conductor is derived here. In ACPD measurements it isshere the subscript denotes either region 1, 2, or 3, and
important to consider the effect of inductance in the pick-upr, =/(x+S)2+y2+2z2. Analysis of the problem shown in Fig.
circuit since, being proportional to frequency, this contribu-2 follows the method described in Ref. 1, in which an ex-
tion dominates when the frequency is sufficiently high.pression for the electric field in a half-space conductor, due
Knowledge of the electric field in region of the proker) to a similar excitation, was derived. The analysis is simpli-
permits evaluation of the inductive contribution to the ACPDfied by expressing the electric field in terms of a single,
measurement. transverse magnetic, potential.
The form of the electric field external to a conductor is
rarely considered in the literature. Dyakin and Kaibicheva

Q3: ai
present a general formulation based on solving for a s z=T
o-function distribution of harmonically varying source cur- {2;: conductive plate
rent situated outside a metal regidBolutions for a number -S 0 S .o
of current-carrying elements may be summed to give a spe- £ air
cific configuration. Particular examples given in Ref. 2 are: a
vertical semi-infinite thin wire in contact with a conductive ZL I I

T

half space, a vertical semi-infinite wall in contact with a half
space, and a vertical cylinder connected to a half space.

FIG. 1. Two wires carrying current, in contact with one surface of a
¥Electronic mail: nbowler@cnde.iastate.edu conductive plate.
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Zl VV2yh(r) =0, z=T, (7)
p . . . . . ,
§23: air =T in which the transverse differential opera®y is defined as
Q5: conductive plate V.= V- ii
z 9z’
- Oa z2=0
{y: air I It is assumed tha#/ vanishes agr|— . For Eq.(6) to be
4 satisfied it is sufficient thag, satisfies the Helmholtz equa-
wire tion. Similarly, ¢4 satisfies the Laplace equation, as dggs

FIG. 2. Cross section of a wire, radiascarrying current, in contact with in source-free re.glon.s. . L
a conductive plate. The system in cylindrically symmetric. In order to S|mpI|fy the solution, a new pOtent'aI is de-

fined as follows:

Consider a time-harmonic current source varying as the  ¥;=Vay/. (8)
real part ofJ(r)exp(-iwt), wherew is the angular frequency

L . . i . Equations(5) to (7) become
of the excitation. In this case the source is essentially a wire a B o ()

carrying current as shown in Fig. 2. It is assumed that the ~ V?Wy(r)=-2-J(r), z<0, 9
material properties are linear and that the conductor has con-

ductivity o, and scalar permeability,. From Maxwell’s (V2+K)W,(r)=0, 0=<z<T. (10
equations, the electric field in each of the three regi@ns

Q,, andQ; is a solution of V2Wy(r)=0, z=T. (11

From Eq.(3), retaining only the TM potential, the two com-

V XV XEqr)=i J(r), z=<0, -
11 =ie pol(r) ponents of the electric field can be expressed as

V X V X Eyr)-KE,(r)=0, 0<z<T, ) E;i(r) =iwu Wj(r), (12)
VXV XEyr)=0, z=T A AG)
X X 3(I')— f 7= y Epj(r)—_“x)ﬂj ap(yz y (13)

where u, is the permeability of free space aktEiow 0.

As discussed in Refs. 1 and 5, the electric field will be writ-
ten in terms of two scalar potentials defined with respect t
the direction perpendicular to the air-conductor interface:

wherep andz are coordinates of the cylindrical system. It is
not convenient to expreds, in terms of ¥. Rather,E, will
%e obtained from Eq13) by means of relationshi(B).

In this article, expressions for the electric field in regions

E(r)=iwm V X [217[}],([‘) -V X Zzﬁ}’(r)]. 3) fi)VleEjaway from the current sourge),, and Q3 will be de-

In Eq. (3), u; is the scalar permeability, is a unit vector in
thez direction, ¢’ is a transverse electr{@E) potential, and
Y/’ is a transverse magnet{@M) potential.

As described in Ref. 5, uncoupled equations for the poA. Governing equation and boundary conditions
tentials may be obtained by substituting the expression for
the electric field, given in Eq(3), into Eq. (2). It is found
that, in a case where the source is directed inzthleection

[ll. SCALAR POTENTIAL IN THE PLATE

Helmholtz equatior{10) will now be solved for the sca-
lar potential¥, in the conductor, subject to certain boundary
conditions at its surface. Assuming thi is independent of

alone, azimuthal anglep, Eq. (10) may be written as
1233 2<0. 4 P14 P
2,z @) (—2+——+—+k2)‘1’z(p12):0- (14)
ap®> pdp 97

only the TM potential is required to describe the fiéBqua-
tion (4) is certainly true sufficiently far form the conducting As argued in Ref. 1, consideration of the normal component
plate but will be assumed true as»0-. Asz—0-, Eq.(4)  of the current density at the surfage 0 gives rise to the

is valid for the problem under consideration if the radius offollowing boundary condition:

the wire a is sufficiently small. Practically, the assumption Wol(p.0) =C 15
expressed in Eqg4) is reasonable i<2S, the separation 2(p,0)=Clp), (15
between the wires. where

Having established that the electric field may be fully

described by the TM potential alone, the governing equations L <a
o y p the g geq Clp) =1 m(ka)?’ p<a, (16
) 0, p>a.
VVah(r)=-2-3 <0 5
(1) =-2-3n), z=<0, ® Implicit in Eq. (16) is the assumption that the current density
P in the wire is uniform with respect to the radial coordinate
(VE+KIVyo(r) =0, O0<zs<T, (6)  This is a reasonable assumption provided that the radius of
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the wire is somewhat smaller than the electromagnetic skin I a
depth in the wire. In the limia—0, to be taken later, it is A(x)(1-€e2T) = w(ka)zf Jo(xp)pdp. (25)
reasonable to assume uniform current density in the wire for 0
arbitrary frequency. Evaluation of the integral in Eq25) (Ref. 9, result 9.1.30

At z=T, the component of current density normal to theresults in the following expression faé¥(«):
air-conductor interface is zero everywhere. Hence

LAY
Yap.T)=0. (17) Alk) = k2 ka(l-e 2Ty’ (26)
Now insert the above expression fAfx) into Eq. (23) to
obtain
B. Solution [67— ¢ z—2T)]
The solution of Eq(14), subject to the boundary condi- Valp.2)= k2a J (1-e27) J1(k@)Jo(xp)dc.

tions expressed in Eqgl5), (16), and(17), proceeds along
similar lines to that for the half-space conductdihe radial (@7
variable p is removed by application of the Hankel trans- The integral in Eq(27) cannot be evaluated analytically for
form. The Hankel transform of orden of a functionf(p) is  arbitrary z, but puttingz=0 it is found that(Ref. 10, result
given b)fi'7 6.512.3

I

Foo= [ 1 Jm(kp)pdp, 18 —
(x) fo ()l kp)pdlp (18) o0 ) ThaE P

0, p>a,

(28)

with the inverse being of the same form. Now apply the
zero-order Hankel transform to E(L4), making use of the in accordance with boundary conditi¢h5).

following identity® In order to make further progress, the lirait> 0 is now
% £ 19 taken. This is justified by noting that, practically, the inequal-
f ( )f(p) Jo(xp)pdp == 7f(k), (19

—t ity a<2S wusually holds. As discussed in Ref. 1,
ap® pdp

lim,_[J1(2)/z]~1/2. Hence,
where f(p) is assumed to be such that the terms I

0

pJo(kp) df(p) 1 dp and pf(p) 33y(kp)! dp vanish at both limits. LinQ)A(K) T omel-e ) (29)
The result is a one-dimensional Helmholtz equation:
P If A(k), as given in Eq(29), is now inserted into Eq23),
V,(k,2)=0, 0<z<T 20 the following expression foW, is obtained:
prie AKk,2) = , (20) he followi ion foW, is obtained
’ I 1-e2D
wherein y2=k2-k2. For y the root with positive real part is q’z(P,Z):ﬁ . e et Jo(kp)kdk, (30)
taken.
The general solution of Eq20), to which the inverse wherein the limita— 0 has been taken. F— =, the term in
Hankel transform has been applied, is square brackets tends to unity and the resulting integral is
% identical to that obtained in the case of a half-space
Wy(p,2) = f [A(k)€7? + B(k)e"]Jg(kp) kdk. (21)  conductor:
0 It is possible to evaluate the integral in E§0) analyti-
The relationship betweeA(x) and B(x) is found from the ~ cally by expanding the term in the denominator as a binomial
boundary condition az=T, Eq. (17): series(Ref. 9, result 3.6.10
B(k) = - A(k)e 2", (22) (L-e?N)t=1+e?T+eT+e®T+e®T+
Hence, E -2nyT (31)
W.(p,z :J A(k)[€ 7% - "= 2D, (kp) kdk. 23
2p.2) 0 (ol Polkp) @3 Multiplying the right-hand side of Eq(31) by the factor

e "{1-e>"= 1] and substituting the result into EG30),

A(x) will now be sought from the boundary condition given yields

in Egs.(15) and(16). At z=0,

Clp) = f * AL -2 3y(kp)d. (24) Valpd =5 kzz e
0

_ aNz-2(n+1)T]
A(k) is extracted from Eq(24) by using the Fourier-Bessel € Ho(kp) s, (32)

integral (Ref. 8, result 6.3.62 Multiply both sides of Eq. where the order of summation and integration has been re-
(24) by [Jo(x'p)pdp. Reverse the order of integration on versed. The first term in braces in the integrand of @),
the right-hand side and simplify. This yields e 7%, gives rise to the result for the TM potential in a half-
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space conductor, which has been derived elsewhere: 107
_ b oikz g )
\Ifz(p,z)——zw(ikr)se' (1-ikr), z>0, T— oo, o
(33 =
&
B

with r?=p?+7%. The second term e*# 2" accounts for the 107
primary reflection of the field from the back surface of the N=4

plate atz=T. Higher terms deal with multiple reflections be-

tween the surfaces of the plate. By analogy with the result for
the half-space conductor, E3), or by multiple use of the 10 0 >

4
analytic result given in Ref. fresult 8.2.23 the terms in Eq. prd
(32) can be integrated. It is found that

6 8

FIG. 3. |¥,(p,T)| as a function ofp for various values of maximum index

w (. N. T=8.|W,(p,T)| reduces wheiN and p increase.
VypD =53 {"“Z.*—ZWeik'nu —ikr,)

27 =0 (Ikl’n)3 IV. ELECTRIC FIELD IN THE PLATE

ik[z=2(n+DT] ., o
+ Wékr”(l _'krn)}' For the purpose of deriving expression for the electric

" field in air, following section, it is useful to express the elec-
0<zs<T, (34)  tric field in the plate in integral form. From Eqg30), (12),
and(13),

with r,=\/p2+(z+2nT)2 andr’=\/p?+[z-2(n+ 1) T

* 1-e2#D
J [ 1—] el

Exl(p,2) = >
0

C. Truncation of the series o

For the purpose of practical computation, the infinite se- O=z=<T, (37)
ries of result(34) must be suitably truncated. The accuracy
with which the boundary conditions are fulfilled can be usedang
as a guide in this process. Consider first the boundary con-
dition at z=0, Eqgs.(15) and (16). The form of result(34)

reveals thatV',(p, 0) is identically zero forp> 0 (away from E (p.2) = f N ye_yz[ 1 +e2“/(Z‘T>] (o)
the current sourgeprovided that the series has an odd num- P 2may ) 1-e2T '
ber of terms. Explicitly, a suitable form for the truncated
series is O0sz<T. (38
P ik(z+2nT) . ) Next, following the method of Ref. 1, or by analogy with the
Walp,2) = - o Z (ikr )3 efIn(1 —ikry) results for the half-space conductor, real-space analytic
=0 " forms for the two components of the electric field in the plate
N1 ik[z—2(n+DT] . o can be obtained. It is a trivial matter to obt&nfrom results
+> We n(1=ikrp) (], (35 and (28) since E,; and ¥; are simply related by the
n=0 n factoriwu;, Eq. (12);
0<z<T. (35
This choice gives greatest accuracy near the conductor sur- 107
face atz=0. With this truncation the residual error in the
potential ¥, at z=T is given by 107
| (2N + 1)ikT . ) =
Wy(p,T) = — ——————&"N1(1 —ikryy), 36 =
2(p ) o (ikrNT)3 ( NT) ( ) 5?_10 6

where r3;=p?+[(2N+1)T]2. The form of Eq.(36) reveals 107 To4
that boundary conditiofil7) is matched most closely by ex-
pression(35) whenT is large,p—o, and N—oo. This be- o
havior is shown in Figs. 3 and 4. 10, > 4 6 3

Conversely, an exact match with the boundary condition p/d

atz=T can be achieved by truncating the series m.(BQ) to FIG. 4.|P4(p,T)|, given in Eq.(36), as a function op for various values of
an even number of terms. Then, a residual error in the valugate thicknesd. N=1. It can be seen thé,(p, T)| reduces whefT andp

of P, exists atz=0. increase.
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. N .
i ool ik(z+2nT) .
E,o(r)=- €*'n(1 —ikr
2(r) o (go{ (ikr)? ( n)
N-1 (.
S { |k[z—.2(n + 1)T]eikrr’](1—ikrr/])}>,
n=0 ('krr;)s
0<z<T (39
and
E,(p,00=0, p=>0. (40) A —05 0 05 1
. . . . X/
To obtain E,, via relations (13) and (8) requires some
manipulationl. The result is FIG. 5. Contour plot ofE]| on the surface of a conductive plate, conduc-
tivity 0,=1.1x 10’ S/m. Frequencyf=1 kHz andT=§. Current is injected/
ikl N _ extracted ak=+0.56.
Epz(r) - _ E e|k(z+2n'l')
2702p \ =0 | N (z+2nT) N—l[ 2An+1)T]
. z+2n z-2(n
ekn [ik(z+2nT)]? 1 =12 Tt 2 "3 (43
-—— | 1l+—(1- 27 | n=0 Mn n=0 ()
ikrp, ikrp, ikrp,
N-1 (o1 O
+ o iklz-2n+1)T] J(r) = —p<2 S+ > T) (44)
n2=0 . 2m \noo I’ﬁ n=0 (rn)3

gk {ik[z-2(n+ T]? 1 The term containingy is the solution for the half-space con-
- W + iKr! (1 ——) ) ductor, in which the current density radiates uniformly from
n n the point of injection and,(r)=1/(2=r?). Higher terms rep-
0<z<T. (41)  resent contributions to the current density due to internal
reflections from the plate surfaces. These contributions act as
Considering the forms dE,, andE,, given in Eqs(39) and  through originating at image sources locatedgi0, +2nT),
(41), respectively, it can be seen that the electric field exhibwith n=1,... N.

its correct behavior in certain simple caskg, is symmetric For interest, contour plots dEZ| on the conductor sur-
with respect top and bothE,, andE,;—0 asr—=. On the  face(z=0) and of|EI| in the planey=0, Eq.(1), are shown
z axis, E»(0,2)=0 whereas in Figs. 5 and 6, for a representative case. The components of
E, Egs.(39) and(41), have been combined according to Eq.
E(0,2) — asz—0. (1). Lengths are normalized to the electromagnetic skin
2mo 7 depth in the conducto=(2/wu,0,) 2.

In the far field, the electric field is dominated by terms of they, £/ EcTRIC FIELD IN AR

form €%/ p in Eq. (41). The associated current density is
In region 4, Fig. 2, there are two contributions to the

N-1 . ) . . .

ikl ) ) ) electric field. One is from the current flowing the witge?,
~ k(z+2 -ik[z-2 k(z+2 : L

J(r) = - pr(z_: {2 4 gridz-2m Tl o gl Nn)v and the other is from the current density in the half-space
n=0 conductor,E®. These contributions will be analyzed sepa-

asr — o, (42 rately and then combined to give the electric field in region

) o ) o Q,, E;. Again, it is assumed that— 0.
If the far-field current density, given in E¢42), is integrated

over a cylindrical surface of large radius extending fram 1

=0 toT, the result id[1+e*@N*DT] This expression tends to

I asN— o, as it should. For a field point in a thin plate, it is 0.8

often the case thak and, consequentlyg are much smaller

than the other variables andy defining the position of the 0.6

point of interest. Under these circumstances, the far-field ap- ©

proximation given in Eq(42) is also applicable in this “thin 0.4

plate” regime. In the case in which— 0 and the thickness

of the plate becomes infinitesimal, the electric field in the 0.2

conductor is divergent. This behavior is shown in the diver-

gence of the series summations in E(9), (41), and, in- 0 3 ‘- |

deed, (42). Finally, in the static limit of direct currentg -1 -0.5 0 0.5 1
; . o x/d

— 0 and the following expressions for the current densilies

andJ, are obtained from Eq¢39) and(41): FIG. 6. Contour plot ofE]] in the planey=0. Parameters are as for Fig. 5.
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(45) air-conductor interfacez=0, Eq.(48). This will be done with
the electric field written as an infinite integral with respect to

An expression for the magnetic field in air due to the x. To expressES, in this form, first note thafRef. 1, Eq.
wire, HY, can be obtained by applying the well-known inte- (35)] el ' ’

gral form of Ampere’s law in the regiop<0. It is found that

E,=EY+E° z<0.

_ w (54)
K

H" = p>0, z=<0. (46) l//j'(fﬂz):—

[
27Tp¢’
Symmetry dictates tha" has only a2 component. Conti- This relation is obtained by applying the Hankel transform to

nuity of the tangential electric field at the surface of the WireEq' (8). Then, from relationg53), (54), and(13),
dictates thaE" has the same direction as the current density

0

J in the wire. Applying Faraday’s law it is found that En(p2) =~ inJO B(x)e*“J;(kp) kdxk. (55)
iwuql
EY=2 a;'ul Inp, p>0, z=<0, (47 Putting z=0 in Egs.(38) and (55) and equating gives the
a

following result forB(x):
for J=2J,. Clearly the electric field expressed in Ed@.7)
diverges asp— 0 and asp— . Divergence in the former
case is a consequence of the assumption that the radius of the
wire is infinitesimal. Divergence in the latter case is a con-On substituting this expression f&(«) into Eq. (53) it is
sequence of the fact that only one current-carrying wire iSound that
considered at this stage in the analysis. Closing the current

_ pey

B(k) =~
(9 27k? uq k

coth (yT). (56)

loop by superposing the fields dye to two wires carr_ying q’l(PyZ):——ZM—Z y coth (yT)e%Jy(kp)dx,

opposing currents, as expressed in @, yields the nondi- 2wk 1 Jo

vergent field which is obtained in practice as-» . ;<0 (57)
A solution for the electric field in ai(due to the current o

in the metal platg E°, is obtained by solving for the modi- From relation(12),

fied transverse magnetic potentitd} defined in Eq(8). The | "

boundary conditions o&® are ES(p.2) = _z_f y coth (yT)ey(kp)dx, z<0.

mo2J o

Ef)]_(pv O) = EpZ(pvo) (48)

and 58
E%p.2)] -0 49) Finally an expression degl is obtained by substitutinB(«)

p2)|— U asz——x. into Eq. (55):

Hence, through Eq48), the solution for the electric field in
the conductor is needed to determine the field in air.

The potentialV,; obeys Laplace’s equation in source-
free regions, Eq(9). If Eq. (9) is written in cylindrical co-
ordinates andl'; is independent of azimuthal angle then

((92 1(92 2

+—-—+—
é’pz pap e

Now apply the zero-order Hankel transform to EgQ). The

result is a one-dimensional Helmholtz equation,

=

=

)\Ifl(p,z)zo, p>0, z=<O0.

(50)

P ~
((9_22_"2 V,(k,2=0, z<0, (51)
the solution of which is
V,(k,2) = A(k)e "+ B(k)e? z<0. (52)

HereA(k) is zero sincel’; must remain finite ag— -, Eq.
(49). Applying the inverse transform td; yields
Wi(p,2) = J B(x)€“Jg(kp) kdk. (53

0

The coefficientB(«) will be sought from the continuity con-

dition on the tangential component of the electric field at the

<

=

v coth (yT)e“) (kp)dx, z=<O0.

Egl(l% Z) =

270y

)
(59

Comparing Eqgs(30), (37), and (38), for the potential
and electric field in the conductor, with Eq&7), (58), and
(59), for the potential and electric field in air, it is clear that
the exponential decay in tHedirection is governed by in
the conductor and in air. Comparing Eq9:38) and(59) it is
obvious that boundary conditiq@d8) is satisfied. While ana-
lytic forms for the electric field in the conductor were ob-
tained previously by evaluating the integrals in E@¥) and
(38) to give Eqs(39) and(41),l it is not possible to evaluate
the integrals in Eqs(58) and (59) analytically. The electric
field in region(}, is hence given by Eq$47), (58), and(59).
The terms in Eq(47) and(58) are summed to give the fu
component while Eq(59) alone describes the component
of E.

For completeness, expressions for electric field in region
Q)5 can be obtained following the same method by which
Eqgs.(58) and(59) were obtained. The result is

o]

|
Ex(p.2) = m f
0

Tl

y csch(yT)e™ @ D Jy(kp)dxk,

=

z= (60)
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