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Analytical solution for the electric field in a half space conductor
due to alternating current injected at the surface
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An analytical expression for the electric field in a half space conductor, due to alternating current
injected at the surface, is derived. Assuming that the injected current flows in wires perpendicular
to the surface of the test piece, the problem can be formulated in terms of a single, transverse
magnetic, potential. Considering at first one wire, the cylindrical symmetry permits simplification of
the calculation by use of the Hankel transform. The final result for a system with two
current-carrying wires is obtained by superposition. 2804 American Institute of Physics.
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I. INTRODUCTION Analysis of the problem shown in Fig. 1 is simplified by

. , o expressing the electric field in terms of a single, transverse
An analytical expression for the electric field in a half magnetic, potential.

space conductor, due to alternating current injected at the “=gnsider a time-harmonic current source varying as the

surface, is derived. Knowledge of the electric field is useful o4 part of)(r)exp(iwt), wherew is the angular frequency
in accurately interpreting alternating-current potential differ-o¢ the excitation. In this case the source is essentially a wire
ence(ACPD) measurements. In the ACPD method, measuregaying current as shown in Fig. 1. It is assumed that the

ments are typically made using a four-point probe. TWo Ofyaterial properties are linear and that the conductor has con-
the four contact points pass alternating current into, and OUJIuctivity o, and scalar permeabilitys,. From Maxwell's

of, the sample. The remaining two contacts form part of & ations, the electric field in the nonconductive regibn
high impedance circuit for measurement of potential drop;s 5 solution of

While this work is motivated by applications in ACPD, the
focus of this article is the form of the electric field. In earlier VXVXE(r)=iougd(r), z<0, D

work in which the ACPD method has been used for detectin . - -
and characterizing defectst has been assumed that eIe(:tricg.a/\lhere'“O Is the permeability of free space. The electric field

current flowing in the region midway between the electroded” the conductive regiorf),, is a solution of
is approximately uniform. Theoretical interpretation of the VX VxE,(r)—k?E,(r)=0, z>0 2)
measurements has been based on this assunfpidere, a ) . _ o
detailed description of the electric field and current in theWith k"=iwu,0. Equation(1) implies thatV-J=0 and
conductor is sought. Eq. (2) implies that V-E,=0. It shall be assumed that
Previous analytical work related to this subject is that byV - E1=0 for z<0. ThenE; may be written as the curl of a
Chenet al? in which a two-dimensional solution for current Vector potential throughou?, , including the source regich.
injection from shallowp-n junctions is derived. As in this The vector potential is constructed using two scalar poten-
article, cylindrical symmetry of the system is exploited andtials defined with respect to the direction perpendicular to the

the analysis simplified by use of the Hankel transform. air-conductor interface
E; (N =iwu;VX[2¢] (1) = VX 24//(1)]. 3)

In Eq. (3), the subscrip} denotes either region 1 or 2 is
the scalar permeability is a unit vector in thez direction,
A. Formulation ¢ is a transverse electridE) potential andy/” is a trans-

In order to determine the electric fiel&(r), in a con- Versé magneti¢TM) potential. As described in Ref. 4, un-
ductive half space due to alternating current injected at th&0upled equations for the potentials may be obtained by sub-
surface, the problem can be formulated as a superposition §fituting the expression for the electric field, given in &),
two cylindrically symmetric systems. In one, current flows INt0 Egs.(1) and (2). Employing the transverse differential
into the test piece by means of a wire contact perpendicula?Perator
to the surface of the conductor, Fig. 1. In the second, the
current flows out of the conductor through a similar wire. V,=V-2
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z I B. Scalar potential
p

1. Governing equation and boundary conditions

Qy: conductor 0a =0
0 air I Now solve Helmholtz Eq(11) for the scalar potentiall
} in the conductor, subject to certain boundary conditions at its
wire surface. If Eq.(11) is written in cylindrical coordinates and

_ _ _ ) ) _ WV is independent of azimuthal angie then
FIG. 1. Cross section of a wire, radiascarrying current in contact with

a half space conductor. The system is cylindrically symmetric. 92 1 9 32 2
—5+ = —+——+k?|W(p,2)=0. 14
0p2 p dp 922 (p,2) (14

Appropriate boundary conditions can be obtained by consid-
Vzvgzpi(r)z—v-[ix\](r)], z<0, (4) ering the normal component of the current density at the
conductor surface. At=0, J,=0 for p>a, outside the re-

2.1 _
(V2+k2w2"/’2(r)_0’ z>0. (5) gion of the wire contact. Fop=<a, the current density
For the TM potential matches that in the wire
VA2 =-2-3(r), 2<0, (6) L p=a
(V2+K2)V245(r)=0, >0 @ HeO= 7 19
e ’ ' 0, p>a.

It is assumed that the potentials vanishds-~.* For Egs.
(5) and (7) to be satisfied it is sufficient thaf, and ¢/
satisfy the Helmholtz equation. Similarly, in source-free re-
gions, ; and ¢ satisfy the Laplace equation according to
Egs.(4) and (6).

Assume that the wires are perpendicular to the conduct
surface and the radius of the wiig,is sufficiently small that

In Eq. (15) it has been assumed that the current density in the
wire is uniform with respect to the radial coordingteThis
assumption is reasonable if the radius of the wire is some-
what smaller than the electromagnetic skin depth in the wire.
Later, the limita— 0 will be taken. In the limiting case it is
Yeasonable to assume uniform current density in the wire,
even for arbitrary frequency.

J=J,z, z<O0. (8) Now write Eq.(15) in terms of¥ to obtain the following

This is certainly true sufficiently far from the conducting half boundary condition:

space but it will be assumed true as-0—. Later, the limit ¥(p,0=C, (16)
a—0 will be taken. Hence the assumption expressed in Eq,,
(8) is reasonable. Then, sin@<J=0, the source term for

the TE potentials in Eqsi4) and (5) vanishes, and hence |

here

¢,j!:0,j=1,2. Consequently, only the TM potential is re- C= m(ka)?’ p=a, (17)
quired to describe the field. If the current-carrying wires are 0, p>a

not perpendicular to the conductor surface, the TE compo-
nent of E exists in the conductor. The cylindrical symmetry 5 Soluti
. . . Solution
of the system is lost and, in gener&lhas three components.
A new potential is defined as follows: The solution of Eq(14) subject to the boundary condi-
> tion expressed in Eq$16) and(17) proceeds as follows. The
W=V © radial variable,p, can be conveniently removed by applica-
Then Egs(6) and(7) become tion of the Hankel transformThe Hankel transform of order
m of a functionf(p) is given by’

V2, (r)=—2-J(r), z<O, (10
(V2+k>)W,(r)=0, z>0. (11) T(K)=f0 f(p)Im(kp)pdp. (18)

From Eq.(3), retaining qnly _the TM potential, the two com- The Hankel transform is self-inverse, hence
ponents of the electric field in the conductor can be

expressed f(p)= | F(13n(kp)xlx 19
EAN)=iop¥(r), (12) 0
2 (r) Now apply the zero-order Hankel transform to HG4),
E,(N=—iox———, (13 making use of the following identify(f(p) is assumed to be
dpdz such that the termaJy(«p) df (p)/dp andpf(p)ddo(kp)!dp
wherep andz are coordinates of the cylindrical system. The Vanish at both limits
subscript 2 is dropped in Eq6l2) and(13), and from here <[ 52
on. It is not convenient to expres&s, in terms of ¥. Rather, fo %ﬁ - %) f(p) [Jo(xp)pdp=—rF(x). (20)
E, will be obtained from Eq(13) by means of relationship
(9). The result is a one-dimensional Helmholtz equation
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( 9? 2) ~ allows the following limit to be found:
——vy°|¥(k,2)=0, z>0, 21
27| (k2) (21) o 1
22 12 . - . lim ~=.
whereiny-= k“—k*. For y the root with positive real part is ,0 Z 2
taken.
The general solution of Eq21) is Hence,
V(k,2)=A(k)e” ?+B(k)e”? (22 lim A(x)~ 5—. (30
a—0

but hereB(«) is zero sinceV must remain finite ag—oe.

Applying the inverse transform t& then yields If A(k), as given in Eq(30), is now inserted into Eq.23),
the following expression foW is obtained:

‘I’(p,Z)=J A(k)e "Jy(kp)kdk. (23 | o
0 ‘I’(p,z)=mf e "Jo(kp)kdk. (31
A(k) will now be sought from the boundary conditioh6). 0
At z=0, In expression31) it is understood that the limia—0 has
" now been taken. An analytical result for the integral in Eq.
C=J A(k)Jo(kp)kdk. (24) (31) is given in Ref. 7, result 8.2.2@eproduced in the Ap-
0

pendixX. It is found that

A(k) is extracted from Eq(24) by using the Fourier—Bessel |

z .
integral (Ref. 8, result 6.3.62which may be expressed as WV(p,z)=— > ekr(1—ikr), z>0, (32

(ikr)3

f(2)= f:Jm(az)adaf:f(/;)Jm(ag)gdg. (25)  Whereinr?=p?+ 2z,

Multiply both sides of Eq(24) by [§Jo(x'p)pdp. Reverse
the order of integration on the right-hand side and simplify,c. Electric field

by use of Eq(25), to give ) _
y a2, tog Analytic forms for the two components of the electric

field in the conductor, Eq412) and (13), will now be ob-
tained. It is a trivial matter to obtaiB, from result(32) since
E, and¥ are simply related by the factowu, Eq. (12)

A(K)=C joaao<xp>pdp. 26

The upper limit of integration in Eq26) is a sinceC=0 for

p>a. Evaluation of the integral in Eq26) (Ref. 9, result _ loul ikz
9.1.30 yields the following result foA(k): B (r)=- 2 (ikr)ﬁe (1=ikr), z>0. (33)
I Ji(ka) From Eq.(29)

K Ex(p,00=0, p>0, (34)
Ng)twl insert the above expression fa(«) into Eq. (23) to as required by the boundary condition &nat the surface of
obtain the conductor, away from the current injection point.

S To obtainE, requires more work. First, apply the zero-
V(p2)= 2 fo e 7Jy(ka)Jo(kp)dx. (28 order Hankel transform to Eq9) to establish

The integral in Eq(28) cannot be evaluated analytically for Y (x,2)

arbitrary z, but puttingz=0 it is found that(Ref. 10, result V'(kz)== P (39
6.512.3 Then, from Eq.(31),

V(p,0=0, p>a, (29 | (=1
in accordance with boundary conditi¢he). V' (p,2)=— 27k JO <& "Jo(kp)dx. (36)

As mentioned earlier, the lima— 0 will now be taken.
The reason for this is that the radius of the contact poinfThis integral cannot be evaluated since it diverges logarith-
between the wire and the conductor surface may be assumetically. The divergent behavior is due to the fact that only
small in the present context, where the separation of thene current-carrying wire is considered at this stage in the
current-carrying wires is assumed large compared with theianalysis. Physically, the current must flow in a closed loop. If
radius. It was necessary to includen the calculation up to an additional wire is considered, in which current flows out
this point in order that the current density in the wire beof the conductor, the integral corresponding to that in Eqg.

finite. (36) is well defined. Here, the mathematical development of

In Ref. 9, result 9.1.7 the result an expression for the electric field is simplified by consider-

T ing only one wire. The process of superposition to obtain a

lim JD(Z)N(_) - physical result for two wires carrying opposing currents, as
20 2) I'(v+1) shown in Fig. 2, is done later.
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To obtainE,,, it is necessary to differentiat¢” with Z]_
respect top. Applying the differential operator to Eq36) z
and reversing the order of differentiation and integration conductor —5 0 b 2=0
gives a } }
I I
(71#”(p12) I < 2 wire wire
ap T 27k? fo e "Ji(kp)dxk. (37 FiG. 2. cross section of a half-space conductor and two current-carrying

wires. The plang/=0 is shown.

An analytic result for this integral is available in Ref. 7,

result 8.4.9, and is reproduced in the Appendix. Then ) .
due to alternating current injected and extracted by contact

aw'(pz) | 2 Z ik _ wires atx=*S. In Eq.(43), r . = (x= S)%+y?+ 7% and the
ap  2mk%p er=re z=0. (38) components of are given in Eqs(33) and (40).
Strictly, relation (38) as obtained by use of Ref. 7, result
8.4.9 is valid only forz>0. Puttingz=0 in Eg. (37) and Ill. CONCLUSION
invoking Ref. 10, result 6.511.1, however, shows that An elegant analytical expression for the electric field in a
Y half space conductor due to alternating current injected at the
9" (p,0) _ I (39) surface has been derived. The method of solution, in which
ap 27k?p’ the Hankel transform is used, suggests a solution for a lay-

ered half space, or plate, in the form of a series expansion.
Explicitly, the expression for the scalar potential, E§1),
becomes a series of similar terms in which the exponents
may include the thickness of the layer or plate. This is the
subject of a future article.

which may be obtained by puttirg=0 in Eq. (38). Hence,
relation(38) holds forz=0.

Referring to Eq(193), it is necessary to take the deriva-
tive of Eq. (38) with respect toz in order to obtainE,.
Finally,

1+

Cdepl 1 [ €N
(=20 @[ ikr

(ikz)? ( - i) ” ACKNOWLEDGMENT
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Considering the forms d, andE, as given in Eqs(33)

and_(é_lO), respectively,_it can be seen that the electric ﬁelo_'APPENDIX
exhibits correct behavior in certain simple cases. On the axis o N . ] )
of the cylindrical system, which coincides with the axis of ~ The following identities were used in evaluating the in-
the current-carrying wire,(0,2) =0. E, is symmetric with tegrals which appear in Eq¢31) and (37), respectively.
respect t and bothE, andE,—0 asr —. In the far field, ~From Ref. 7, result 8.2.23, for>0
the electric field is dominated by the first term in E40) o T 32
and the associated current density is fo Ve X 3g(xy) Vxy dx

kZI eikZ \/_
~— N avy N v
Jp(r) o ikp’ as r—o, (41) _ me By +a (1+8 /y2+a?), (A1)

If the far field current density, given in E¢41), is integrated  \ith the restrictions Re>0 and Re3>0. Also from Ref. 7,
over a cylindrical surface of large radius extending fram ot 8.4.9

=0 to =, the result is simplyl, as it should be. Last, in the

static limit of direct current, in whick— 0, the current den- =1 2+ g2
_ ! : ! . —e Ji(xy)Vxydx
sity in the conductor radiates uniformly from the point of Jo \/x 1(XY)Vxy
injection
1 a (2, 2
| =—|e P ——_e AW T A2
ID=5—7. (42 fy( Wt (A2
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