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An analytical expression for the electric field in a half space conductor, due to alternating current
injected at the surface, is derived. Assuming that the injected current flows in wires perpendicular
to the surface of the test piece, the problem can be formulated in terms of a single, transverse
magnetic, potential. Considering at first one wire, the cylindrical symmetry permits simplification of
the calculation by use of the Hankel transform. The final result for a system with two
current-carrying wires is obtained by superposition. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1630700#

I. INTRODUCTION

An analytical expression for the electric field in a half
space conductor, due to alternating current injected at the
surface, is derived. Knowledge of the electric field is useful
in accurately interpreting alternating-current potential differ-
ence~ACPD! measurements. In the ACPD method, measure-
ments are typically made using a four-point probe. Two of
the four contact points pass alternating current into, and out
of, the sample. The remaining two contacts form part of a
high impedance circuit for measurement of potential drop.
While this work is motivated by applications in ACPD, the
focus of this article is the form of the electric field. In earlier
work in which the ACPD method has been used for detecting
and characterizing defects,1 it has been assumed that electric
current flowing in the region midway between the electrodes
is approximately uniform. Theoretical interpretation of the
measurements has been based on this assumption.2 Here, a
detailed description of the electric field and current in the
conductor is sought.

Previous analytical work related to this subject is that by
Chenet al.3 in which a two-dimensional solution for current
injection from shallowp-n junctions is derived. As in this
article, cylindrical symmetry of the system is exploited and
the analysis simplified by use of the Hankel transform.

II. THEORY

A. Formulation

In order to determine the electric field,E~r !, in a con-
ductive half space due to alternating current injected at the
surface, the problem can be formulated as a superposition of
two cylindrically symmetric systems. In one, current flows
into the test piece by means of a wire contact perpendicular
to the surface of the conductor, Fig. 1. In the second, the
current flows out of the conductor through a similar wire.

Analysis of the problem shown in Fig. 1 is simplified by
expressing the electric field in terms of a single, transverse
magnetic, potential.

Consider a time-harmonic current source varying as the
real part ofJ(r )exp(2ivt), wherev is the angular frequency
of the excitation. In this case the source is essentially a wire
carrying currentI as shown in Fig. 1. It is assumed that the
material properties are linear and that the conductor has con-
ductivity s2 and scalar permeabilitym2 . From Maxwell’s
equations, the electric field in the nonconductive regionV1

is a solution of

¹3¹3E1~r !5 ivm0J~r !, z,0, ~1!

wherem0 is the permeability of free space. The electric field
in the conductive region,V2 , is a solution of

¹3¹3E2~r !2k2E2~r !50, z.0 ~2!

with k25 ivm2s2 . Equation ~1! implies that¹•J50 and
Eq. ~2! implies that ¹•E250. It shall be assumed that
¹•E150 for z,0. ThenE1 may be written as the curl of a
vector potential throughoutV1 , including the source region.4

The vector potential is constructed using two scalar poten-
tials defined with respect to the direction perpendicular to the
air-conductor interface5

Ej~r !5 ivm j¹3@ ẑc j8~r !2¹3 ẑc j9~r !#. ~3!

In Eq. ~3!, the subscriptj denotes either region 1 or 2,m j is
the scalar permeability,ẑ is a unit vector in thez direction,
c8 is a transverse electric~TE! potential andc9 is a trans-
verse magnetic~TM! potential. As described in Ref. 4, un-
coupled equations for the potentials may be obtained by sub-
stituting the expression for the electric field, given in Eq.~3!,
into Eqs.~1! and ~2!. Employing the transverse differential
operator

¹z[¹2 ẑ
]

]z
,

the following uncoupled governing equations for the TE po-
tential are obtained:
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¹2¹z
2c18~r !52¹•@ ẑ3J~r !#, z,0, ~4!

~¹21k2!¹z
2c28~r !50, z.0. ~5!

For the TM potential

¹2¹z
2c19~r !52 ẑ•J~r !, z,0, ~6!

~¹21k2!¹z
2c29~r !50, z.0. ~7!

It is assumed that the potentials vanish asur u→`.4 For Eqs.
~5! and ~7! to be satisfied it is sufficient thatc28 and c29
satisfy the Helmholtz equation. Similarly, in source-free re-
gions,c18 and c19 satisfy the Laplace equation according to
Eqs.~4! and ~6!.

Assume that the wires are perpendicular to the conductor
surface and the radius of the wire,a, is sufficiently small that

J5Jzẑ, z,0. ~8!

This is certainly true sufficiently far from the conducting half
space but it will be assumed true asz→02. Later, the limit
a→0 will be taken. Hence the assumption expressed in Eq.
~8! is reasonable. Then, sinceẑ3J50, the source term for
the TE potentials in Eqs.~4! and ~5! vanishes, and hence
c j850,j 51,2. Consequently, only the TM potential is re-
quired to describe the field. If the current-carrying wires are
not perpendicular to the conductor surface, the TE compo-
nent ofE exists in the conductor. The cylindrical symmetry
of the system is lost and, in general,E has three components.

A new potential is defined as follows:

C j5¹z
2c j9 . ~9!

Then Eqs.~6! and ~7! become

¹2C1~r !52 ẑ•J~r !, z,0, ~10!

~¹21k2!C2~r !50, z.0. ~11!

From Eq.~3!, retaining only the TM potential, the two com-
ponents of the electric field in the conductor can be
expressed

Ez~r !5 ivmC~r !, ~12!

Er~r !52 ivm
]2c9~r !

]r]z
, ~13!

wherer andz are coordinates of the cylindrical system. The
subscript 2 is dropped in Eqs.~12! and ~13!, and from here
on. It is not convenient to expressEr in terms ofC. Rather,
Er will be obtained from Eq.~13! by means of relationship
~9!.

B. Scalar potential

1. Governing equation and boundary conditions

Now solve Helmholtz Eq.~11! for the scalar potentialC
in the conductor, subject to certain boundary conditions at its
surface. If Eq.~11! is written in cylindrical coordinates and
C is independent of azimuthal anglef, then

S ]2

]r2 1
1

r

]

]r
1

]2

]z2 1k2DC~r,z!50. ~14!

Appropriate boundary conditions can be obtained by consid-
ering the normal component of the current density at the
conductor surface. Atz50, Jz50 for r.a, outside the re-
gion of the wire contact. Forr<a, the current density
matches that in the wire

Jz~r,0!5H I

pa2 , r<a,

0, r.a.

~15!

In Eq. ~15! it has been assumed that the current density in the
wire is uniform with respect to the radial coordinater. This
assumption is reasonable if the radius of the wire is some-
what smaller than the electromagnetic skin depth in the wire.
Later, the limita→0 will be taken. In the limiting case it is
reasonable to assume uniform current density in the wire,
even for arbitrary frequency.

Now write Eq.~15! in terms ofC to obtain the following
boundary condition:

C~r,0!5C, ~16!

where

C5H I

p~ka!2 , r<a,

0, r.a.

~17!

2. Solution

The solution of Eq.~14! subject to the boundary condi-
tion expressed in Eqs.~16! and~17! proceeds as follows. The
radial variable,r, can be conveniently removed by applica-
tion of the Hankel transform.3 The Hankel transform of order
m of a function f (r) is given by6,7

f̃ ~k!5E
0

`

f ~r!Jm~kr!rdr. ~18!

The Hankel transform is self-inverse, hence

f ~r!5E
0

`

f̃ ~k!Jm~kr!kdk. ~19!

Now apply the zero-order Hankel transform to Eq.~14!,
making use of the following identity6 ( f (r) is assumed to be
such that the termsrJ0(kr)] f (r)/]r andr f (r)]J0(kr)/]r
vanish at both limits!:

E
0

`F S ]2

]r2 1
1

r

]

]r D f ~r!GJ0~kr!rdr[2k2 f̃ ~k!. ~20!

The result is a one-dimensional Helmholtz equation

FIG. 1. Cross section of a wire, radiusa, carrying currentI in contact with
a half space conductor. The system is cylindrically symmetric.
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S ]2

]z22g2D C̃~k,z!50, z.0, ~21!

whereing25k22k2. Forg the root with positive real part is
taken.

The general solution of Eq.~21! is

C̃~k,z!5A~k!e2gz1B~k!egz ~22!

but hereB(k) is zero sinceC must remain finite asz→`.
Applying the inverse transform toC̃ then yields

C~r,z!5E
0

`

A~k!e2gzJ0~kr!kdk. ~23!

A(k) will now be sought from the boundary condition~16!.
At z50,

C5E
0

`

A~k!J0~kr!kdk. ~24!

A(k) is extracted from Eq.~24! by using the Fourier–Bessel
integral ~Ref. 8, result 6.3.62! which may be expressed as

f ~z!5E
0

`

Jm~az!adaE
0

`

f ~z!Jm~az!zdz. ~25!

Multiply both sides of Eq.~24! by *0
`J0(k8r)rdr. Reverse

the order of integration on the right-hand side and simplify,
by use of Eq.~25!, to give

A~k!5CE
0

a

J0~kr!rdr. ~26!

The upper limit of integration in Eq.~26! is a sinceC50 for
r.a. Evaluation of the integral in Eq.~26! ~Ref. 9, result
9.1.30! yields the following result forA(k):

A~k!5
I

pk2

J1~ka!

ka
. ~27!

Now insert the above expression forA(k) into Eq. ~23! to
obtain

C~r,z!5
I

pk2a E0

`

e2gzJ1~ka!J0~kr!dk. ~28!

The integral in Eq.~28! cannot be evaluated analytically for
arbitraryz, but puttingz50 it is found that~Ref. 10, result
6.512.3!

C~r,0!50, r.a, ~29!

in accordance with boundary condition~16!.
As mentioned earlier, the limita→0 will now be taken.

The reason for this is that the radius of the contact point
between the wire and the conductor surface may be assumed
small in the present context, where the separation of the
current-carrying wires is assumed large compared with their
radius. It was necessary to includea in the calculation up to
this point in order that the current density in the wire be
finite.

In Ref. 9, result 9.1.7 the result

lim
z→0

Jn~z!;S z

2D n 1

G~n11!

allows the following limit to be found:

lim
z→0

J1~z!

z
;

1

2
.

Hence,

lim
a→0

A~k!;
I

2pk2 . ~30!

If A(k), as given in Eq.~30!, is now inserted into Eq.~23!,
the following expression forC is obtained:

C~r,z!5
I

2pk2 E
0

`

e2gzJ0~kr!kdk. ~31!

In expression~31! it is understood that the limita→0 has
now been taken. An analytical result for the integral in Eq.
~31! is given in Ref. 7, result 8.2.23~reproduced in the Ap-
pendix!. It is found that

C~r,z!52
I

2p

ikz

~ ikr !3 eikr~12 ikr !, z.0, ~32!

whereinr 25r21z2.

C. Electric field

Analytic forms for the two components of the electric
field in the conductor, Eqs.~12! and ~13!, will now be ob-
tained. It is a trivial matter to obtainEz from result~32! since
Ez andC are simply related by the factorivm, Eq. ~12!

Ez~r !52
ivmI

2p

ikz

~ ikr !3 eikr~12 ikr !, z.0. ~33!

From Eq.~29!

Ez~r,0!50, r.0, ~34!

as required by the boundary condition onJz at the surface of
the conductor, away from the current injection point.

To obtainEr requires more work. First, apply the zero-
order Hankel transform to Eq.~9! to establish

c̃9~k,z!52
C̃~k,z!

k2 . ~35!

Then, from Eq.~31!,

c9~r,z!52
I

2pk2 E
0

` 1

k
e2gzJ0~kr!dk. ~36!

This integral cannot be evaluated since it diverges logarith-
mically. The divergent behavior is due to the fact that only
one current-carrying wire is considered at this stage in the
analysis. Physically, the current must flow in a closed loop. If
an additional wire is considered, in which current flows out
of the conductor, the integral corresponding to that in Eq.
~36! is well defined. Here, the mathematical development of
an expression for the electric field is simplified by consider-
ing only one wire. The process of superposition to obtain a
physical result for two wires carrying opposing currents, as
shown in Fig. 2, is done later.
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To obtain Er , it is necessary to differentiatec9 with
respect tor. Applying the differential operator to Eq.~36!
and reversing the order of differentiation and integration
gives

]c9~r,z!

]r
5

I

2pk2 E
0

`

e2gzJ1~kr!dk. ~37!

An analytic result for this integral is available in Ref. 7,
result 8.4.9, and is reproduced in the Appendix. Then

]c9~r,z!

]r
5

I

2pk2r S eikz2
z

r
eikr D , z>0. ~38!

Strictly, relation ~38! as obtained by use of Ref. 7, result
8.4.9 is valid only forz.0. Puttingz50 in Eq. ~37! and
invoking Ref. 10, result 6.511.1, however, shows that

]c9~r,0!

]r
5

I

2pk2r
, ~39!

which may be obtained by puttingz50 in Eq. ~38!. Hence,
relation ~38! holds forz>0.

Referring to Eq.~13!, it is necessary to take the deriva-
tive of Eq. ~38! with respect toz in order to obtainEr .
Finally,

Er~r !5
ivmI

2p

1

ikr H eikz2
eikr

ikr F11
~ ikz!2

ikr S 12
1

ikr D G J .

~40!

Considering the forms ofEz andEr as given in Eqs.~33!
and ~40!, respectively, it can be seen that the electric field
exhibits correct behavior in certain simple cases. On the axis
of the cylindrical system, which coincides with the axis of
the current-carrying wire,Er(0,z)50. Ez is symmetric with
respect tor and bothEz andEr→0 asr→`. In the far field,
the electric field is dominated by the first term in Eq.~40!
and the associated current density is

Jr~r !'
k2I

2p

eikz

ikr
, as r→`. ~41!

If the far field current density, given in Eq.~41!, is integrated
over a cylindrical surface of large radius extending fromz
50 to `, the result is simplyI, as it should be. Last, in the
static limit of direct current, in whichk→0, the current den-
sity in the conductor radiates uniformly from the point of
injection

Jr~r !5
I

2pr 2 . ~42!

It can be shown that the result of this article reduces to the
form given in Eq.~42! by noting thatJr5(r /r)Jr and letting
k→0 in Eq. ~40!. Equivalently, Eq.~33! can be used with
Jr5(r /z)Jz .

Consider now the system shown in Fig. 2. The electric
field in the conductor can be obtained by superposition of
fields separately associated with the two current-carrying
wires, as determined above. In the conductor, the total elec-
tric field ET is given by

ET~r !5E~r1!2E~r2!, ~43!

due to alternating current injected and extracted by contact
wires atx56S. In Eq.~43!, r 65A(x6S)21y21z2 and the
components ofE are given in Eqs.~33! and ~40!.

III. CONCLUSION

An elegant analytical expression for the electric field in a
half space conductor due to alternating current injected at the
surface has been derived. The method of solution, in which
the Hankel transform is used, suggests a solution for a lay-
ered half space, or plate, in the form of a series expansion.
Explicitly, the expression for the scalar potential, Eq.~31!,
becomes a series of similar terms in which the exponents
may include the thickness of the layer or plate. This is the
subject of a future article.
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APPENDIX

The following identities were used in evaluating the in-
tegrals which appear in Eqs.~31! and ~37!, respectively.
From Ref. 7, result 8.2.23, fory.0

E
0

`
Axe2aAx21b2

J0~xy!Axydx

5
aAy

~y21a2!3/2e2bAy21a2
~11bAy21a2!, ~A1!

with the restrictions Rea.0 and Reb.0. Also from Ref. 7,
result 8.4.9

E
0

` 1

Ax
e-aAx21b2

J1~xy!Axydx

5
1

Ay
S e2ba2

a

Ay21a2
e2bAy21a2D , ~A2!

with the same restrictions ony, a andb.
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