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Dispersion and Absorption in Dielectrics I: Alternating Current 
Characteristics 
K. S. Cole and R. H. Cole, J. Chem. Phys., 9, 341-351, 1941. 
Dielectric Relaxation in Glycerine D. W. Davidson and R. H. Cole, 
J. Chemical Phys., 18: 1417, 1950. 
Dielectric Relaxation in Glycerol, Propylene Glycol, and n-
Propanol D. W. Davidson and R. H. Cole, J. Chemical Phys., 19: 
1484-1490, 1950. 

 



Kramer’s-Kronig relations 
o  These relations stem from the basic principle of 

causality, that “the polarization response of matter to an 
electric excitation cannot precede the cause”. 
n  D(t) = E(t) + ∫0

∞f(τ)E(t-τ)dτ 
n  f(τ) is a function of time and properties of the 

medium, is finite, and is only significantly different 
from 0 for a period of time similar to the relaxation 
time 

o  Assume ω is a complex variable and use math to show 
that ε(ω) is regular in the upper half plane – a direct 
consequence of causality 

o  The Kramer’s-Kronig relations follow 
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See secs. 77 and 82 of Landau & Lifshitz’ “Electrodynamics of Continuous Media” 



Hydrogen bonding 
o  A hydrogen bond is the attractive interaction of a 

hydrogen atom with an electronegative atom, such as 
nitrogen, oxygen or fluorine, that comes from another 
molecule or chemical group. 

o  The hydrogen must be covalently bonded to another 
electronegative atom to create the bond. 

o  These bonds can occur between molecules 
(intermolecularly), or within different parts of a single 
molecule (intramolecularly). 

o  The hydrogen bond (5 to 30 kJ/mole) is stronger than a 
van der Waals interaction, but weaker than covalent or 
ionic bonds. This type of bond occurs in both inorganic 
molecules such as water and organic molecules such as 
DNA. 
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Hydrogen bonding 
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An example of 
intermolecular 
hydrogen bonding in a 
self-assembled dimer 
complex 

Beijer et al, Angew. 
Chem. Int. Ed. 37 (1–
2): 75–78, 1998.  



 
Havriliak-Negami Model 
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A Complex Plane Analysis of α-Dispersions in Some Polymer 
Systems 
S. Havriliak and S. Negami, J. Polym. Sci. C, vol. 14, pp. 99-117, 
1966. 

 



95%PMMA-5%MMT, T = 50 °C 
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95%PMMA-5%MMT, T = 100 °C 
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Relaxation ‘map’ or Arrhenius 
diagram 
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Temperature dependencies 
o Vogel-Fulcher-Tamman-Hesse eqn. 

n  T’ usually 30 to 70 degrees < Tg 
o Arrhenius Law 

n  Ea is the activation energy for the process 
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f = f0 exp B / T ! "T( )#$ %&

f = f0 exp !Ea / RT( )"# $%



 
Molecular Dynamics from 
Temperature-Dependent 
Dielectric Spectroscopy 
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Influence of Cooperative α Dynamics on Local β Relaxation 
during the Development of the Dynamic Glass Transition in 
Poly(n-alkyl methacrylate)s 
F. Garwe et al, Macromolecules, vol. 29, 247-253, 1996. 

 



Alkyl groups 
o An alkyl group, generally abbreviated 

with the symbol R, is a 
functional group or side-chain that, 
like an alkane, consists solely of 
single-bonded carbon and hydrogen 
atoms, for example a methyl or 
ethyl group. 
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Tacticity 
o  Tacticity is the relative stereochemistry of adjacent chiral 

centers within a macromolecule and affects the physical 
properties of the polymer. The regularity of the 
macromolecular structure influences the degree to which it has 
rigid, crystalline long range order or flexible, amorphous long 
range disorder. Tacticity affects at what temperature a polymer 
melts, how soluble it is in a solvent and its mechanical 
properties. 
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Syndiotactic polypropylene Isotactic polypropylene 



Fitting functions 
o  One or a sum of N HN functions is used to fit 

experimental ε’’(ω): 

o  A conductivity contribution is included 
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PnBMA: ε’’ v. log ω for various T 
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PnBMA: Relaxation map 
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Mechanical and Dielectric 
Relaxations in Polymers 
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Comparative Study of Mechanical and Dielectric Relaxations 
in Polymers 
R. Díaz-Calleja and E. Riande, Materials Science and Engng. A, vol. 
370, 21-33, 2004. 

 



ε’’(ω), constant T 
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Ref: Thermal Analysis of Polymers, Menczel & Prime, 2009 



ε’’(T), constant ω 
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Ref: Thermal Analysis of Polymers, Menczel & Prime, 2009 



Arrhenius diagram for mechanisms 
commonly observed in polymers 
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Ref: Thermal Analysis of Polymers, Menczel & Prime, 2009 



Type A 
chains 
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Polymer dipoles are 
classified as A, B or 
C. 
Type A dipoles are 
rigidly fixed to the 
chain backbone so 
that their 
reorientation 
requires motion of 
the molecular 
skeleton, and are 
parallel to the chain 
contour. 


