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state of the molecule and not as an average of all
states. Impurities are no longer of importance since
the spectrum of a specific molecule is examined. Micro-
wave measurements on Stark effects are made at gas
pressure of only about 0.01 mm Hg, hence many sub-
stances can be studied in the vapor state without danger
of association. Accuracies to 0.01 debye can be ob-
tained, while a measurement of the dipole moment
from the temperature dependence of the dielectric con-
stant (see Sec. 16) is, in general; not more accurate
than 0.1 debye. Stark effect measurements on the NHj
inversion spectrum have led to the permanent moment

= 1.45 [debye].!®

This superior accuracy of microwave spectroscopy,
however, does not imply that direct electric measure-
ments of dipole moments have become unnecessary.
The Stark effect technique is applicable only for simple
molecules where the theory can be worked out. Fur-
thermore, it does not extend to the liquid and solid
phases, where the resonance spectra of rotation have
been destroyed (see Secs. 22 ff.).

1 See, for example, R. G. Shulmann, B. P. Daily, and C. H.
Townes, Phys. Rev. 78, 145 (1950).

15 See P. Kisliuk and C. H. Townes, Molecular Microwave
Spectra Tables, J. Res. U. 8. Natl. Bur. Stand. 44, 611 (1950).

Microwave measurements, finally, allow a detailed
study of the pressure broadening of spectral lines. Asa,
first result of observations, as in Fig. 21.6, a comparison
is obtained between the gaskinetic collision time 7. (see
Eq. 20.21) and the actual average time interval between
collisions. This time proves to be about fifteen times
shorter than the kinetic theory predicts; obviously, the
large dipole moment of the ammonia molecule has in-
creased its collision radius appreciably. At higher pres-
sures the collision damping becomes so strong that not
a symmetrical but an asymmetrical broadening of the
line results. The resonance peak shifts to lower fre- |
quencies  as already foreseen by the simple oscillator
theory (see Eq. 4.9).

Microwave spectral lines like the 3,3 line of ammonia,
at 23,870 megacycles are under consideration as pri-
mary frequency standards and for the control of -
“atomic clocks” which might compare atomic time
with sidereal time.” " Our present frequency standards
are based on “‘quartz clocks” operating by piezoelectric
resonance (see Seec. 26).

15 B. Bleany and J. H. N. Loubser, Proc. Phys. Soc. (London)
A683, 483 (1950).

17 H. Lyons, Phys. Rev. 74, 1203 (1948); Ann. N. Y. Acad. Sei.
55, 831 (1952).

22 - Pressure Broadening and Debye’s Relaxation Equation

In discussing the frequency dependence of the per-
mittivity of gases, we started with the anomalous dis-
persion and resonance absorption of linear harmonie
oscillators (see Sec. 4). The dispersion formula of
classical physies thus derived predicted correctly the
general shape of spectral lines. It was impossible,
however, to foresee the intensity and frequency loca-
tion of these lines from classical considerations because
the existence of stationary energy states of atoms and
molecules is a nonclassical phenomenon. Only by pass-
ing from Newtonian mechanics to quantum mechanics
was an interpretation obtained of the stationary states
of electronic excitation, vibration, and rotation as
standing-wave patterns of the probability waves, and
of the spectral lines as transitions between the various
energy levels. The intensity of the lines proved to be
given by the statistical weight of the terms (their
multiplet structure) and by the transition probabilities
(see Secs. 12 and 19). The line width results from radi-
ation damping, Doppler effect, and collision broaden-
ing (see Sec. 20); for higher pressures, collision damping

becomes the decisive factor. Since the density of the
condensed phases corresponds to that of normal gases

- under several thousand atmospheres of pressure, the
pressure broadening of spectral lines has to be con-

sidered as one important aspect in the discussion of
the dielectric absorption of solids and liquids.

That a rapid sequence of interrupting collisions will
malke the formation of discrete quantum states impos-
sible can be derived immediately from the uncertainty
relation (Eq. 8.11):

A& At > h. (22.1)

If the time interval Af equals the natural life span 7 of
the quantum state (Af = maximum), the energy state
& is defined with optimum sharpness (A& = minimum).
If, on the other hand, a disrupting collision takes place
during every vibration or rotation cycle (Af = 1/v), the
uncertainty in the definition of the energy state be-
comes A8 = tw, (22.9)

that is, of the order of magnitude of the total quan-
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tum energy. The resonance state in this case has van-
ished, and the spectral line has broadened into a con-
tinuum; the resonator, classieally speaking, has been
overdamped. '

In Sec. 20 we treated the case of pressure broadening
by substituting in the damping factor of Eq. 4.14

20 = 1/7, (22.3)

the time interval 7, between collisions in place of the
natural lifetime 7 of the quantum state. This seems
justified if many weak collisions constitute a continuous

drain on the energy of the oscillator without causing
~ abrupt changes in amplitude and phase. In contrast,
the pool game of gas kinetics visualizes frequently the
interaction of molecules as a statistical sequence of
strong collisions, each of them altering the energy and
momentum of the partners violently. Under such con-
ditions, the amplitude and phase of the classical oseil-
lator varies discontinuously, and not -the steady-state
solution (Eq. 4.27) of the force equation applies but
the general solution composed of steady-state and tran-
sient terms.

The dispersion formula of classical physies pictures,
electrically speaking, the resonating atoms or mole-
cules in the gaseous state as L, R, C circuits shunted
by a capacitance (a). The classical approach to the
treatment of dipole molecules in the condensed phases of
- liquids and solids is to consider the polar molecules as
rotating .in a medium of dominating friction.! We
postulate, in effect, that the acceleration term can be
neglected, that is, that the L, R, C equivalent circuit
reduces to an R, C circuit (b), (Fig. 22.1). In this ex-

Lo Co

Co "'..;C1 .._.c,
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(b) Rotator in medium where
friction term dominates

(a) Resonator

Fig. 22.1. Equivalent circuits of free resonator molecule and of
rotator molecule in medium of dominating friction.

treme case of weak-collision broadening we thus substi-
tute by hunch for the resonance spectrum of Fig. 4.2 the
relaxation spectrum of I, Fig. 26.5, with its complex
Permittivity (see I, Eq. 26.14),

14

y Kg = Ky
o=

. 224
1 4+ jor ( )

1 P. Debye, Polar Molecules, Chemical Catalog Co., New York,
1929, Chap. V.

Now only the task remains to reinterpret the static and
optical permittivities ' and ., and the relaxation
time 7 by molecular quantities.

The optical dielectric constant «,,’ , represented in the
electric circuit analogue by the by-pass capacitor, con-
tains the contribution of the induced moments

B = (o + a.)E’

caused by the electronic and atomic polarizabilities of
the molecules (the deformation polarization). The
static dielectric constant x,’ contains, in addition, the
orientation polarization of the permanent moments .
According to the statistical theory of Sec. 16, when the
electric field energy is small in comparison to the ther-
mal energy of agitation, each dipole molecule con-
tributes an average moment (see Eqg. 16.9)

(22.5)

2

2
L
M= ST

(22.6)

If we could assume that E’ represents the applied field
E, as in gases at low pressure, we would immediately
obtain the static and optical dielectric constants as
given in Egs. 16.11 and 16.12 and thus from Eq. 224
the complex permjttiv#y

2

i
3ET 1 4+ jowr

Actually, the applied field E will have to be replaced
by some local field E’, for example, the Mosotti field
of Eq. 2.9:

=14 g{@% o) + } (227)

P E
E =E+4 —=—(@*+ 2).
3ep

. (22.8)

In this case we obtain for the polarizability per unit
volume not the «* — 1 of Eq. 22.7, but the more in-
volved equation

N, «*—1
360*1\'*—]—2
N The }
= e o n . 22.9
3¢ (a+a)+3kT1+7‘wT (22.9)

This modified polarizability has the static and the
optical value

k' — 1 2 }
k-2 3¢ {(.A.ae te o)
(22.10)
ko' — 1 _ N (oo + o)
k! L2 Be e T %

By introducing the expressions on the left into Eq. 22.9,
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we return to the formulation for the complex permit-
tivity given in Eq. 22.4, o

I ’

F o (22.11)
K™ = K r————— § .
? 1+ jore
with the new time constant
ks + 2
o= T— . (22.12)
Ky -+ 2

Hence, by replacing the applied field E with the
Mosotti field E/ the interpretation but not the shape
of the relaxation spectrum has changed. Only the re-
laxation time has lengthened from = to 7., and the
molecular meaning of the static and optical dielectric
constants has been altered by the introduction of the
denominators ks’ + 2 and ko + 2 in Eq. 22.10. Simi-
larly, any other type of local field expression will not
change the shape of the absorption spectrum as long
as the motion of the dipole molecule is represented by
a first-order differential equation.

The remaining problem is the molecular interpreta-
tion of the relaxation time 7. According to the assump-
tion of dominating friction, we have to picture the
polar molecules as rotating under the torque T of the

de
electric field with an angular velocity = proportional

to this torque, or p
0

T={— 22.13
& @019
The friction factor ¢ will depend on the shape of the
molecule and on the type of interaction it encounters.
If one visualizes the molecule as a sphére of the radius
a, rotating in a liquid of the viscosity 7 according to
Stokes’s law,? classical hydrodynamies leads to the

value

¢ = 8mnd®. (22:14)

In a static field, the spherical dipole carriers will have
a slight preferential orientation parallel to this field
and thus contribute the average moment of Eq. 22.6.
A sudden removal of the external field will cause an
exponential decay of this ordered state due to the ran-
domizing agitation of the Brownian movement. The
relaxation time 7 (or 7¢) measures the time required to
reduce the order to 1/e of its original value. Debye 1
was able to calculate this time statistically by deriving
the space orientation under the counteracting influences
of the Brownian motion and of a time-dependent elec-
tric field and found

: Y

- 92.15
"7 okT (22.15)

2 (3. Stokes, Trans. Cambridge Phil. Soc. 9, 8 (1851).

Combining Eqgs. 22.14 and 22.15, Debye obtained
for the spherical molecule, if it behaves like a ball
rotating in oil, the relaxation time

47w’y 8
kT kT

T =

(22.16)

The time constant is proportional to the volume V of
the sphere and to the macroscopic viscosity of the solu-
tion. Water at room temperature has a viscosity 9 =
0.01 poise; with a radius of ca. 2 A for the water mole-
cule, a time constant of 7=~ 0.25 X 10710 sec results.
Tigure 22.2 shows that indeed the relaxation time of
water is located near the wavelength of 1 em. The
agreement, however, is somewhat marred by the re-
alization that experimentally we have determined
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Fig. 22.2. Relaxation spectrum of water at room temperature.

re o~ 207 instead of 7 itself. Obviously, neither the
sphere model nor the Mosotti field should be taken too
seriously; the essence of Debye’s approach is to postu-
late that the orientation of polar molecules in liquids
and solids leads spectroscopically to a simple relaxation
spectrum.

The Debye equation (Eq. 22.11) may be written in
various forms, which have their special merits for the
evaluation of experimental characteristics. Separating’
it into its real and imaginary parts, we obtain the
standard version

Ky ~ Ko

’ — ,
1+ o’

K — Ke

(ks" — ke YooTe

S i
= 3

1 4 o?re?

1’

(22.17)

k" ks " Koo' )
tan § = — = Ls___.‘f.z..zf.
Kr KSI + Kcol 0327'e2
If we introduce as a new variable 3
(22.18)

3 See H. Frohlich, Theory of Dielectrics, Clarendon Press, Ox-.
ford, 1949, p. 73. . .

z = In‘wre,
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Eqs. 22.17 may be rewritten in a normalized form

K — Ko 1 e ?
— - 1
Ks, — le 1 + 62:»: e? + e %
k" 1 ‘
=, (22.19)
K — Ke e* e *
tan § 1
Ks, . le leez + Ks/e—-z

Figure 22.3 shows this logarithmic plot of the disper-
sion and absorption characteristic, and, added to them,
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Fig. 22.3. Dielectric constant, loss factor, and conductivity of

simple relaxation spectrum in normalized form.

as a third curve, the relative dielectric conductivity
(see I, Eq. 1.16)

o= wk'’ (22.20)
in the normalized form

T, e?

h’sl - Kw/ ef + e *

(22.21)

The conductivity curve is the mirror image of the «’
characteristic; that is, the orientation polarization
leads to a constant maximum conductivity contribu-
tion beyond the range of the dispersion region.

It may seem surprising that, after the polarizing
action of the permanent dipoles has disappeared, their
existence is still noted with full force as a conduction
effect, but the explanation is simple. As the frequen-
cies range so high that the molecules have no time to
turn, we do not notice that the two opposite dipole
charges are coupled together; their effect on the con-
duction is therefore the full contribution of two ions
of opposite polarity moving in the electric field accord-
ing to Ohm’s law.

Figure 22.3 shows clearly the frequency spread of the
dispersion phenomenon. According to the decade scale,
it is practically limited to one decade for ¥’ and to two
decades for « above and below the center frequency.
-One further graphical representation of the Debye

equation prbves of value in analyzing and extrapolat-
ing experimental data. If we plot " against «’ in the
complex plane, points obeying the Debye equation fall

.. . . ks + Koo' .
on a semicircle with its center at 5 (Fig. 22.4),

as Cole and Cole * first pointed out. This becomes evi-
dent when we rewrite Eq. 22.11 in the form

(% — ku!) + 5(* — 1 )ore = ks — Koo' (22.22)

The first member on the left side corresponds to a
vector u; the second member, as the factor 7 indicates,
adds perpendicular to it and represents a vector v; the
sum is the diagonal of the circle.

W =00 1
L . K¢
l Kg'+ Kod
2
Fig. 22.4. Cole-Cole circle diagram of «* in complex plane.

The loss factor reaches its maximum at the critical

frequenc,
4 v wm = 1/7e, (22.23)
that is, at the critical wavelength
Am = 2mCT, (22.24)

at which the dipole polarization has fallen to its half
value. Furthermore
" KS
Kmax =

! 14
~ Kep

2 2 (22.25)
The relaxation time and the contribution S of the orien-
tation polarization to the permittivity can be deter-
mined by these relations from the absorption char-
acteristic of a dielectric as long as the Debye equation
is valid.

Finally, from Eq. 22.17 we obtain the linear equa-
tion in «’ versus wx”/, and &’ versus «"//w:

K = &y — wrek”,
&’ (22.26)
J— 7
= Ky
wTe

the first of which may be rewritten

.
€ ="¢’

(22.27)

Thus the stati¢ and optical dielectric constants are
given by the intersection, and r, by the slope of a

- 0T

4 K. 8. Cole and R. H. Cole, J. Chem. Phys. 9, 341 (1941).
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straight line, as long as the simple relaxation equation
applies.

The theory has confronted us with two extreme
cases: the classical resonance absorption ® in a quan-
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Fig. 22.5. Assumed pressure broadening of resonance into
relaxation spectrum (collision frequency very much smaller,
equal, or much larger than the rotation frequency).

5 The classical dispersion equations were first derived by Ket-
teler and Helmholz [see E. Ketteler, Wied. Ann. 49, 382 (1893)]
and developed into an electron theory of dispersion by Lorentz
(see H. A. Lorentz, Proceedings Amsterdam Academy, 1897~
1898).

tum-mechanical reinterpretation and the Debye re-
laxation absorption. It is tempting to link the two
cases graphically by postulating that pressure broaden-
ing gradually converts a resonance into a relaxation
spectrum (Fig. 22.5). Also mathematically the sem-
blance of a unified theory can be achieved, as the
interesting attempt of Van Vleck and Weisskopf ¢ shows
(extended by Van Vleck and Margenau”). However,
it seems questionable how far it makes physical sense
to force a marriage between two concepts based on en-
tirely different assumptions. The original resonance
picture deals with oscillators that are effectively un-
coupled and suffer only now and then disturbing im-
pacts. The force of the applied field induces moments,
and the frequency of the field changes these moments
in amplitude and phase. The relaxation picture deals
with rotators in a state of perpetual impact. The field
produces a torque on permanent moments, and the
orientation of these moments begins to lag as the fre-
quency increases. There is no classical resonance ab-
sorption for the rotator, and the replacing of induced
moments by permanent moments in the resonance
equation does not change the original meaning of the
frequency dependence, which is not compatible with
that of the relaxation equation. We should expect that
the pressure broadening of rotation spectra does not
lead to a unique result as Fig. 22.5 implies, but to a
diversity of situations in keeping with the great variety
of surroundings which the solid and liquid state can
offer. The Debye case is one simple prototype of the
behavior of polar molecules in condensed phases; we
shall encounter others in the subsequent sections.

6§ J. H. Van Vieck and V. F. Weisskopf, Revs. Mod. Phys. 17,
227 (1945).

7J, H. Van Vleck and H. Margenau, Phys. Rev. 76, 1211
(1949).

23 - The Mosotti Catasirophe and the Local Field

The assumption of a simple relaxation spectrum fits
satisfactorily the frequency response of a number of
dielectrics, especially of dilute solutions of polar mate-
rials in nonpolar solvents, when the shape of the dipole
molecules is approximately spherical. This fact, how-
ever, should not be construed as a confirmation of the
special Debye equation (Eq. 22.11), which is based on
the Mosotti field (Eq. 2.9). By specifying this type of
local field we have implicitly resigned ourselves to
catastrophic consequences.

This becomes apparent when we return to the de-
fining equation for the polarization (Eq. 1.5)

P = (¢ — 1)egE = NaE. (23.1)
By introducing for the local field E/ the Mosotti field
P

E =E + —

360

23.2)

we obtain for the polarization and the electric suscep-






