ics

I Phys

ica

)
o
Sowe
Q
Q-

£

o=

.
(=]
Qo
o
S
-
Q

&
N

4

on
fsh

e
Landau and Li
Volume 8

il

0

0

£l
o

n

Y,
fommn




264 The Electromagnetic Wave Equations

The first term is the solution of the homogeneous equation A¢ = 0, and the coefﬁ.cier}t is chosen so as to give
continuity of the potential, and therefore of E,, at the surface of the sphere. Substituting (3) and (4) in (2), we
obtain

a®  3Ep—1)

— 80 Q,—25,9-Q1. ©]
c G1r290+a) (9 + D $049°Q]

ik =
Thus a quadrupole electric field is formed near the rotating sphere, and the quadrupole moment of the sphere is
given by formula (5). In particular, if the axis of rotation (the z-axis) is parallel to the external field, D, has only the
diagonal components

5 4 _1 .
=..fz_.__(8_#__l_ 0 D_.=D_=-—%LD_.

- ¢ 3+2)2+p

Similarly, a quadrupole magnetic field occurs near a sphere rotating in a uniform electric field. The rpagnetic
quadrupole moment is given by (5) if the sign is changed and e, y, $ are replaced by g, &, € respectively.

ProOBLEM 2. A magnetized sphere rotates uniformly in a vacuum about its axis, which is parallel to the
direction of magnetization. Determine the resulting electric field near the sphere.}

SoLuTiON. The magnetic field inside the sphere is uniform, and is expressed in terms of the constant
magnetization M by the equations B®+2H" =0 (cf. (8.1)) and BY —H® = 4zM, whence BY) = 8zM/3,
H® = —4nM/3. The second of formulae (76.9) does not hold in this case, because the formula B = pH is not
valid for a ferromagnet at rest; from the first of (76.9) we have, inside the sphere,

D =c¢E+evxB/fc—vxH/c
=¢E+4n (26 +1) vxXM/3c.

The potential of the resulting electric field outside the sphere satisfies the equation A ¢'? = 0, and that inside the
sphere satisfies A ¢ = 8x(2e+ 1) MQ/3ce. )
The boundary condition that D, be continuous at the surface of the sphere gives

' 4 Qe +1 ad)(e)
~e[i] +MaQMsin29=—-li s
or A ., 3c or 4.,

where 8 is the angle between the normal n and the direction of  and M (the z-axis). We seek ¢® and ¢ in the
forms

Dynin, D
¢ = —-;-rs—" 0 (3 cos?6—1),

2 4m (26+1)

,
¢0 = e D.. (3cos*8—1)+ MQ (r* —a?).
a

(%4

From the boundary condition we obtain the following expressions for the electric quadrupole moment of the
rotating sphere:

4(2:+1
oe -—L~———)— a?Qd, D,=D,=~-%iD_,
i 3c(2e+3)
where ./ is the total magnetic moment of the sphere. For a metal sphere we must take ¢ — o0, giving
D, = —4Q.#a*/3c.

§77. The dispersion of the permittivity

Let us now go on to study the important subject of rapidly varying electromagne.tic
fields, whose frequencies are not restricted to be small in comparison with the frequencies

T If the direction of magnetization is not the same as that of the axis of rotation, the problem is considerably
changed, since the sphere then emits electromagnetic waves.

§77 The dispersion of the permittivity 265

which characterize the establishment of the electric and magnetic polarization of the
substances concerned. .

An electromagnetic field variable in time must necessarily be variable in spacealso. Fora
frequency w, the spatial periodicity is characterized by a wavelength 1 ~ c/w. As the
frequency increases, A eventually becomes comparable with the atomic dimensions a. The
macroscopic description of the field is thereafter invalid.

The question may arise whether there is any frequency range in which, on the one hand,
dispersion phenomena are important but, on the other hand, the macroscopic formulation
still holds good. It is easy to see that such a range must exist. The most rapid manner of
establishment of the electric or magnetic polarization in matter is the electronic
mechanism. Its relaxation time is of the order of the atomic time a/v, where v is the velocity
of the electrons in the atom. Since v < ¢, even the wavelength 4 ~ ac/v corresponding to
these times is large compared with a.

In what follows we shall assume the condition 1> a to hold.{ It must be borne in mind,
however, that this condition may not be sufficient: for metals at low temperatures thereisa
range of frequencies in which the macroscopic theory is inapplicable, although the
inequality c¢/w > a is satisfied (see §87).

The formal theory given below is equally applicable to metals and to dielectrics. At
frequencies corresponding to the motion of the electrons within the atoms (optical
Jfrequencies) and at higher frequencies, there is, indeed, not even a quantitative difference in
the properties of metals and dielectrics.

It is clear from the discussion in §75 that Maxwell’s equations

divD=0, divB=0, (77.1)
curlE= —(1/c)aB/dt,  curl H = (1/c) 8 D/t (77.2)

remain formally the same in arbitrary variable electromagnetic fields. These equations are,
however, largely useless until the relations between the quantities D, B, E and H which
appear in them have been established. At the high frequencies at present under
consideration, these relations bear no resemblance to those which are valid in the static case
and which we have used for variable fields in the absence of dispersion.

First of all, the principal property of these relations, namely the dependence of D and B
only on the values of E and H at the instant considered, no longer holds good. In the
general case of an arbitrary variable field, the values of D and B at a given instant are not
determined only by the values of E and H at that instant. On the contrary, they depend in
general on the values of E(t) and H (t) at every previous instant. This expresses the fact that
the establishment of the electric or magnetic polarization of the matter cannot keep up
with the change in the electromagnetic field. The frequencies at which dispersion
phenomena first appear may be completely different for the electric and the magnetic
properties of the substance. ' .

In the present section we shall refer to the dependence of D on E; the specific features of
the dispersion of magnetic properties will be discussed in §79.

The polarization vector P has been introduced in §6 by means of the definition
p = —div P, p being the true (microscopic) charge density. This equation expresses the

t Theeffects (called the natural optical activity) resulting from terms of the next order in the small ratio a/ will
be considered in §§104-106.
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electric neutrality of the body as a whole, and together with the condition P = 0 outside the
body it shows that the total electric moment of the body is [P dV. This derivation is
evidently valid for variable as well as for static fields. Thus in any variable field, even if
dispersion is present, the vector P = (D — E)/4x retains its physical significance: it is the
electric moment per unit volume.

In rapidly varying fields, the field strengths involved are usually fairly small. Hence the
relation between D and E can always be taken to be linear.t The most general linear
relation between D () and the values of the function E(z) at all previous instants can be
written in the integral form

D) =E@0+ J f@) E(t—1)dr (773)
0

It is convenient to separate the term E (2), for reasons which will become evident later. In
equation (77.3)f (z) is a function of time and of the properties of the medium. By analogy
with the electrostatic formula D = ¢ E, we write the relation (77.3) in the symbolic form
D = £E, where & is a linear integral operator whose effect is shown by (77.3).

Any variable field can be resolved by a Fourier expansion into a series of monpchro-
matic components, in which all quantities depend on time through the factor e~ **. For
such fields the relation (77.3) between D and E becomes

D = ¢g{w) E, (774)

where the function ¢(w) is defined as
g(@) =1+ | f(x)e* dr. (77.5)
(4]

Thus, for periodic fields, we can regard the permittivity (the coefficient of proportionality
between D and E) as a function of the field frequency as well as of the properties of the
medium. The dependence of ¢ on the frequency is called its dispersion relation.

The function & (w) is in general complex. We denote its real and imaginary parts by& and

1

o e(w) = & (w)+ie” (). (77.6)
From the definition (77.5) we see at once that
£(—w) = e*(w). (77.7)
Separating the real and imaginary parts, we have
g(—w)=¢(w), g (—w)= —&"(w). (71.8)

‘Thus ¢'(c) is an even function of the frequency, and ¢”(«) is an odd function.

For frequencies which are small compared with those at which the dispersion begins, we
can expand &(w) as a power series in . The expansion of the even function &' (w) contains
only even powers, and that of the odd function &” (w) contains only odd powers. In the limit

+ Here we assume that D depends linearly on E alone, and not on H. In a constant field, a linear dependence of
D on H is excluded by the requirement of invariance with respect to time reversal. In a variable field, this condition
no longer applies, and a linear relation between D and H is possible if the substance possesses symmetry of
various kinds. It is, however, a small effect of the order of a/4, of the kind mentioned in the last footnote.
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as w — 0, the function &(w) in dielectrics tends, of course, to the electrostatic permittivity,
which we here denote by &,. In dielectrics, therefore, the expansion of ¢ (w) begins with the
constant term &,, while that of &” () begins, in general, with a term in w.

The function &(w) at low frequencies can also be discussed for metals, if it is defined in
such a way that, in the limit @ — 0, the question

curl H=(1/c)dD/ét

becomes the equation
curl H = 4ng E/c

for a static field in a conductor. Comparing the two equations, we see that for w — 0 we
must have dD/dt — 4no E. But, in a periodic field, d D/dt = —iwe E, and we thus obtain
the following expression for &(w) in the limit of low frequencies:

e(w) = 4nio/w. (719

Thus the expansion of the function &(w) in conductors begins with an imaginary term in
1/, which is expressed in terms of the ordinary conductivity ¢ for steady currents.i The
next term in the expansion of £ (w) is a real constant, although for metals this constant does
not have the same electrostatic significance as it does for dielectrics.

Moreover, this term of the expansion may again be devoid of significance if the effects of
the spatial non-uniformity of the field of the electromagnetic wave appear before those of
its periodicity in time.

§78. The permittivity at very high frequencies

In the limit as w — oo, the function &(w) tends to unity. This is evident from simple
physical considerations: when the field changes sufficiently rapidly, the polarization
processes responsible for the difference between the field E and the induction D cannot
occur at all.

It is possible to establish the limiting form of the function & (w) at high frequencies, which
is valid for all bodies, whether metals or dielectrics. The field frequency is assumed large
compared with the frequencies of the motion of all, or at least the majority, of the electrons
in the atoms forming the body. When this condition holds, we can calculate the
polarization of the substance by regarding the electrons as free and neglecting their
interaction with one another and with the nuclei of the atoms.

The velocities v of the motion of the electrons in the atoms are small compared with the
velocity of light. Hence the distances v/w which they traverse during one period of the
electromagnetic wave are small compared with the wavelength c/w. For this reason we can
assume the wave field uniform in determining the velocity acquired by an electron in that
field.

The equation of motion is m dv'/dt = eE = eEqye™ ", where e and m are the electron
charge and mass, and V' is the additional velocity acquired by the electron in the wave field.

t The imaginary part of the function &(w) is sometimes represented in the form (77.9) for all frequencies; this
amounts to introducing a new function ¢ (), which has no physical significance apart from its relationship to
£ ().

t To avoid misunderstanding, we should point out a slight change in notation in comparison with §75. In
equation (75.10) for poor conductors, e(w) is 4nic/w)+e.
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From (81.5), for a small change in the capacitance, - -

dw/w = —15C/C. (81.8)

This change consists of two parts:
6C = (6C), + (dC/dw)éw. (81.9)
The first term is the static part, related to the strain as in the static case; hereitis impqrtant
that, in the presence of dispersion, the capacitance C(w) is expressed in terms of e¢(w) in the

same way as in the static case. The second term depends only on the frequency change.
From (81.8) and (81.9) we find as the static part

1 d(wC)
(0=~ — g

When (81.6) is substituted in (81.7), and (81.10) is used, dC/dw disappears, and the energy
variation becomes

Sw. (81.10)

8% = —54? (3C), = —3(@/CHC)y (81.11)

which is in fact the same as the averaged second term in (81.3). .
The disappearance from 6 9 of the terms involving the derivati.ve with respect to w is

quite general and does not depend on a specific manner of change in the state of the. bod32/

(in this case, the capacitor). In particular, for a dispersive medium formula (14.1) (with E

replaced by F) remains valid for the change in the free energy due to a small change in &:
§F = — [ de(w)E* dV/8m. (81.12)

Knowing the stress tensor, we can use (75.17) to find the force on unit volurpe of the
dielectric. The terms containing spatial derivatives coincide with the corresponfhng tems
in the time-averaged expression (75.18), in which we must put £ = 1. The tcfrm in the time
derivative (the Abraham force) is not the same. This term arises as the difference

1 {0 0

which is now to be averaged over time. To do so, we express D, E and Hin corpplc?x form
(ie. replace them by 3(D + D*) and so on), and then use (80.10) for dD/dt. This gives the
Abraham force in the form :

: 0 * L% ok *> 81.13
%(8-—1)re—a—t(ExH )+8ncwda)re<6t xH ( )
(H. Vashina and V. . Karpman, 1976).

The stress tensor in a variable field is significant for absorbing as well as transparent
media, unlike the internal energy, for which the problem can be formulated only _by
neglecting the dissipation. There is, however, reason to suppose that i'n.an absorbing
medium the stress tensor cannot be expressed in terms of the permittivity alone, and
therefore cannot be derived in a general form by macroscopic methods.
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§82. The analytical properties of ¢(w) .

The function f(z) in (77.3) is finite for all values of z, including zero.} For dielectrics it
tends to zero as T — co. This simply expresses the fact that the value of D{z) at any instant
cannot be appreciably affected by the values of E(r) at remote instants. The physical agency
underlying the integral relation (77.3) consists in the processes of the establishment of the
electric polarization. Hence the range of values in which the function f(z) differs
appreciably from zero is of the order of the relaxation time which characterizes these
processes.

The above statements are true also of metals, the only difference being that the function
f(t)—4no, rather than f(z) itself, tends to zero as 7 —» co. This difference arises because the
passage of a steady conduction current, though it does not cause any actual change in the
physical state of the metal, in our equations leads formally to the presence of an induction
D such that (1/c)oD/0t = 4noE/c or

D) = j 4nc E (1)dr = 47:af E(t—1)dr.
- V]

We have defined the function &(w) by (77.5):

o

e(w)=1+ J etot f(7) dr. (82.1)
4]

It is possible to derive some very general relations concerning this function by regarding @
as a complex variable (w = o'+ iw”). These relations could be formulated immediately,
since the dielectric susceptibility [z {(w)— 1]/4x is one of the generalized susceptibilities
already discussed in SP 1, §123. We shall nevertheless repeat here some of the arguments
and results, both to assist the reader and to emphasize certain differences between
dielectrics and metals. From the definition (82.1) and the above-mentioned properties of
the function f (z), it follows that e(w) is a one-valued function which nowhere becomes
infinite (i.e. has no singularities) in the upper half-plane. For, when w” > 0, the integrand in
(82.1) includes the exponentially decreasing factor e™“"'* and, since the function f () is
finite throughout the region of integration, the integral converges. The function &(w) has
no singularity on the real axis (" = 0), except possibly at the origin (where, for metals,
£(w) has a simple pole).

In the lower half-plane, the definition (82.1) is invalid, since the integral diverges. Hence
the function &{w) can be defined in the lower half-plane only as the analytical continuation
of formula (82.1) from the upper half-plane, and in general has singularities.

The function &(w) has a physical as well as a mathematical significance in the upper half-
plane: it gives the relation between D and E for fields whose amplitude increases as e®”*. In
the lower half-plane, this physical interpretation is not possible, if only because the
presence of a field which is damped as e~1¢"l? implies an infinite field for t —» — co.

It is useful to notice that the conclusion that ¢(w) is regular in the upper half-plane is,

T It was to ensure this that the term E(¢) was separated in (77.3), since otherwise the functionf () would havea

delta-function singularity at = = Q.
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physically, a consequence of the causality principle. The integration in (77.3)is, on account
of this principle, taken only over times previous to t, and the region of integration in
formula (82.1) therefore extends from 0 to co rather than from — o to co.

1t is evident also from the definition (82.1) that

e(— cq*) = g*(w). (82.2)

This generalizes the relation (77.7) for real . In particular, for purely imaginary o we have
e(iw”) = ¢*(inw”) (82.3)

i.e. the function &(w) is real on the positive imaginary axis.}

It should be emphasized that the property (82.2) merely expresses the fact that the
operator relation D = £ E must give real values of D for real E. If the function E (1) is given
by the real expression

E = E e~ it + Eg* ei™, . (82.4)

then, applying the operator £ to each term, we have
D = ¢(w) Eo e—iot 4 g(— w*) Eo* eiw‘t,

and the condition for this to be real is just (82.2).

According to the results of §80, the imaginary part of &(w) is positive for positive real
= o', i.e. on the right-hand half of the real axis. Since, by (82.2),im&(— ') = — im &(w'),
the imaginary part of &(w) is negative on the left-hand half of this axis. Thus

ime 2 0 forw=aw 20. (82.5)

At @ = 0, im ¢ changes sign, passing through zero for dielectrics and through infinity for
metals. This is the only point on the real axis for which im &(w) can vanish.

When o tends to infinity in any manner in the upper half-plane, & (w) tends to unity. This
has been shown in §78 for the case where o tends to infinity along the real axis. The general
result is seen from formula (82.1):if @ — oo in such a way that " — oo, the integralin (82.1)
vanishes because of the factor e —¢"* in the integrand, while if " remains finite but
|w'| - co the integral vanishes because of the oscillating factor gl

The above properties of the function &(w) are sufficient to prove the following theorem:
the function &(w) does not take real values at any finite point in the upper half-plane except
on the imaginary axis, where it decreases monotonically from &, > 1 (for dielectrics) or
from + co (for metals) at = i0 to 1 at w = ico. Hence, in particular, it follows that the
function & (w) has no zeros in the upper half-plane. We shall not repeat here the proof of

these results given in SP 1, §123; it need only be remembered that the generalized-

susceptibility is e(w)— 1, not g(w).

We shall also not repeat the derivation of the relations between the imaginary and real
parts of g(w), but give only the final formulae, with the notation appropriately
modified. We write the function & (w) of the real variable w, as in §77, in the form

+ This is not in general true for the negative imaginary axis. Here the function (w) may have branch points,
and a cut along the negative axis may be necessary in order to define it as an analytic function in the lower half-
plane. Equation (82.2) then signifies only that £(w) has complex conjugate values on the two sides of the cut.
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g(w) = & () +ie" (w). If ¢(w) relates to a dieléctric, the relations in question are

w

, _ __]; 8ll(x)
gl@-1=—P fx__mdx, (82.6)

PR wa’(x)—l
&' (@) = nPf b (82.7)

(H. A.Kramers and R de L. Kronig, 1927). It should be emphasized that the only important
property of the function &(w) used in the proof is that it is regular in the upper half-plane.

Hgnce we can say that Kramers and Kronig’s formulae, like this property of &(w), are a
direct consequence of the causality principle. '

Using the fact that &” (x) is an odd function, we can rewﬁte (82.6) as

[>¢]

, 2 xg"(
glw)—1=— PJ e ) ax (82.8)

—
0

Ifa .mctal is concerned, the function &(w) has a pole at the point @ = 0, near which
¢ = 4mio/w (77.9). This gives an additional term in (82.7) (cf. SP 1, (123.18)):

" 1 '
¢@)=——P j-—*jixc)udx—%f%‘—, (82.9)

but (82.6) and (82.8) remain unchanged. A further remark is also necessary as regards
me?als. We have said at the end of §77 that there may be ranges of frequency for metals in
wh'lch the function &(w) becomes physically meaningless on account of the spatial non-
uniformity of the field. In the formulae given here, however, the integration must be taken
over all frequencies. In such cases & (w) must be taken, in the frequency ranges concerned, as
the'f-unction obtained by solving the formal problem of the behaviour of the body in a
fictitious uniform periodic electric field (and not in the necessarily non-uniform field of the
electromagnetic wave). ,

Fomula (82.8) is of particular importance: it makes possible a calculation of the
functlor.l ¢ (w)if the function &” (w) is known even approximately (for example, empirically)
for a given body. It is important to note that, for any function &”(w) satisfying the
phys.lcally necessary condition &” > 0 for w > 0, formula (82.8) gives a function & (w)
consmtent' with all physical requirements, i.e. one which is in principle possible (the sign
and magnitude of ¢ are subject to no general physical restrictions). This makes it possible
to use formula (82.8) even when the function ¢” (w) is approximate. Formula (82.7), on the
other.hand, does not give a physically possible function &” () for an arbitrary choice of the
functhn ¢'(w), since the condition that & (w) > 0 is not necessarily fulfilled.

In dispersion theory the expression for & (w) is customarily written in the form

¢ @)—1= 27 p [ L&)
m

o : (82.10)

0
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where e and m are the charge and mass of the electron, and f (w) dw is called the oscillator
strength in the frequency range dew. According to (82.8), this quantity is related to &” (w) by

f(@)= ﬁ we" (). ‘ 82.11)

For metals, f (w) tends to a finite limit as w — 0.
For sufficiently large w, x? can be neglected in comparison with w? in the integrand in
(82.8). Then

’ 2 1
dw)—1= —-WJ‘ xg"’(x) dx.
0

For the permittivity at high frequencies, on the other hand, formula (78.1) holds, and a
comparison shows that we have the sum rule

o

J we' (w)do =

[

m
27? e?

f(@)dw = N, (82.12)

where N is the total number of electrons per unit volume. o
If ¢ () is regular at o = 0, we can take the limit @ — 0 in formula (82.8), obtaining

FO0)—1= J £ 4x. ' (82.13)
0

SEEN

X

If the point @ = 0 is a singularity of & (w) (as in metals), the limit of the integral (82'.8) as
 — 0 is not what is obtained by simply deleting the term in w. To calculate th; limit, we
must first replace £”(x) in the integrand by &’ (x) —4no/x; the value of the integral is

unchanged, because w
Pf dx =0,
(4]

X2 —?
For a dielectric, formula (82.13) can be rewritten as

2N .
ne’ N =3 (82.14)

g—1=
0 m

where the bar denotes averaging with respect to-the oscillator strength:
—_1 [ f(w)
0

The expression (82.14) may be useful in estimating &,.

The following formulaf relates the values of ¢ (w) on the upper half of the imaginary axis

1 Derived in SP 1, §123.
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to those of &’ (w) on the real axis:

- :
xe” (x)

y 2
e(iw)—1 _Ef e (82.15)
0
Integrating this relation over all w, we obtain
J [e (iw)— 1] dow = f ¢’ (w) do. (82.16)
0 Y .

All the above results are applicable, apart from slight changes, to the magnetic
permeability p(w). The differences are due principally to the fact that the function u(w)
ceases to be physically meaningful at relatively low frequencies. Hence, for example,
Kramers and Kronig’s formulae must be applied to u(w) as follows. We consider not an
infinite but a finite range of w (from 0 to w,), which extends only to frequencies where p is
still meaningful but no longer variable, so that its imaginary part may be taken as zero; let
the real quantity u(w,) be denoted by y,.T Then formula (82.8) must be written as

Wy

. 2 x p (x)
H@~p==P j oz dx. (82.17)

0

Unlike &g, the value pq of 1£(0) may be either less than or greater than unity. The variation of
() along the imaginary axis is again a monotonic decrease, from p, to p, < .

Lastly, it may be noted that the analytical properties of &(w) derived in this section are
also possessed by 57(w) = 1/¢(w). For example, #(w) is analytic in the upper half-plane,
because £(w) is analytic and has no zeros in that half-plane. The same Kramers-Kronig
relations (82.6) and (82.7) apply to 5 (w) as to &(w).

§83. A plane monochromatic wave

Maxwell's equations (77.2) for a monochromatic field are

iou(w)H =ccurl E, iwe(w) E = —ccurl H. (83.1)
!

These equations as they stand are complete, since equations (77.1) follow from (83.1) and
so do not require separate consideration. Assuming the medium homogeneous, and
eliminating H from equations (83.1), we obtain the second-order equation

AE+eu(0?/c?)E = (83.2)

elimination of E gives a similar equation for H.

Let us consider a plane electromagnetic wave propagated in an infinite homogeneous
medium. Ina plane wave in a vacuum, the spatial dependence of the field is given by a factor
¢%°r, with a real wave vector k. In considering wave propagation in matter, however, it is in

1 In fact, w, must be such that w, t> 1, where 7 is the shortest relaxation time for ferromagnetic and
paramagnetic processes in a magnetic material.

ECH~J* -



