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and according to the first equation of [58]
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Tl‘le other three quantities, I, FF and X, can likewise be expressed
with the help of D;* and D,*, using the three remaining equations.
So, for instance, we will find
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Now we have two conditions at the beginning ¢ = 0 of the experi-
ments. First we know the total chavge on one plate of the con-
denser, or, in other words, we know the initial diclectric displace-
ment, which we will call Dy.  Secondly, we know that for ¢t = 0 the
distribution of the moments is given by Boltzmann’s function.
- Calling Fq the initial internal force, we know, therefore, that for { = 0
we have the condition X(0) = . But in the statical case I, is
found with the help of Mosotti’s assumption to be equal to
[(e+2)/3¢1Dg in a medium with the dielectric constant e. Our
second condition therefore has (for ¢ = 0) the form

X(0) = [1 _;.zi:ﬂ_lﬂ).]l)_": Do
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Using both initial conditions, the two constants D,* and D.* can
be expressed in terms of the initial displacement Dy;. The final
result for D is
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showing that in general the time function is a superposition of two
exponentials. A special case of some interest is obtained if the
resistance W is taken so small that the usual time of discharge would
be small compared with the relaxation time of the dielectric. IFrom
[59] it is found in the limit for W = 0 that
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substituting these values in [617] yiclds
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where we have used the notation
14 2p¢

1 - Do

0y

since this would be the dielectric constant if the molecules were
non-polar (u = 0). Iquation [61’] shows how a first part of the
dielectric displacement (ey/e)Dy, and therefore of the charge too,
vanishes in a time comparable with eCW, which is supposed to be
a very short time. It is the time of discharge of a condenser filled
with a fictitious substance whose dielectric constant would be
determined by the distortion alone. The remaining part -
(eo/€) 1D vanishes in a time comparable with [(1—pe)/(1 —po—p1) 1T,
which can be several times the characteristic relaxation time = if
po + pi is not very different from 1. This is to be expected for
substances with a high diclectric constant, according to the formula

_ 14 2(po -+ m)
1 - (7)0 + )]
which will give large valucs of e if the denominator does not differ

greatly from zero.

18. Polar Liquids under the Influence of High Frequencies.
Practically much more important than the case treated in the
foregoing Section 17 are the dielectric propertiesin a periodic field.
Let the number of vibrations in 27 seconds be w; the internal force
may then be expressed by the real part of :

F — Foeiwt’
so-that the torque on a molecule is given by
M = — ulfye™* sin 9.

As in the previous case the distribution function must be a solution
of [487], which we can write in the form

o, U L 0T oY _IM
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Let us try as a solution

I
f='A[1 +B’;T-;?e“” cosﬂ],

where B is a constant as yet érbitrary. The substitution of this
expression in [487] shows that the differential equation is safisfied,
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providing we choosc B complex according to the equation ®

. 1
B =T
We have then ‘
. o 1 r ‘ :
f—A[lv—l—l_*_inchosﬂ]- [62]

Tor w = 0 we have the usual Maxwell-Boltzmann function, while
for very large values of wr the function becomes constant. The
transition from one case to the other occurs for frequencies which

will make wr of order of magnitude unity. The mean moment of ..

the molecules is also eomplex and is given by the equation

— #2 I ,LLZ Foatwt .
M= SRT T T dwr - 3ET L+ dwr [63]
The meaning of the complex moment is of course that there is a
difference in phase between the moment and the internal force.

-If the phase angle is ¢, the above equation may be written in the

form -

o s Fq
M = o
3T 1 + ots

e‘l(wl—so),
where
tan ¢ = wr.

Now it is well known that a difference in phase between field in-

tensity and polarization is always accompanied by energy absorp-

tion. As a result of the existence of a finite relaxation time, we will

therefore not only encounter dispersion but also absorption in-

timately connected with it." We are going to consider these phe-

nomena in some detail, assuming Mosotti’s hypothesis to hold.
The molar polarization P in this case is expressed by ‘

€ — 111_/_[ _ _ 47N L‘l_ 1 *\ N
T2, W=7 [“°+3kT1.+in]q - 1L64]

which is complex and a function of the frequency. S&ving this

5 Quantities of higher than the first order in F are again neglected.

s Ag another consequence of the existence of such a difference in phase it s
known that in a rotating electric field of constant intensity a dielectric will begin
to rotate. The reason why the phase difference exists does not matter at all;
any dielectric showing conductivity or dielectric losses will exhibit the effect.
[Compare A. Winkelmann, “Handbuch der Physik,” IV, 1, p. 161, and G. Breit,
Z. Physik, 11, 129 (1922).]7 M. Born, Z. Physik, 1, 221 (1920), starting from
another point of view, calculated the torque on a polar liquid, whose absorption
is due to the relaxation effect mentioned in the text. (Compare also P. Debye,
“Handbuch der Radiologie,” V, p. 652.) Successful experiments were carried
out by P. Lertes, Z. Physik, 4, 56 (1921).
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equation for ¢, we find

i
142 i P(w)\.
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Instead of characterizing the liquid by the two theoretical constants
o and: 2/3kT it is advisable to use the two dielectric constants e
and ¢ defined by

- [64']

€ =

1 P(w)

eTer - [65]
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According to [64] the dielectric constant e will then denote the

value of ¢ for high frequencies, the optical dielectric constant, as we
" will eall it, and & will be the statical dielectric constant, observed

for w = 0. With these definitions the molar polarization takes the B

form
ﬂ{ G()—l 1 € — 1 en“-])]
> — -
P) p[et:+2+l+'iwr(el+2 e+ 2
and we obtain for the 'dielectrig constant as a function of w the
expression

(0
e + 2
1 . 1
€ + 2+”MT €4 + 2

+ i €0
WT
€4 + 2

166]

£ =

According to the formal theory of propagation of light € is equal to
the square of the generalized refraction index, but as ¢ is here an
imaginary quantity, the generalized refraction index will also have
an imaginary part. In the usual way we therefore put

e = 12(1 — ix)* [66']
such that r and « are both real quantities, r being the ordinary
refraction index and « the absorption index.

The meaning of the two constituents of the generalized refTuctive index is
seen, if it is remembered that the field intensity of a plane wave travelling in the

_s-direction is proportional to the expression

it [t—Ms] -—w:\'1—'8 iwlt—zs]
¢ ¢ e . c

¢ =¢
if we denote by ¢ the velocity of light in vacuum. If the wave-length in vacuum
is s, the waye-length in the medium is A = Ao/r and the amplitude is multiplied
by e-2m after the wave has travelled over a distance of one wave-length A

)
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In order to discuss the refraction index r and the absorption
index « as functions of the frequency, we introduce the variable

€ -+ 2
@ = ;-:’—_T_—éwr. [e7]

It can then be shown that [66] is equivalent to the two equations
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giving values for » and for r« separately.
Calling exfer = p, equation [667] cnn be written in the form
€ _ 1 4 ipx
a 1w
If now two angles ¢ and ¢ are introduced hy the equations tan ¢ = 2 and tan ¢
= pz, it can be shown that

™ _ese L fe—y _lcos«; A
== o Toow (152 ) = L2 1 1 s (4 — w),

722 cosw."(w—dz) 1cos e
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These equations can easily be transformed into the functions of [687, remembering
the definition of ¢ and ¢. The introduction of these angles is of some help in
deriving additional results below in the text, which are given without proof,

In the interval @ = 0, -+ 2 = o, the square of the refractive
index ranges from 1* = ¢, - -+ 12 = ¢; the product r*«* starts with 0
for x = 0, goes through a maximum and comes hack to 0 again for
T = w, and the same is truc for the absorption index « alone.
Tigure 26 shows this behavior in a special case. Some details may
be of interest, from the standpoint of the deseription of an actual
experiment. :

The absorption index x has a maximum for the frequency w

given by the formula ‘
or = ﬂ:_?\/fs .
& + 2 Ve

This maximum value itself is

Va — Ve
Kmpx, = —ms——mz
max ’\/61 + ’\,eu

and at the corresponding frequency the square of the refraction

—_— - [68
1 [\/612 + 602.’62 €] + Eoﬂ)g] [ ]
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index is given as

__l €o€1 - 2
72 = 2————-&0 + o ('\,Go + '\/_6_1) .

In the special case of decidedly polar molecules for V\{hich e is
large compared with e, the frequency at which the maximum of «
oceurs will be appreciably smaller than the characteristic frequency

- 1/7 and the maximum value itself will be nearly equal to unity.

e

Trc. 26. Dispersion and absorption in polar liquids.

A distance of one wave-length (measured in the medium) is then
sufficient to decrease the amplitude to ¢27 = 1.85 X 1077 of its
initial value. At this place in the spectrum the square of the
refraction index is under the same conditions approximately equal
to %'\,6061. ] ) )

The produet r« is the significant quantity in ecstimating ‘the
absorption if the range is measured in terms of the wave-length
o measured in vacuum, for the amplitude of a wave after travelling
over the distance s is proportional to e~*™¢”, This product
reaches its maximum value-at-a_frequency different from that which
makes « a maximum; namely, if

e+ 2 [3e+ €
e -+ 2 €1+3€0,

and the maximum value is given by the expression

wT =

€ — €p

T max. = m .
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At this place in the spectrum the squarc of the refractive index is

» o= (361 + 60‘)(61 + 360)
8(as +e)
which is nearly cqual to 3¢, if & >> .

To estimate the relaxation time r from the experimentally
obtained dispersion-curve for 7, it is convenient to note that the
‘square of the refraction index will be midway in its change from
‘6, t0 € (4.¢., will have acquired the value (e + €)/2) if w7 is equal to

=€0+2\/_1; € — €q ) 61"'65(]2 R ~
T ar2 2[el-j-eo+ 4.i_(ex-f-eo)w:l '

In the special case that again & >> €, this equation yields

. .
o at2, LB _ o
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The result of actual experiments on the absorption, measured for
instance with a bridge method, is frequently given in terms of a
phase angle ®. If the potential difference between the plates of
the condenser is Ve'* and the dielectric constant e has to be decom-
posed into a real part and an imaginary part
e = ¢ — 1€,
the charge @ on one of the plétes (omitting constant factors) will be
Q o (6’ _ ,I:GII)“/leI.

The phase angle can then be defined by the equation

1%
tan ¢ = _6__7 .
€

Going back to equations [66] and [67], it is easily seen that

€ ™ €
¢ = € + - (::
142
"o <él - 50) .
1422 "
and therefore :
€ — €p)b
tan @ = g_l___Q. .
€1 + EQIU)‘

This phase angle reaches a maximum value at the same place in
the spectrum where the absorption index « is a maximum (a?
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= «/eo) and can be calculated at this place from the equation

1 € — €
tan ¢, == .
X,
2 VeEr €y

© At this frequency, for which k = Ky, the two parts of € are

€1€n ’ €1 ™. €3 T
P Qe Z\Hd 6” = ‘\/Elléo.
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10. Experiments on the Anomalous Dispersion and Absorption of

Polar Liquids.
The weakest point in the theory presented in the foregoing

Yection 18 is the introduction of Mosotti’s hypothesis, if the results

are to be compared with actually existing experiments. These
experiments have been performed with decidedly polar liquids.
Now we know that these liquids always show association and it is
very doubtful, indeed improbable, that we can make Mosotti's
assumption about the internal field.” We therefore should expect
that the results of the actual experiments will deviate from the for-
mula caleulated for the ideal liquid treated in Section 18, although
only in a quantitative and not in a qualitative way. However, if
future experiments are made on dispersion, using sufficiently diluted
solutions of polar molecules in non-polar liquids like benzene or
hexane, we will then have a perfect right to apply the formulas to
this case., Moreover it would be interesting from a purely experi-
‘mental point of view to see how the characteristic region of anomalous
dispersion shifts to. longer wave-lengths, as we expect it to do, if
the inner friction of the non-polar solvent is changed by lowering the
temperature, or, for instance, by using a series of non-polar saturated
hydrocarbons with increasing viscosities.

It is with these restrictions in mind that we are going to discuss
some recent experiments of Mizushima,’ which seem to be best to
the point. Many former experiments of other investigators have
given indications in the same direction, but are less complete.®
According to our exposition the only new quantity entering in the
equations for the description of anomalous dispersion and absorption
was the product of the relaxation time r and the frequency w, as is

~ seen, for instance, in equation [66]. This means that for these

phenomena a correspondence law should hold stating that any effect

~of the frequency can likewise be obtained at constant frequency by

7 San-ichiro Mizushima, Bull. Chem. Soc. Japan, 1, 47, 83, 115, 143, 163
(1926); Physik. Z., 28, 418 (1927).

0. v. Baeyer, Ann. Physik, 17, 30 (1905); T. Bckert, Verhandl. deut. physik.
Gles., 15, 307 (1913); XL Rubens, ibid., 17, 335 (1915); E. T. Nicholls and J. D.
Tear, Phys. Rev., 21, 587 (1923); J. D. Tear, Phys. Rev., 21, 600 (1923); R. Bock,

. Physik, 31, 534 (1925).




