e B

CHAPTER 8

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
.10
8.11

DIELECTRIC AND OPTICAL
PROPERTIES OF SOLIDS

Introduction

Review of basic formulas
The dielectric constant and polarizability; the local field
Sources of polarizability
Dipolar polarizability

Dipolar dispersion

Dipolar polarization in solids
lonic polarizability

Electronic polarizability
Piezoelectricity
Ferroelectricity

==
When life is true to the poles of nature, the
streams of truth will roll through us in songs.

Ralph Waldo Emerson
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h the field.

When a dipole is placed in an external electric field, it interacts wit
he dipole which is given by

t=p %6, (8.3)
The magnitude of the torque is
the directions of the field and the
t tends to bring the dipole into
d alignment is a very important
edly in subsequent discussions.

& is the applied field (Fig. 8.2).
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the direction of T is such that i
with the field. This tendency towar
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Fig. 8.2 The torque exerted
the point charges of the dipole.

represent the two forces exerted by the field on
Another, and equivalent, way of expressing the interaction of the dipole with

the field is in terms of the potential energy. This is given by
V=—p&=—pEcost, (8.4)

of the dipole. We can see that the energy depends
and varies between —pé&, when the dipole is
aligned with the field, and p&, when the dipole is opposite to the field. Because
the energy is least when the dipole is parallel to the field, it follows that this is the
most favored orientation, i.e., the dipole tends to align itself with the field. This
of course, the same conclusion reached above on the basis of torque

which is the potential energy
on 6, the angle of orientation,

is,
consideration.

In discussing dielectric materials, we usually talk about the polarization P
of the material, which is defined as the dipole moment per unit volume. If the

number of molecules per unit volume is N, and if each has a moment p, it follows

that the polarization is given by?

P = Np, (8.5)

where we have assumed that all the molecular moments lie in the same direction.

I
i.e. the number of

+ In this chapte
entities (molecules, atoms,

r, the symbol N (not n) stands for the concentration,
etc.) per unit volume.
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When a medium is polarized, its electromagnetic properties change; this
is expressed through the well-known equation

the external sources producing the ext
by the polarization of the medium.t [t
the field outside the dielectric, satisfies

ernal field, and is completely unaffected

follows that the external field &, that is,
the relation

D= 60‘50- (8-7)
When we compare this with (8.6), we find that
1
& =&, - —P, (8.8)
€0

showing that the effect of the polarization is to modify
In general, this results in a reduction of the field.
Equation (8.6) is usually rewritten in the form

the field inside the medium.

D =¢& = ¢p,6,

(8.9)
where the relative dielectric constant
€ = €fe, (8.10)
expresses the properties of the medium. All the dielectric and optical characteris-
tics of the substance are contained in this constant, and indeed much of this
chapter is concerned with evaluating it under a variety of circumstances. Thus it
follows that we can gain much information about a medium by measuring its
dielectric constant. From this point on, we shall refer to the relative dielectric
constant e, as simply the dielectric constant, since we rarely need to use the actual
dielectric constant ¢ = €0F,.
Figure 8.3 shows a simple procedure for measuring dielectric constant. The
plates of a capacitor are connected to a battery which charges the plates. When
there is no dielectric inside the capacitor, the electric field produced by the charges

is &, which can be determined by measuring the potential difference ¥, across the
capacitor, and using the relation

-

2 &y = V,y/L, (8.11)
where L is the distance between the plates. This relation should be familiar
to the reader from his study of elementary physics. If a dielectric slab
is now inserted between the plates, the field &, induces the polarization of the

1 See, for example, J. B. Marion

(1965), Classical Electromagnetic Radiation, New York:
Academic Press.
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which relates the polarization to the field. By comparing this equation with
(8.16), we find that the susceptibility and polarizability are interrelated by

N (8.20)

X
€0

and hence Eq. (8.18) may be written simply as
=1+ (8.21)

Thus the departure of the dielectric constant from unity, the value for vacuum,
is equal to the electric susceptibility.f (If several gaseous species are present,
than the factor Na in (8.20) should be replaced by X;N;.)

Equation (8.18) may also be written in terms of the density of the medium by
noting that N = pN,/M, where p is the density, M the molar mass, and N,

Avogadro’s number. Thus o

e, =1 + (pN JegM)a. (8.22)

This expression, indicating that e, increases linearly with density, holds in gases,
in which density can be conveniently varied over a wide range. This fact lends
support to the argument used in the derivation of (8.19), and in particular to
(8.15).

Experiments do show, however, that Eqs. (8.18) or (8.22) do not hold well
in liquids or solids, i.e., in condensed physical systems. This point is important
to us here, as our primary interest lies in describing solid substances, and we must
therefore seek a better expression for the dielectric constant than (8.18). The root
of the difficulty lies in (8.15). It is implied here that the field acting on and polariz-
ing the molecules is equal to the field &, but a closer examination reveals that this is
not necessarily so. If it develops that the polarizing field is indeed different from &,
relation (8.15) should then be replaced by

p = Otglocﬂ (823)

where & is, by definition, the polarizing field—also called the local field.

To evaluate &, we must calculate the total field acting on a certain typical
dipole, this field being due to the external field as well as all other dipoles in the
system. This was done by Lorentz as follows: The dipole is imagined to be sur-
rounded by a spherical cavity whose radius R is sufficiently large that the matrix
lying outside it may be treated as a continuous medium as far as the dipole is

t Actual dielectric media are anisotropic, i.e., the value of ¢, or y, depends on the
direction of the field. Thus the parameters ¢, and y are tensor quantities of the second
rank. In order to concentrate on the physical principles, we shall, however, ignore the
anisotropy and regard the dielectric as an isotropic medium, in which case the dielectric
constant is represented by a scalar, i.e., a single number.
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concerned (Fig. 8.5). The interaction of our
inside the cavity is, however, to be treated micr
the discrete nature of the medium very close
account. The local field, acting on the centr

dipole with the other dipoles lying
oscopically, which is necessary since
to the dipoles should be taken into
al dipole, is thus given by the sum

S =60+ 8, + 8, + &, (8.24)

where & is the external field, & 1 the field due to the polarization charges lying
at the external surfaces of the sample, &, the field due to the polarization charges
lying on the surface of the Lorentz sphere, and &5 the field due to other dipoles
lying within the sphere. Note that the part of the medium between the sphere
and the external surface does not contribute anything since, in effect, the volume

polarization charges compensate each other, resulting in a zero net charge in this
region.

= + . \‘\6
G 20
(a) (®)

Fig. 8.5 (a) The procedure for computing the local field. ( b) The procedure for calculat-
ing &, the field due to the polarization charge on the surface of the Lorentz sphere.

Let us now evaluate the various fields which appeared above.

& : This field, due to the polarization charg,

€s on the external surface, is also known
as the depolarization field, since it is obviously opposed to the external field. The
value of this field depends on the

geometrical shape of the external surface, and
for the simple case of an infinite slab is given by

g £ = - —P, (8.25)
€0
which you may confirm by using Gauss’ law. The depolarization fields for other

geometrical shapes can be found in the references (Kittel, 1971), as well as in the
problems.

&,: The polarization charges on the surface of the Lorentz cavity may be
considered as forming a continuous distribution (recall that the cavity is large)

8.3

8.3

whose density is —

where the
only the component of the field a120

i try), and the factor 2n .
vag;srl; lgezygirgnefiré)t)). Integration of (8.26) leads to the simple result
sp . 8.
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Pcos0. The field due to the charge at a point located at the

. ; ven b
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" Bees 9) cos 0 (27R? sin 0 db), (8.26)
gz - 0 4JT€0R2
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number of molecules (Fig. 8.6).
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are used for the macroscopic description of
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Let us now evaluate the dielectric constant,

The polarization, according to
(8.23) and (8.16), is given by

P = Nug,,, (8.31
which, when used in conjunction with (8.30), yields
No :
P= - é. (8.32)
3¢

This relation between P and & supersedes the earlier one, (8.16), and we note

the fact that the denominator being less than unity contributes to the enhancement
of the polarization; the enhancement is due to the local field correction. When

the result (8.32) is substituted into (8.16) and (8.17), one finds the following
expression for the dielectric constant

2
1+£NGZ

&= N (8.33)

i

-

o 3ep

which is the relation we have been seeking. It is the generalization of (8.18) when
the local field correction is taken into account.

In gases, in which the molecular concentration N is small, the expression (8.33)
reduces to the earlier (8.18) without the field correction. This can be seen by noting
that (Na/3e,) < 1 in the denominator of (8.33), since N is small, so that one may
expand this denominator in powers of (Na/3¢,), which in first order reduces pre-

equation as

e — 1) _Nu (8.35)
i)

+2/) 3¢

: ble
izabili be determined from the measura '
: he polarizability o may . ‘ T
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the molar polarizability.

8.4 SOURCES OF POLARIZABILITY
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Nucleus (charge Ze)

®)
Fig. 8.9 Electronic polarization. (a) Unpolarized atom. (b) Atom polarized as a result
of the field.

Electronic polarizability arises even in the case of a neutral atom, again because

of the relative displacement of the orbital electrons.
In general, therefore, we may write for the total polarizability

o= a, + o + oy, (8'36),»
which is the sum of the various contributions; ¢, &, and «, are the electronic,
jonic, and dipolar polarizabilities, respectively. The electronic contribution is
present in any type of substance, but the presence of the other two terms depends
on the material under consideration. Thus the term ; is present in ionic
substances, while in a dipolar substance all three contributions are present. In
covalent crystals such as Si and Ge, which are nonionic and nondipolar, the
polarizability is entirely electronic in nature.

The relative magnitudes of the various contributions in (8.36) are such that in
nondipolar, ionic substances the electronic part is often of the same order as the
ionic. In dipolar substances, however, the greatest contribution comes from the
dipolar part. This is the case for water, as we shall see.

The various polarizabilities may be segregated from each other because each
contribution has its own characteristic features which distinguish it from the others,
as we shall see in the remainder of this chapter. Dipolar polarizability, for instance,
exhibits strong dependence on temperature, while the other two contributions are
essentially temperature independent.

Microwave Infrared Ultraviolet

Total polarizability, «

|
|
|
|
|
|
|

Fig. 8.10 Total polarizability o versus frequency w for a dipolar substance.
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Another important distinction between the various polarizabilities emerges
when one examines the behavior of the ac polarizability that is induced by an
alternating field. Figure 8.10 shows a typical dependence of this polarizability on
frequency over a wide range, extending from the static all the way up to the ultra-
violet region. It can be seen that in the range w = 0 to w = w,, where w, (d for
dipolar) is some frequency usually in the microwave region, the polarizability is
essentially constant. In the neighborhood of w,, however, the polarizability de-
creases by a substantial amount. This amount corresponds precisely, in fact, to the
dipolar contribution ®4. The reason for the disappearance of g in the frequency
range w > w, is that the field now oscillates too rapidly for the dipole to follow,
and so the dipoles remain essentially stationary.

The polarizability remains similarly unchanged in the frequency range w,
t0 w;, and then plummets at the higher frequency. The frequency w, lies
in the infrared region, and corresponds to the frequency of the transverse optical
phonon in the crystal w, (Section 3.12). For the frequency range w > @,, the jons
with their heavy masses are no longer able to follow the very rapidly oscillating
field, and consequently the ionic polarizibility «, vanishes, as shown in Fig. 8.10.

Thus in the frequency range above the infrared, only the electronic polariza-
bility remains effective, because the electrons, being very light, are still able to
follow the field even at the high frequency. This range includes both the visible
and ultraviolet regions. At still higher frequencies (above the electronic frequency
@), however, the electronic contribution vanishes because even the electrons are
too heavy to follow the field with its very rapid oscillations.

We see, therefore, that the dielectric constant of a dipolar substance may
decrease substantially as the frequency is increased from the static to the optical
region. For example, the dielectric constant of water is 81 at zero frequency, while
it is only 1.8 at optical frequencies.

The frequencies w, and ;, characterizing the dipolar and jonic polarizabilities,
respectively, depend on the substance considered, and vary from one substance
to another. However, their orders of magnitude remain in the regions indicated
above, i.e., in the microwave and infrared, respectively. The various polarizabilities
may thus be determined by measuring the substance at various appropriate fre-
quencies.

Let us now evaluate the various polarizabilities, and show how measuring them
may give us information about the internal microscopic structure of a given

substance.

-

8.5 DIPOLAR POLARIZABILITY

We can obtain the expression for dipolar polarizability (also called orientational
polarizability) by applying the basic formulas of Section 8.2 and some elementary
statistical mechanics. Imagine that an electric field Is applied to a dipolar system
in which the dipoles are able to rotate freely, as in a gas or liquid. Before the
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The average value of p,, the x-component of the dipole moment, is given by the

expression
__ [p.f(0) dQ 39
Pe= Tr@yde
whose element is dQ. By carrying
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Iltlh;cillzole points exactly along the field, whiih is :;S sl}::lw’ilthat e
examalo | : experimental situations, the ratio y = péa,’kl; e g
xample, if we take p  10°2° coul‘m, & = 10° ' jm, and P Fa
tongel Y Ich_ 1s very small indeed compared with m’)'t = Bl O

eld approximation ity. Thus we may use the

p?
st Py =g,
3kT (8.42)

t The evaluation of p. .
: P, 1s facilitated b : .

denominator is d y noting the following point : ) .
numerator is [a/a?;gfleﬁ/ZZ, then it may be readily vefiﬁ;;du:h‘a Ift;ll;eilnnttegral in the
PEIKT . Thus b, = [3/3(pé }{That is, the derivative of Z with respect to t‘“i]gl'al in the
SvRinted. by ﬁxndi“g Zp /taﬁ}gz /§=1[3/6(pf /kT)] log Z. Therefore Ee ?Q?;tléz
i i : s logarit : x
Integration. The actual value one finds forgZ iis ;r;; siilnl:i(p?;;;j;g(Pé? /LilctT)the indicated
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That is, the net dipole moment is directly proportional to the field, and inversely

proportional to the temperature.
The result (8.42) may also be obtained from the following physical argument.

As we know, the effect of a field is to align the dipoles, whereas the effect of
temperature is to oppose this and to randomize the direction of the dipoles. There-

fore one may write

orientational energy
thermal energy

Be=1p

If we substitute the values orientational energy = p& and thermal energy = kT,

we obtain

which is the same as (8.42), except for the numerical factor 4, which is of the
order of unity. We see therefore that at low field orientational energy is much less
than thermal energy, and consequently the net dipole moment p, is only a small
fraction of its maximum value p. On the other hand, at high field, orientational
energy dominates thermal energy, and consequently the net moment p, is very

close to its maximum value, that is, p, =~ p.
Dipolar polarizability, on the basis of (8.42), is given by

2
p
= 8.
3kT i)

Oy

When this is substituted into the Clausius-Mosotti relation (8.35), one
finds that

2

2 (4) -3 e 3)
p \e, +2] 3¢ el TS )

r

where a,; is the combined polarizability due to both electronic and ionic contribu-
tions. This polarizability is essentially temperature independent, as we shall see
in later sections.

If we plot the molar polarizability (M/p)[(e, — D/(e, + 2)] versus the
inverse temperature, 1/T, we should obtain a straight line the slope of which is
proportional to p?, and its intercept should be proportional to «,. This graph
therefore leads to the determination of both the molecular dipole moment and
the nondipolar polarizability, both of which are very useful quantities.

Such a plot is shown in Fig. 8.13 for several gaseous substances. We can see
that the linear behavior predicted by (8.44) is borne out experimentally.
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X108
10 CH,CI
5L /
- 5= CH,Q1
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CHCl,
5L cel,
——————CH,
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2 2.5 3 3.5 x 1073

1/T, k-1
Fig. 8.13 Total susceptibility y = € — 1 versus 1/T for

(Note that denominator on left side of Eq. (8.44) is ¢
materials.) "

The graph indicates that the molecules CH,Cl,
all dipolar, while the molecules CCl, and CH
nonpolar (no permanent moment),
methane molecule CH, is nondipolar.

the carbon atom at the center.,
each of the hydrogen atoms, and alt
ent, the total dipole moment of th
arrangement of the bonds. Note, h

replaced by a chlorine atom,
symmetrical, acquires a permanent

owever, that when one of the hydrogen atoms s
the resulting CH,Cl molecule, no longer
moment, in agreement with Fig. 8.13.

+@H

o

+
jnd

H@+

Fig. 8.14 Geometrical structure of the methane molecule (CH,).

Table 8.1 gives dipole moments for
manner indicated above. The mo
which is equal to 1072°

various molecules, measured in the
ments are expressed in terms of the Debye uniz,
coul - m. This convenient microscopic unit corresponds to a

several gaseous substances,
+ 223 for these gaseous

CH,Cl,, and CHCL, are
4> Whose graphs are horizontal, are
Indeed it is €asy to understand why the
Its structure, as shown in Fig. 8.14, is such
that the hydrogen atoms are located at the corners of a regular tetrahedron, with
There are four bonds Joining the carbon to
hough each of these bonds has an electric mom-

e B
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€ h ( ). nce
d.!. Ole ()i Cha] (+] 10 COLll( Ilé) al’ld le“gt 10 m l A Sl t
d]‘Sta“CeS ethOUlltered i“. mOieculeS arc Of the Ol‘del Oi allgS[I oms, and t]le C 1ar geS

Table 8.1
Permanent Dipole Moments of Some Dipolar Molecules

i bstance Dipole moment,
Substance ano(lie; l;‘r;(ggnent, Subs e
1.5
1.91 NH;

ggl 1.1 CH,Cl 1.97

HBr 0.8 CH,Cl 1.59

HI 0.38 CHCl,4 ?gS

NO 0.1 H,0 1.10 |

cO 0.1 H,S 1.6 /

Nal 4.9 SO, ;

KCl1 6.3

8.6 DIPOLAR DISPERSION

o . : g
Let us now discuss ac dipolar polarizability. Whep an l:r,el{:(i:(tru: ;iefﬁt?]sn;lll?;zs A
i i d to follow the field, flipping back and 1 '
| e theaion dipole experiences some fric-
| its directi i h cycle. However, a dipole exp
reverses its direction during eac : = o e e
i i isi i lecules in the system. is me
tion due to its collision with other mo : . S —
[ ak of dielectric loss.
is absorbed from the field, and we lspe k )
Znelgayrs eventually in the form of heat, which raises the tempc?ratur; Ot; the sit‘:es
| Sgﬁme Therefore studying the ac polarizability anc% the dlelZ(.:mC 0SS g
| information on the interaction betwegn the molef:ules in th; m? ;urr;.larization ,
| The equation we shall use to describe the motion of the dipolar p

dp,(t) - 1

(8.45)
dt

= [pds(t) = pd(r)],
T
i i is the
where p,(t) is the actual dipolar moment at the mstapth t w‘r;nc:e bpds(ttgeialue
ilibri f the moment, which wou e :
turated (or equilibrium) value o > mot elue
Za roachec(i by p4(t) if the field were to retainits mst.antaneous. valLlle fotrhz: lg:ganure
VEE have assumed that the rate of increase of py(1) is proporuox?a 10 4 Ca]{)ed e
of this moment from its equilibrium value, and the quantity t
relaxation time, also referred to as the co{hsron tine. N— .
'Lct us illustrate the meaning of (8.43) in a very simple St -(;) e
a static field is applied at the instant 7 =0. In that li'z;lse',s t,cl:;,; ) =t dreached
(po is the permanent moment of the molecule), because this 1
Pol
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8.6

Pa(t)

Pl __

0 1

L o

Fig. 8.15 Instantaneous dipole moment Pa(f) versus time 7 in a static electric field,

by the moment lon

g after the application of
polarizability calcy]

ated in Section 8.5, Equation (8.45) now reduces to

dps  pu(t) Py
ar Tt T (8.46)

which, as a first-order line

ar differential equation
yielding

, can be readily solved,

Palt) = po(l — e,

ard its equilibrium value in an exponential fashion,
(Fig. 8.15), much like the di

rect-current rise jn an R-L electrical circuit (of time
constant 1) when the battery has

Suppose, on the other hand, t
for a sufficiently long interval for the moment to have achieved its equilibrium
value py, and let this field be suddenly

removed at f = 0, [p applying (8.45), we
now take py, = 0, since this is the equilibrium value, and the equation now leads
to the solution

Just been connected.

Pat) = poe™"'", (8.48)
showing that the moment relaxes to its equilibrium v.

exponentially, where the rate of relaxation is determine
The situation is the same as that of the current decay in
stant 7, when the switch has just been opened.

Let us now apply (8.45) to the case of an ac field

alue of zero polarization
d by the relaxation time 1.
an R-L circuit, of time con-

o

E(t) = A e ot (8.49)
The equilibrium moment is given by
Pus(t) = 0,(0)& (1) = o4(0)4 g™t (8.50)

where o,(0) is the static dj

polar polarizability discussed in Section 8.5. Clearly
the expression (8.50) is the

value which would be reached by p,(1) if the field were

the field, where oy is the static
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i i ! . Equation (8.45)
in equal to &(¢)at all subsequent times (that is, for t’ > t). Eq
to remai
now reduces to

dpy(t) Pd(t):ad(o) £(t). (8.51)
dt ¥ T T

ince the dIlleg term on tl-‘e I]g]it 1§ var )‘i“g llaIIIlOIIlca y i" ti"le, as Indlcated b}‘

S. i . . ¥ “
8 ; ] . F

( ® )5 € tly a so Utlcn Uf [ € Torm

e 8.52
pa(t) = a(0)E(t) = ag(w)de™™, (8.52)

(1] 5‘ i ili }‘ is I t ted intO
d Y ) tl

2,(0) (8.53)
wfw)=

i ity, indicating that
izabili ow a complex quantity, in
that the ac polarizability is n ant e
I;can ‘]35 's;:tl;on is no longer in phase with the field. This gives r
the polari
1 e shall see shortly. . ‘ . et (@)
abso’;‘ptlgn;isz \:he corresponding expression for the dielectric co ’
o de
we write

€,(C0) = 1 + Xe(w) + Xd(w)!

i ipolar susceptibilities, respectively.
il ?(?)ra;?ntgﬁci?tt::tll(t:haen?ogis contribution is .suﬂ"lt.:iently S}I::it
e v E'IS'Sume do e have also ignored the local field corijectmn, 1€y we ©
e i the frequency region in which dlpo_la.r- dlgpersmn ;
used’ (8'18).' N(;]W r:tlicrowave region—the electronic susceptibility is Con?;?
Sigmﬁcantgll‘:{eét:ons being so light, can respond to the field essentially
]ij:siil;i?met:oisiy. We I;my therefore write the above equation as

.54
er(w) =n + xa(w), ®:54

. ; index of

h 2=1+1y, is the optical dielectric constant and n is the index
where n° = J

o ] the field

refm’l(:’lt:;) ndipolar contribution yu(w) = e_,(cu)‘— n* does no:exﬁ;lo?;’-izabmty .
instantaneously. There is a phase lag, as unphet_i by the co}rlnlz s rasns
1285?)1 Since y, is proportional to o, (see 8.20), it follow:s t 2 S}E:) ophaa e 5
" iex form ‘;s ay(w) in (8.53), and one may then write (8.
comp

€,(0) — n* 8.55)
GF((.!)) - nZ +_’i...n_ (

5 L
1 —iot

p L]
Whe}e the numerator on the Elght gl\*eS the Statlc Ua]ll.lB 0’ the dl Ola! Susceptlblht)
18, xd r
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s.eck'mg. for the dielectric constant. This quantity
sagmfyl_ng t.hat the medium exhibits dispersion
This dielectric constant, being a complex quantity

i1s clearly frequency dependent

can be written as
() = €(w) + i (),

yielding for the real and imaginary parts (8.5
e(w) =n? + T(O) —zn:"
and Tt (8.57a)
e E,(O) - ﬁz
@ Q) = i,
+ wr (8.57b)

which are known as Debye’s equations.

&)
(0)

Fig. 8.16 Real and ima

ina o
substance. gmnary parts e(w) and €'(w) versus log (wt) for a dipolar

Figur
e tgh ateti:(:epllots the, components of the dielectric constant versus log wr
which 2 o (s (t;l part G.’(w) 1S a constant, equal to ¢,(0) for all frequencies a£
oyl 3 quantity | 1/11: ]:S often called the collision Jrequency), a frequency
¥ covers all frequencies u i i
o ' p to the microwave region.
e 31;2?{ umﬁreases to such an extent that w 2 1/1, the real part e'(f')) deci::asttl:se
: ally reaches the value 2, the high-frequency dielectric cro t T ™
con ;ms the statements made in Section 8.5 netent.  This
1 5.
maximiuna;e e8.1*:’; also shows2 that the imaginary part, ¢, (w), achieves its
» equal to (¢.(0) — n?)/2, at the frequency w = 1/1, and decreases as the

wt = (1 + w?t?)/4,

which gives the frequencies

8.6
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w =027t and =373, the two values
he low and high frequencies of the €)' (w) curve.
ble over a frequency range of more than one
round the collision frequency /1.
be calculated as follows:

corresponding respectively to t
The function €’ (w) is apprecia
order of magnitude, the range being centered a
The rate of energy loss in the system may
The polarization current density is
J= E-P— (8.58)
dt

and therefore the rate of joule heating per unit volume is given by
Q=Jé. (8.59)

The polarization vector is given ‘0 terms of the dielectric constant by the relation

P(1) = o [e(@) = 116() )
= & [(@) — 1) + i (@] EQ), (8.60)

which can also be written as

P(1) = ¢ & (w) el &(1), (8.61)
where (@) = [(e(@) — 1)* + ¢ *(@)]'"* and ¢ is an angle given by

el!(w)
t = — 8.62
an ¢ @) =1 (8.62)
It is evident from (8.61) that the polarization lags behind the field by an angle ¢

(recall that &(r) ~ e ™).
The density of the polarization current is now given according to (8.58) and

(8.61) by
J = — iwegel(w) e (1)

= weger () P (1), (8.63)

which precedes the field by a phase angle @' = (— ¢ + n/2). [Draw the figure.]
If we now substitute this value into (8.59) and determine the time average, we

obtain
Q = 111 16] cos ¢'
= 4 cqel (@) sin ¢ |61

= 4 eque, (@) 1612, (8.64)

where we have used (8.62) in the last equation. Note that the loss rate i_s
proportional to w €. (w), that is, essentially to e (w). Thus the loss rate 1s

greatest near the collision frequency.
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8.7

Measuring the dielectric constant enables us to d

as we have j is ti
Just seen. This time depends on the interaction between the

molecule and the fluid in which ;
: ich it rotates. Deb
the surrounding medium as a viscous flyj o oh J Sicn

3
. 4nnR

T (8.65)

where 7 is the viscosity of the flu

}h'ater at room temperature, 5 ~

IN approximate agreement with
The time 7 increases as

d and R the radiu
0.0I poise, R
experiment,

sses; For exam-
s, which is five
re. Table 8.2 lists

Table 8.2

Relaxation Times at 20°C

-_—

Substance T
e

Water

Alcohol 1?5 <o
Chloroform Y

Acetone 0.33
Chlorobenzene O.] 2

Toluene 0‘75

1-butyl chloride 0?48

-

The relaxation ti i :
n times in solids ar
dipoles in solid : ¢ much longer than in liquids, bec
: s are more rigidly co i - . S, because the
Secion 8.7 gidly constrained against rotation, as we shall see in

8.7 DIPOLAR POLARIZATION IN SOLIDS

We derived i
ik t]f:: m‘:}zgefslllt (8.43) for dipolar polarizability on the basis of a model j
ular dipole moment may rotate continuously and freely o

for pccasional collisions with the surroundi i
applicable in gases and liquids, but not s bocaane
moment does not rotate freely.
determined by the interaction of t

except
. : Such a model is
not in solids, because in solids the molecular
l_t 1s_constraincd to a few discrete orientations
his dipole with neighboring ones. A dipole may

etermine the relaxation time

dipolar

: ! We treat
ety e d, the relaxation tme for a spherical

s of the molecule F
k : . Fo
~2A, leading to r ~ 2.5 !0"”5r
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hop back and forth between these various discrete orientations in a manner which
depends on the temperature and the electric field, but it is not @ priori obvious that
the resulting polarizability would be governed by an expression similar to (8.43).
What is the actual behavior of the dipolar polarizability in a solid?

The answer depends on the particular solid and on the range of temperature.
In some solids, dipolar moments seem indeed to be frozen in their orientations, and
are unaffected by the field. In these solids, the dipolar polarizability vanishes
altogether. In other solids, however, applying a field results in transitions
between the orientations in such a manner as to result in a net polarization, One
then often finds that the polarizability shows essentially the same behavior as (8.43).

Consider, for instance, the case of hydrogen sulfide (H,S). The melting point
of this substance is T, = 188°K, yet, as Fig. 8.17 demonstrates, the dielectric
constant continues to rise as the temperature is lowered, just as it does in the
liquid state. The rise continues until a temperature T, = 103°K is reached,
at which the dielectric constant drops appreciably, from 20 to 3. Below this it
remains constant. Although for the low-temperature range T < T the dipoles”
indeed seem to be frozen, in the intermediate range T < T < T, the dipoles are
able to polarize, even though the substance is in the solid state. It is this ability
to polarize that we now wish to explore.

(0
24—

Melting point

|
E
|
|
|

|
80 120 160 200
T,°K

0 l l

Fig. 8.17 Static dielectric constant ¢,(0) for H,S versus temperature. [After Smyth and
Walls]

Consider the following model which, despite its oversimplifications, illustrates
the basic concepts involved. We assume that each dipole of the lattice has only two
possible orientations, either to the right or to the left. The potential curve
is shown in Fig. 8.18, in which the potential energy is plotted versus the orientation
angle of a dipole. The bottom of the potential wells correspond to the two allowed
orientations. Intermediate orientations are forbidden because of the high potential
energy involved.
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In the absence of an external field

left or right direction, and as a result the net

ft or . polarization is zero in thi ilibri
: ' 1n this
is(x) 3:::;]-3 When a field is applied to the right, however, the well to :E:]i']ib;:tu s
o c)lr an amount + p.éﬂ, as_shown by the dashed line in the fi ure ‘g it
ponds to a dipole orientation parallel to the field, that is Bg 0,' SIIE(S:&S]t
3 3 = mn )
_sed by an amount péE )

» the well to the left is rai

0 /2 T 4
Fig. 8.18 Potential of a dip

' . ole in a solid v i i
ot g 1 e CIsus orientation angle 6. The height of the

tion energy. Solid curve i ion i
of field; dashed curve the situation in presence of ﬁelgepresents b e

. iz
hen we denote the probability of the leftward orientation by w, it follows that

w

= e—ZptS',fkT’

s (8.66)

wh ight i
e ﬂ::i :,2: ;E;’;l (on tthf: hnghlt is the Boltzmann factor, corresponding to a potential
note that 1 — w is the ili i i i
ol aorty ot that 4 probability of the rightward orientation).
e"prf‘kT

W= —
] + e—2p&,’k7"

which, in the condition p€ < kT which usually prevails, reduces to

P w = 1= 2PE/T (8.67)
The net moment along the field direction, the x-direction, is
Pe=p(1 = w) — pw = p(1 — 2w), (8.68)
which, by use of (8.67), leads to
P =p(] ~ g FRITy, (8.69)

, the dipole is equally likely to point in the

*T'——
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If one expands the exponential in poOwers of the field, retaining terms up to the
first power only, which is justified insofar as p& < kT, one finds

2
g L (8.70)
* kT
leading to a dipolar polarizability
2
i 2{?. (8.71)

This, except for a numerical factor, is of the same form as the result (8.43) obtained
on the basis of the model of continuous rotation.

The two-orientation model explains, in principle at least, the decrease in
dipolar polarizability with temperature in H,S (Fig. 8.17). At low temperatures
the field is able to orient all the dipoles to point to the right, but as the temperature
increases the dipole can flip its orientation more readily (the necessary energy-
is supplied by thermal excitation), and the polarizability diminishes.

i T
0 Ty

(b)

Fig. 8.19 (a) Potential energy versus orientation angle 9 in an asymmetric potential
barrier. (b) Variation of potential ¥ with temperature.

The model we have used to describe the solid does not, however, explain the
apparent freezing of the molecular dipoles for T < T, = 103°K in Fig. 8.17,
but this can be rectified by a slight change in the model. Suppose that the
potential curve versus the orientation is as shown in Fig. 8.19(a). Here again the
dipole has only two possible orientations, but the rightward orientation is favored
because it is lower than the leftward by a potential V. If ¥V » kT, then all
the dipoles point to the right, in the absence of the field. Even when the field is
applied, the dipoles remain frozen in their original orientation, unaffected by the
field (unless the field is very strong).

To explain the behavior of H,S, the potential must depend on the temperature
in a manner somewhat like that shown in Fig. 8.19(b). The potential is large
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and constant at low temperature, but it vanishes as T approaches and passes T,,.}

In this manner, polarization is inhibited below the transition temperature T,
but it is allowed for the range T > T

o

The model we used in connection with Fig. 8.18 may also be used to study
dielectric dispersion in solids. Thus the jumping frequency v may be written

V= vpe YT (8.72)

where vy, is of the order of the Debye frequency, vp =~ 10! Hz, and ¢ is the

activation energy! (see Fig. 8.18). The relaxation time (the Jjumping period) is
therefore

1
T o ;—;e"”’", (8.73)

which is to be used in conjunction with the dispersion equations (8.57) to describe
dispersion in solids,

8.8 IONIC POLARIZABILITY

We turn now to ionic polarizability. We discussed this subject in Section 3.12 in
connection with the optical properties of lattice vibrations, and therefore we shall
be content here with quoting the results of that section, and with a brief discussion

of their relation to our present purpose. We found there that the frequency-
dependent dielectric constant is given by

E,_(O) - el'(oo)

«(0) = () + TW’

(8.74)
where w, is the frequency of the optical phonon and €.(0), ¢,(c0) are, respectively,
the static dielectric constant and the dielectric constant at high frequency
(0> w,).

In (8.74) the first term on the right, €.(o0), contains only the electronic
polarizability, which is constant in the infrared region, where this expression is
useful. The second term on the right is the ac polarizability, the quantity
[€.(0) — €,(c0)] being the static ionic susceptibility, and the frequency
dependence shown was derived in Section 3.12 from the equations of motion of
the ions. We ignored the local field correction in (8.74), since in calculating the

t The dependence of the potential on temperature, shown in this figure, is not as arbitrary
(or strange) as it may seem at first. Actually this potential is a “cooperative” interaction,
due to all the dipoles in the substance. As the temperature rises more and more dipoles
are able to flip over, and there are fewer and fewer dipoles in the original orientation which
produces the restraining potential.

I The exponential increase of ¥ with temperature, given in (8.72), is due to the fact that the
dipole is able to flip only if the ion (or ions) involved has sufficient energy to go over the
potential barrier ¢ in Fig. 8.18.

Lonic Polarizability 399

8.8
i he ionic suscepti-
i tant we have simply added the electronic and t
dielectric cons
n i hat
- in another form by recalling t

Equation (8.74) may also. be .rewritten

¢,(o0) = n*, where n is the optical index of r

| 2y SO (8.75)
e,(w) =n" + l—_——(&)—z—/;):f)

efraction, and the result is

tted versus o in Fig. 8.20. .For ) @lw,,
nt, which is expected, since at low
he ac field essentially instantaneo'uslyd.
the ionic contribution has vanishe
for the massive ions to follow.

The dielectric constant. e,(w).1s plo )
e,(w) = (0), the static dielectric cc;lnioat
frequency the ions are able to respon e
However, in the range w.> w,, () d.dl,
because the field now oscillates too rapidly

&)

i i ion in i ion due
onstant e.(w) versus @, showing dispersion in infrared reg
r

Fig.8.20 Dielectric ¢ urve indicates removal of divergence due to

to optical phonons in an ionic crystal. Dashed ¢
collisions of ions.

Ille ()l)llcal dlelect] C COor stant »n ]“ay Lhele](”e he a])p]cCIabl Sl[lallCI than
y
the Stath dleleCtllC COI‘lStan[ E,(O), due to the abSBHCC O[ the 1onic COIltIlbuthIl.
II'J. Nac1 fO] exalllple R = 2-25, Whlle 5,.(_0) = 5.62. Iable 8.3 111US|IIH[€S [hlS
L] )

point further for several alkali halide crystals.

Table 8.3

Static and Optical Dielectric Constants for Some Tonic Crystals

2

=n
Substance &(0) (0]
1.90
. 9.27
F
EC 1.0 2-;2
NaCl 5.62 2. -
N 4.64 2. :
RECI 5.10 2.1
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We note from Fig. 8.20 that the substan ibi
. . ce exhibits gr i i
mpﬁ:}:}:liggzx:zg f;;?;xsnzz c(;).,. This le.ads to §trong optical ibe:grg:?gﬁr;::!nr:gar .the
T e f; F].SCUSSCd in Section 3.12. setion
Tt om Fig. 8.20 that the dielectric constan
L 1s attributable to the ionic susceptibility
- Cqucllgl?cy bgcomcts equal to the natural freql’i
e : 1;10n Is satisfied, and the response
i & ge. n practice su_ch a divergence is not observed
: ns experleqced by theions. These collisions arise ;

tdiverges at w = o
- g
and is expected since, as

X = (iﬁeoRs)g
Ze ’ (8.76)

where R is the radius of th
¢ sphere (the atomi ;
Elhar ‘ omic radius), and
momgee t( ol prOI_JIem section).  The atom is thus Polariz:d Zedthe “u!:lear
nt, p = Zex, yields the electronic polarizability , and the dipole

o, = 4x R3.
® (8.77)

¥ ae

T Although an electron i i
_ ron interacts with a bar i
s € nucleus according to the Co
oot ening of the nucleus by other electrons resuftsgin h UIo'mb' e
en the electron and the nucleus. # il orgs
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Electronic Polarizabilities for Some Inert G
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Table 8.4
ases and Closed-Shell Alkali and

Halogenic Ions (in units of 10740 farad m?).

Halogenic closed-shell

Inert gases Alkali cores
He 0.18 Li* 0.018 F- 0.76
Ne 0.35 Na* 0.20 Cl- 2.65
Ar 1.74 K* 0.86 Br~ 3.67
Kr 2.2 Rb* 1.34 1~ 5.5
Xe 3.6 Cst 2.20

When the ac field is polarized in the x-direction, the appropriate equation of motion

for the electron is .

2
A it == = Gl (8.78)

dt?

Assuming an ac field & = &, e~ one can readily solve for x and the polarization.

The polarizability is found to be

2
€ i (8.79)

) =
0

If there are Z electrons per atom and N atoms per unit volume, the resulting

electric susceptibility is

NZe?[egm
2e(®) = —— % ” — (8.80)
Wy — W
and the index of refraction is given by
2 (8.81)
n(w) =1+ N———Zze IEOT.
0)0 -

Figure 8.21 plots the function n?(w) versus w, and shows strong dispersion at the
resonance frequency w,. Such behavior is typical of all resonant systems, and
reflects the strong interaction between the driving field and the system when the
frequency-matching condition is satisfied, that is, when o =~ wm,  The
annoying divergence at @ = wq <an be removed by including a collision term
in Eq. (8.78), as we did in Section 4.11. [Indeed, the results thus obtained should
be the same as those in Section 4.11, if we set w = 0, that is, if we treat the electrons
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as free a Cl I Ot at a ll' h ue <3 e 4
p rta €S. N € th t ]g fl‘eq nClCS, that lS, (UO < W, n (w) 1,
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n¥w)

n*(0)

Fig. 8.21 Square of index of refrac

. ; tion n?
ultraviolet region due to motion o (@) versus frequency,

f electrons. illustrating dispersion in

Quantum theory

The motion of an i e u hence
electron in an atom is
governed by

' . ' BOV quantum laws, and
an accuicaste( trez:Fment _of elefctromc polarizability necessitates the use of quanium
mechanics (a brief review of the subject is given i i ha

ocnan! : given in the Appendix). Suppo
he energy spectrum of an atom consists of two levels only, the ground stsaete[ Et
o

and the excited level E,. It can th
w1t lb}, en be shown (Van Vlieck, 1932), that the electronic

2
afw) =SS0
mwi, — w?’ (8.82)

where w,o = (E, — E,)/h, the Einstein frequenc
] 1 , y for the t i
?;eair:::li)‘;eextprless;qg the coup!ing between the two wave fu\rtgtifr\;:]iijoazgdfl uf[: 1Sba
e Ordl; reocfa‘cttlnf: field; f}, is referred to as the oscillator strength, and is usula ;
O ne order ress,inolty. é\J?ote that the quantum result (8.82) is quite similar to the
g pCan aln (8.79). ~ The static polarizability, a,(0) = (e%f,o/mw?,)
.82), so be similarly related to «, of (8.77). ' °

a . ;
In an atom containing many excited levels, expression (8.82) is generalized to

Hy

ae(m) = e_z Z ——j'—m

m jzo (U?o — w?’ (883)

h L= = i
where w;o = (E; — Ep)/h, and j refers to the /™ excited level. The system now

T Of‘ resonance hCC]UEllCICS a"d tron d] rsion ars near BaCll
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We can now see why a,(®) is independent of temperature. Since E; — Eq is

typically of the order of a few electron volts, the thermal energy kT is too small
to excite the electrons to the higher levels; thus in the absence of the field the ele.c-
trons all lie in the ground level, which is the level to be used as the initial state in

(8.83).

Interband transition in solids
The expression (8.83) for a,(w) is applicable to a single, isolated atom. Itis thus

useful in the dielectric treatment of gases, since a gas may be considered as an
aggregate of independent atoms. However, the result (8.83) is not applicable to a
solid, since a solid’s energy spectrum consists of continuous bands rather than
discrete levels, and the electron states are represented by delocalized Bloch functions
(Section 5.2) rather than localized atomic orbitals.

The quantum treatment which led to (8.83) can also be modified to yield the
appropriate expression for the case of a solid. It is convenient to begin the
discussion with €/, the imaginary component of the dielectric constant, which”
represents the absorption of the EM wave by the system, as discussed in Section
4.11. 1t can be shown (Greenway, 1968) that ' is given by

A Jeu(K)
w)y=—5| 4 i 8.84

<@ = 57 | 4 — E ek
where E,(k) and E.(k) are the energies of the valence and conduction bands,
respectively, and k is the wave vector of the electron which absorbs the photon and
transfers from the valence to the conduction band. The integral in (8.84) is over a
surface contour in the Brillouin zone which conserves the energy

E.(k) — E,(k) = ho. (8.85)

[The momentum conservation is guaranteed because k has the same value in both
bands, as shown in Eq. (8.84). The photon's momentum is negligibly small
(Section 3.4).] The quantity f,,(k) is the band-to-band oscillator strength, as in
Eg. (8.82).

Figure 8.22 illustrates the application of (8.84) to a direct-gap semiconductor.
The integration region consists of a sphere surrounding the origin, part of which
is shown in the figure. It can be shown (see the problem section) that
E.(k) — E,(K) = E th**[2u, where E, is the energy gap and p = m | (m, + )
is the electron-hole reduced mass. Substituting this into (8.34), and carrying out
the integration, one finds

& (w) = EB.: (ho — E)''?, (8.86)

where B = n(2u/h*)¥*f,,A. This expression is valid for E, < ho [ (w) =0
for hw < E,, as discussed in Section 6.12], and shows that ¢'(w) increases
parabolically with o near the absorption edge; that is, € (@) ~ (ho — EJ*,
as noted in Section 6.12.
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Fig. 8.22 The various states i

n k-space involved in the absorption process at light
frequency w.

When expression (8.84) is applied to bands of more complicated shapes, the
integration may become exceedingly complex. In general, the integration
contour is multiply connected, and consists of several distinct “pockets” in the
Brillouin zone, each of which satisfies Eq. (8.85). But note also that the largest
contribution comes from those points in the zone at which E (k) and E,(k) have
the same slope, because such points, known as the critical points, produce singular-
ities in the integrand of Eq. (8.84).

Figure 8.23 shows €/(w) for Ge, and correlates the various “shoulders” in
the curve with the critical points responsible for the high absorption values. One
can see that studies of optical absorption can be highly useful in the determination
of band structure, and particularly in delineating the various critical points in the
zone.

The real component of the dielectric constant €(w) describes the polarization
aspects of the electronic system (Section 4.11).  Although €' and € describe
physically distinct phenomena, they are, in fact, mathematically related by an
important theorem known as the Kramers-Kronig relation (Brown, 1967). In
particular, the static dielectric constant may be wrilten as

s

0 =@ =1+2p f A
T Jo

dw, (8.87)
(1))

where P implies that the principal part of the integral is to be taken. Thus we may
evaluate ¢,(0) by substituting ¢/’ (w) from (8.84) and carrying out the -frequency
integration which illustrates that, like €)' (w), (0) is also directly dependent on
the band structure of the solid. Note in particular that a significant correlation
between ¢,(0) and the energy gap of the solid exists; since &'(w) = 0 for how < E,
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ig. 8.23 (a) Imaginary dielectric constant e'(w) versus p : h .
fbﬁ "sl'he (b)and s%ructure of Ge. Dashed arrows indicate various critical points.

[After Phillips, 1966]

we may write Eq. (8.87) as
() =1+ Er’ i I (8.88)
k s

wo W

where w, = E,/h is the frequency at the absorption edge. Clearly, t_hle_smallex_' tth?
gap theosmailg:r w,, and the greater ¢,(0), because of the factor Cin t(l;e :nseﬁ
gra;ld. This explains why €,(0) = 16 in Ge, whose E; = 1 eV, while ¢(0) = 5.

in NaCl, whose E; = 7 eV.
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Interband electronic polarizability and its associated dielectric constant are
responsible for the optical properties of solids, particularly insulators and semi-
conductors, in the visible and ultraviolet ranges, because only such polarizability
is effective at high frequency ranges. Also of importance in insulators and
semiconductors is exciton absorption (Section 6.14),

As pointed out, the critical points assume a particularly significant role in the
interpretation of interband-transition spectroscopic data. Since these points
usually occur at symmetry points or along symmetry direction in the BZ, a
knowledge of the interband energy difference E, (k) — E,(k) and the symmetry
character (i.e., the location in the zone) of these points are highly useful in

accuracy is limited due to the background absorption associated with the
noncritical regions of the zone. A special technique, known as modulation
Spectroscopy, has been developed in recent years to overcome this difficulty. The
technique consists basically of devising an experimental procedure for
the first (or higher) derivative, d €/ (w)/dw, as a function of w. The r
readily see that one can locate the critical points more readi
curve than on the original curve. Experimentally, this is achieved by superposing
on the solid, in addition to the signal, an external time-dependent perturbation
varying with a modulation frequency w,, and measuring the relatjve change in
the dielectric function Ae)'[e;’ induced by the perturbation. Many different
types of perturbations have been used, e.g., temperature and hydrostatic pressure.

extracting
eader can
Y on the derivative

For a brief review, see J. E. Fischer and D. E. Aspner, Comments on Solid State
Physics, 1V, 131: 1V, 159. For a thorough treatment, see M. Cardona, 1968,
Modulation Spectroscopy, New York, Academic Press.

8.10 PIEZOELECTRICITY

In this and the following sections we turn to certain phenomena associated
with ionic polarization. The term Piezoelectricity refers to the fact that, when a
crystal is strained, an electric field is produced within the substance. As a result
of this field, a potential difference develops across the sample, and by measuring
this potential one may determine the field. The inverse effect—that an applied field
prodiices strain—has also been observed. (It was discovered in about 1880.)

The piezoelectric effect is very small. A field of 1000 V/cm in quartz produces a
strain of only 1077, That is, a rod 1 cm long changes its length by 10A.
Conversely, even small strains can produce enormous electric fields.

The piezoelectric effect is often used to convert electrical energy into
mechanical energy, and vice versa; i.e., the substance is used as a transducer.
For instance, an electric signal applied to the end of a quartz rod generates a
mechanical strain, which consequently leads to the propagation of a—mechanical

—v

i i icki the
b lectrical energy at the other end of the rod, if desired, by picking up
nto elel

. m S[ ] m I €Z0ge CC[ C Sl,]hsta |Ce,
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hanical energy
an reconvert the mec

—down the rod. (One c

e—a sound wave

icity lies i i ent of ionic
The microscopic origin of piezoelectricity lies in the displacem

Cha[ges Wltlllll [he C])‘Staln I“ {he abSBIlCB Oi Straln, the dlS[IlbUth[l Oi the
[ i l
Ch IgeS at thClI latthe SI[ES 18 Sylllllletilc, SO t mn n cle 1

i distribution
i i are displaced. If the charge ‘
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Fig. 8.24 Crystal with center of inversion exhibits no p_lezoel_ectnc effect. (b) Orig
pilgéoe:lectric effect in quartz: crystal lacks a center of inversion.

i i i i ks a
It follows that a substance can be piezoelectric only if the umt.fczllC elgtcer =
center of inversion. Figure 8.24(a) shows this, and derponstrates that 1 wenter of
inversion is present, it persists even after distortion, and c;)pseqtg?onyas ¢
, i ter of inver :
1zati i However, when there is no cen
olarization remains zero. ) en e
IIJ-’ig 8.24(b), distortion produces a polarlzam')n.. We can now understan
example, why no regular cubic lattice can exhibit piezoelectricity.
L]

Table 8.5
Some Piezoelectric Crystals (in Decreasing Value of Piezoelectric Coefficient)
Crystal Chemical formula Relative strength

tron;

Rochelle salt NaKC,H,Oq - 4H,0 ;/ti?nsg rong

e i e Moderate

KDP KlH2P04 ey

a-Quartz Si0,

[ idates
Of the 32 crystal classes, 20 are noncentrosymmetric, and thesel ar::oct:asr]:cilrﬁ tates
for piezoelectric materials. The lack of inversion center, however, is n
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to guarantee piezoelectricity, and only relatively few substances, some of which are
listed in Table 8.5, exhibit this phenomenon.

Another common application of piezoelectrics, in addition to their use in
transducers, is in delay lines. When an electric signal is converted into a mechanical
wave, it travels through a quartz rod at the velocity of sound, which, since it is
much less than the velocity of light, leads to considerable delay of the signal .[Also
piezoelectrics and related electro-optic crystals are now widely used in the fields
of laser technology and modern optics. For instance, the cavity length of a laser

may be varied continuously in a controlled manner by the application of a voltage
to a piezoelectric crystal situated at one end of the cavity.]

8.11 FERROELECTRICITY

We have often commented that ionic susceptibility is not sensitive to variations in
temperature. Although this is true for most substances, there is a class of
materials which exhibits a marked departure from this rule: the ferroelectric

materials. In these substances, the static dielectric constant changes with temperature
according to the relation

& =0+ FTE_;, T 5Ty, (8.89)
where B and C are constants independent of temperature. This relation is known
as the Curie-W eiss law, and the parameters C and T¢ are called the Curie constant
and Curie temperature, respectively.

This behavior is valid in the temperature range T > T.. In the range T < Tes
the material becomes spontaneously polarized, 1.e., an electric polarization develops
in it without the help of an external field. (This phenomenon is analogous to the
spontaneous magnetization which takes place in ferromagnetic materials.)

A phase transition occurs at the temperature T.. Above the transition
temperature, the substance is in the paraelectric phase, in which the elementary
dipoles of the various unit cells in the crystal are oriented randomly. The
dielectric constant is given by (8.89), whose form is illustrated in Fig. 8.25a.

Below the transition temperature, the elementary dipoles interact with each

€, P,

l
|
|
!
|
|
|
I

0 T 0 T
(@ (&)

Fig. 8.25 (a) Dielectric constant €, versus T in a ferroelectric substance. (b) Spontaneous
polarization P, versus T in a ferroelectric substance.
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(After Merz)

other, and this gives rise to an internal field, whi(_:h lir.les.up the di.polcs. Thle
direction of this field and the associated polarization l.ie in a certain favorable
orientation in the crystal. Figure 8.25(b) shows.the varllatt'on Qf the spontageol\;s
polarization P, with temperature for T < Tc. This polarization increases gradually
re is lowered.
N tl}ltsh:a;tlzg;a;lierm in (8.89) is usually much larger than t.h.e first. Thus, althoxi%]:
typically B =~ 5, ¢, =~ 1000 or even larger near the t_rans?non temperature.
may therefore ignore B, and write to a good approximation

C (8.90)

€r=———'T—TC.
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KDI’)I‘here are thrge major ferroelectric groups:

(potagsmm dihydrogen phosphate) group
by barnyrr} titanate. Table 8.6 gives data on thes,e
the variation of temperature of the dielectric co
mous value of the dielectric constant m
the transition temperature.

The Rochelle salt group, the
and the perovskites group, headed
substances, and Fig. 8.26 presents
tants. Note in particular the enor-

n ballul“ t]taI]atC, or w = 0 a
1 f th]l Er I near

Table 8.6

Ferroelectric Data

Crystal Chemical
formula T(°K
c(°K) C,°K P
; ' coul/m?
Rochelle-
gmupe salt  NaK(C4H,0q) - 4H,0 297 (upper) 178 267 x 1075
LN 255 (lower) et S
INH4(C,H,O - H,0 106 220
KD
P group 2321’04 123 3100 53 -
o I-iP}?4 213 9088 e
,PO, 147 o
CsH,AsO, 143 o0 Ll
Perovskites  BaTiO " o
0, 393 1.7 x 10°
SrTiO, 32 263:8(())0 Sl
WO, 223 ’ &

The microscopic model

Let us n inquire i i
ol ;‘wp];nqtu.lre into the microscopic source of ferroelectricity
nation 1s to assume a dipol .
" : : polar substance and use the Lor
ection obtained in (8.30). This leads to a dielectric constant

S %

b — 4%

I se x - x tr 10Nns WIHCII 18
ds IhUS neg] C ]ng C]ECtr nic and
1 we t = ect [8] 1onic con lbut (o} 5

PPC, )
A (8.92)

The most
entz local

(8.91)

where C = %

whers &+ Il!:\’p /969)’(; and Tc¢ = Np*/9¢k. If we ignore the term T in the

i ,h is evident that Eq. (8.92) has the same form as (8.90). In

s r,dt e dipolar model predicts that ¢, diverges as T approaches‘ T .from

tranSit,i c:)i: t go;sequent}iy one expects the system to become unstable and nc1ake a
new phase, the “ferroelectric phase.” i i

referred to as the polarization catastrophe. P I GG Ty
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dipolar model seems to lead naturally to ferro-
ate to account for observations. If we apply this
model to water, for instance, for which N=~1x10*m > and p = 0.62 debye,
it predicts that water would become ferroelectric at Te = 1 100°K. In fact, however,

water never becomes ferroelectric, not even below its freezing point.
Another fact which underscores the failure of the model isits prediction that any

dipolar substance should become ferroelectric at a sufficiently low temperature.
Instead, however, all known ferroelectrics are nondipolar in nature. We must

therefore look elsewhere for the explanation of ferroelectricity.
Ferroelectricity is associated with ionic polarizability. To see this, let us con-

sider an ionic substance. The ac dielectric constant is given by

Despite the fact that the
electricity, the model is inadequ

e(w)=n+-—5—7 (8.93)
wf—w y
where we have used (8.74), and denoted y;(0)w? by the constant A, The
static dielectric constant, according to (8.93), is given by
(8.94)

A
er(O) = 112 + 71)—2

r

This expression shows that ¢(0) increases as decreases, and indeed €,(0) diverges

as w, — 0.

But why should w, decreas
local field does indeed lead to a reduction in the value of this
According to Eqgs. (3.83 and 3.84), the transverse motion for the unit cell is

governed by the equation

e? We shall now show that the inclusion of the
frequency.

dZ
u?f + 2pu = Q, (8.95)

where u is the reduced mass of the unit cell, u the relative displacement between

the ions, and B the force constant between the ionst (Section 3.6). This
expression leads to a mode of oscillation with a frequency

w, =

2

IS (8.96)
U

which is the frequency of the long-wavelength optical phonon.

hapter 3, in order to avoid

+ The force constant is denoted here by B rather than o, as in C
any confusion with polarizability.
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The equation of motion (8.95), however, requires modification if we consider
the local field correction, because there is a polarization P = Ne*u associated with
the displacement u, and hence a Lorentz electric field

o P _ Ne*u
- 3¢, 3¢ | (8.97)

whcrg e* is the effective charge on the ion. Because of this field there is now an
electric force acting on the unit cell given by 2e*&, which modifies the equation of
motion (8.95) to

d*u
“}F + 2fu = 2e*é&.

If one substitutes for & from (8.97), and rearranges the equation, one finds that

d*u

*ﬁ*(zﬁ‘

2Ne*?
3¢, )uh ’

which is the equation for a harmonic oscillator of frequency w;* given by

%2 _ 28  2Ne*
2=
H 3eou
or
; 2Ne*
o™= 2 —
e of - (8.98)

where we have used Eq. (8.96).

The frequency w/" is less than w,, the frequency obtained by neglecting the
local field. It is easy to see the reason for this reduction: When the lattice is
displaced, a local field is created in the same direction as w. The effect of this
field is to reduce the restoring force, and consequently the oscillator frequency.
The origin of the force constant § lies in the short-range elastic forces between the
ions, while the local field is due to the familiar long-range Coulomb forces
between these ions.

The expression (8.94) for the dielectric constant should now be replaced by

A
- 6(0) = n? + o (8.99)

t

The effect of the local field is to increase the dielectric constant. If the second term
on the right of (8.98) is large enough to cancel the first term, then w¥ -0, and
the dielectric constant becomes infinite. What happens, in fact, is that the
system feels the instability and makes an adjustment to avoid the divergence, i.e.,
undergoes a transition to the ferroelectric phase. It is thus expected that the system
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would also undergo a simultaneous transition into a more stable crystal structure.
This is indeed found to be the case in all ferroelectric transitions.

sol-
40—

| 04—
E3

S
x5 20 —
3

10

Yo 120 80 40 0
T.~T,°K

Fig. 8.27 Transverse frequency w} versus (T — 7T) in antimony sulphoiodide (SbSI).
(After Perry and Agrawal, Solid State Comm. 8, 225, 1970)

Figure 8.27 illustrates the observed decrease in phonon frequency as the
temperature approaches the Curie temperature. Note that the frequepcy her? is
about 10 em™!, or v = 3 x 10° Hz, considerably smaller than a typical optical

k3

phonon frequency of 10'* Hz.t

Fig. 8.28 Structure of BaTiO, in cubic phase (above T).

As a concrete example of ferroelectric structure transformation, Fig. 8.28
shows the appropriate structure for BaTiO;. Above the Curie temperature the
structure is cubic, but as the temperature is lowered to T, the Ba?* and Ti**
ions are displaced as shown, producing a slightly compressed cubic structure.
Although the displacement is small—only about 0.15 A—it is enough to give the

+ The mode whose frequency vanishes at the Curie temperature is called the sofr mode.
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observed polarization. It is this relative displacement of the internal structure which
gives the model its name: the displacive model.

We have shown that the Lorentz calculation of the local field is misleading
when applied to dipolar substances; yet we have used the same procedure for
evaluating this field when it is associated with the ionic polarization. There is no
contradiction here, because Onsager showed, many years ago, that while the
Lorentz procedure is valid in evaluating the field associated with electronic and
ionic polarizabilities, the procedure is inapplicable when one is dealing with
orientational polarizability. Onsager demonstrated that the actual local field
associated with the dipolar polarizability is much smaller than that provided by
the Lorentz procedure, and it is this overestimation which leads to the erroneous
conclusions concerning ferroelectricity. You can find a detailed discussion of
this point in Fraélich (1958).

Ferroelectricity, like piezoelectricity,
crystals.  The requirements of ferroele
requiring the existence of a favorable axis
sufficiently low degrees of symmetry to p

can occur only in noncentrosymmetric
ctricity are, however, more stringent,
of polarity. Only 10 crystal classes have
ermit the occurrence of ferroelectricity.

Ferroelectric domains

A substance which is in its ferroelectric phase undergoes spontaneous polarization,
but the direction of the polarization is not the same throughout the sample. The
material is divided into a number of small domains, in each of which the
polarization is constant. But the polarization in the different domains are

different, so that the net total polarization of the whole sample vanishes in the
equilibrium situation (Fig. 8.29).

Fig. 8.29 Domain structure in an unpolarized ferroelectric sample.

s

When an external field is applied, the domains whose polarization is parallel
to the field grow, while the domains of opposite polarization shrink. These growing
and shrinking processes continue as the field increases until, at a sufficiently high
field, the whole of the sample is polarized parallel to the field.

We shall discuss the concept of domains, and the associated hysteresis loop,
in detail in connection with ferromagnetic materials (Section 9.11).
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SUMMARY

The dielectric constant and molecular polarizability

The dielectric constant ¢ is defined by the equation
D = &,

where D is the electric displacement and & the average field inside the dielectric.
In terms of the polarization P, the displacement vector D is

D = ¢6& + P.

The polarization P arises as a result of the polarization of the molecules, and is
given by
P = Np,

where N is the concentration of molecules and p the electric moment of each of
these molecules. The electric moment is proportional to the field, and is given by

pP = aé,

where « is the molecular polarizability.  Substituting this into the above
equations, we may express the relative dielectric constant in terms of the
polarizability,

e =1+ (Nuajey).

This result, which ignores the local-field correction, holds well in gases.
In liquids and solids, however, the local-field correction is appreciable, and must
be included. We then find the local field to be

glnc = éo + ('}GO) P’
which leads to the Clausius-Mosotti relation,

e,—l_NQ‘.
e,.+2_3£0'

Dipolar polarizability

Molecular polarizability is, in general, the additive result of dipolar, ionic, and
electronic contributions. Statistical treatment of dipolar polarization gives the
following expression for dipolar polarizability,

%y = p2f3kT 4
which decreases as the inverse of the temperature. The dielectric constant is

€ =1+ Na,jeg + Np*[3e,kT.




‘*"—-'

416 i i i
Dielectric and Optical Properties of Solids

By plotting € versus |/T, o

and the e e

lelectronic-ionic polarizabilj
geometrical structure of the molecu]
The ac dipolar

Yy determine both the
ty «,;. This informati

/T to the
high frequencies th m the valu range 1/t < w
: e dipoles € [£(0) — n?] to 0
dielectric constant 1s related tréot::;”eg:;fo]low the field. The i 0 0, because at

tion decreas <o,
no longer follow the field at high fr::ug]c'cf;;s [.(0) — n*] to 0.

Electronic polarizability

Slmpilﬁed ClaS
f IC e]ecti onic I t 1€ias
i
A SlCa] I]eatlllCllt Ol stat pO]a lZ&bllJ y y Id

| %, = 4neu R,
where R Is the atomic radjus,
by treating the electron as a cla
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e j/m
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w2 2
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In solids, dielectric and optical properties are related directly to the structure
of the energy band of the substance.

Piezoelectricity

In noncentrosymmetric ionic crystals, the mechanical straining. of.a subst.a}nce
produces an internal electric field, and vice versa. This property is widely utilized
in transducers, i.e., devices which convert electrical into mechanical energy, and
vice versa.

Ferroelectricity

A ferroelectric substance is one which exhibits spontaneous polarization below a
certain temperature. Above this Curie temperature T the dielectric constant 1s
given by the Curie-W eiss law,

C

e,=B+?T,]TC-

The ferroelectric property can be explained by the displacive model: As the
temperature approaches T from above, one of the optical phonon modes becomes
so soft—due to the local-field correction—that €, — oo, causing a structural phase
transition and a concomitant spontaneous polarization.
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conductor 18 absorbed ecither by
nd (fundamental
ing

gh a semi
d to the conduction ba
tal electrical procedure for test

light beam passing throu
d from the valence ban
xcitons. Describe an experimen
hanisms is the operative one.

8. Suppose that a
electrons excite
absorption), or by e
which of these two mec

PROBLEMS

1. Using Coulomb’s law, derive the exp
Assume that d <€ .

2. a) Derive Eqa. (8.3),t

field & is given by

ression (8.2) for the field of an electric dipole.

hat is, show that the torque exerted on a dipole p by 2 uniform

t=px &,
b) Derive Eq. (8.4), that is, show that the potential energy of a dipole in a field is
given by

= — p&cosh,

' where 0 is the angle between the dipole and the field.
1 distribution of charges is

3. The dipole moment for a genera
p = zq; ri&

and position, respectively, of the
The choice of the orig

defined as the sum

:th
where g; and 1; are the charge i" charge, and the
in of coordinates is

summation is over all the charges present.

arbitrary.
a) Show that the above reduces 10 expression (

and opposite charges. (Take an arbitrary origin.)
b) Prove that if the charge system has an overall electrical neutrality, then the dipole
moment is independent of the choice of origin.
4. Determine the dipole moment for the following charge distributions: 1.5 peoul each at
the points 0,3, (0.,3), where the coordinate Rumbers are given in centimeters.
5. A parallel-plate capacitor of area 4% 5 cm? is filled with mica (e, = 6). The
distance between the plates is 1 cm, and the capacitor is connected to a 100-V battery.

Calculate:
a) The capacitance of this capacitor

b) The free charge on the plates
¢) The surface charge density due to the polarization charges
d) The field inside the mica. {What would the field be if the mica sheet were

withdrawn?)
6. Prove that whena molecule is polarized by a field &, a potential energy is stored in this

molecule, The value of this energy is & &2, where o is the molecular polarizability.
What is the value of {his energy for an Ar atom in a field of 10% volt/m? The

polarizability of this atom 151,74 x 107 farad-m?.
7. a) Show that the surface charge density of the polarization charge

surface of a dielectric is given by
Gy P,

§.1) for the special case of two equal

s on the outer

t vector normal to the surface.

where fi is a uni
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b) Prove Eq. (8.25). That is, show that the depolarization field in an

infinite slab,
in which the field is normal to the slab, is given by

I
& =— —P.

€0

pends on the geometrical shape of the specimen.

e polarization inside is uniform, the depolarization
factor L is defined such that

L
& =—-_p,
€p
$how that the depolarization factor for an infinite slab with field normal to the siab
is 1, while for a slab in which the field is parallel to the face,L = 0. Also show that
L=4%fora sphere, and L = 0 or 1 for a Cylinder, depending on whether the

field is parallel or normal to the axis of the cylinder, respectively. Put these
results in tabular form.

8. a) Prove Eq. (8.28), showing that the field &,
cavity vanishes in a cubic crystal.
b) Suppose that the Lorentz cavity is chosen to have a cubic shape.
field &, due to the charges on the surface of this cavity.
¢) Does this new choice of cavity modify the value of the local field? Explain. Use

your answer to evaluate the field £, due to the dipoles inside the cavity. (You may
take the crystal to be cubic.)

9. The field &, of Eq. (8.24) due to the di
the crystal, and in general does not v
field has the form

due to the dipoles inside a spherical

Calculate the

pole inside a cavity depends on the symmetry of
anish in a noncubic crystal. Assuming that this

‘ga = (bl'fo) P,

where b is a constant, calculate the dielectric constant ¢, in such a substance.
10. Show that Eq. (8.33) reduces to (8.18) in gaseous substances, i.e., substances in
which No/ey is very small.
11. Establish Eq. (8.40) by carrying out the necessary integration.
12. a) Expand the Langevin function L(u) of (8.41) in powers of i up to and including
the third power in u, and show that

L)=uf3— w45+ ..., u<l,

b) Calculate the field required to produce polarization in water equal to 109, of the
saturation value at room temperature.
13. a) Using Fig. 8.13 and Table 8.1, calculate the molecular concentration of CHCl,,
CH3Cl,, and CH,Cl at which the measurements reported in the figure were made.
b) Calculate the electronic-ionic polarizability o,; in each of these substances.
14. The molar polarizability of water increases from 4 x 105 to 6.8 x 10~3 m? as the
temperature decreases from 500°K to 300°K. Calculate the permanent moment of the
_water molecule.
15. Calculate the real and imaginary parts of the dielectric constant €,(w) and ¢’ (w) for
water at room temperature. Plot these quantities versus up to the frequency
10'2 Hgz, (Use semilogarithmic graph paper.)
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16. We expressed the absorption in dipolar substances in terms of the imaginary
dielectric constant, /(). It is also frequently expressed in terms of the so-called
loss angle 8, which is defined as ;

¢
tand = —,
E]’

where the quantity tan d is called the loss rangent.
a) Show that the electric displacement vector is

1/2 i
D= gle? + €/1]'2 2 8.

b) Calculate the loss tangent as a function of the frequency, and plot the result versus
wT.
c) Show that the power absorbed by a dielectric (per unit volume) is

0= Leewtand &2 7

Express the loss angle tan d in terms of the ratio of the dissipated energy to the
energy stored in the dielectric.

d) Calculate the loss tangent in water at room temperature at frequency 10 GHz.
Also calculate the energy dissipated per unit volume, given that the field strength
is 5 volts/m.

17. Assuming that the jumping period t decreases exponentially with temperature as in
(8.73), explain how the real and imaginary parts of the dielectric constant e, and
€.’ vary with temperature. Plot the results versus 1/T. (Assume that all quantities
other than t are independent of temperature.) Does the loss tangent increase or
decrease with temperature? Explain.

18. In deriving the result (8.74) for the dielectric constant involving ionic polarizability, it
was assumed that the ions experience no collision or loss during their motion.
Postulate the existence of a collision mechanism whose time is 7;, and reevaluate the
(complex) dielectric constant. Plot the real and imaginary parts e (w), €' (w)
versus , and compare with Fig. 8.20.

19. The crystal NaCl has a static dielectric constant ¢.(0) = 5.6 and an optical index of
refraction n = 1.5,

a) What is the reason for the difference between €(0) and n??

b) Calculate the percentage contribution of the ionic polarizability.

¢) Use the optical phonon for NaCl quoted in Table 3.3, and plot the dielectric
constant versus the frequency, in the frequency range 0.1 w, 10 10 w,.

20. Using the data in the previous problem and Table 8.4, calculate the nearest distance
between Na and Cl atoms. Calculate the lattice constant of NaCl, and compare the
result with the value quoted in Table 1.2. (Sodium chloride has an fcc structure.)

21. Calculate the static polarizability for the hydrogen atom, assuming that the
charge on the electron is distributed uniformly throughout a sphere of a Bohr
radius. Also calculate the natural electron frequency wy.

22. Show that expression (8.80) leads to a static susceptibility equal to that given by
(8.77). Use elementary electrostatic arguments to find Wy In terms of atomic
characteristics.
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23. Modify expression (8.80) for the electronic polarizability to include ¢
collision mechanism of time 7. Evaluate the high
both real and imaginary parts.

24, Carry out the steps leading to the expression (8.86) for €’
transition in solids.

he presence of a
~frequency dielectric constant,

(w) due to interband

Us
v=—,
2/
where /is the length of the rod and »,

the velocity of sound in the specimen,
b) Show that this frequency is also givi

en by the expression
1y
V=ae S
2/ p
where V is Young’s modulus and p the mass density of the rod.

¢) Taking ¥ = 8.0 x {o'! dyne/cm? and P =26 glcm?® for quartz, calculate the
length of a 5-kHz-oscillator.

d) Calculate the potential difference across the ro
The piezoelectric coefficient P/S = 0,17 coul/m?,

27. Many applications of piezoelectric crystals are discussed in Mason (1950). Make a
summary of these.

28. In evaluating the local field correction in (8.97), we neglected the electronic contri-
bution. Reevaluate the correction including this contribution, and calculate the new
optical phonon frequency cu,* and the dielectric constant.

d for a strain of 2x 1078,

the field. Nonlinear effects become important at high fields, which are now
convenfently available from laser sources. Read the discussion of such effects given

in A. Yariv (1971), Introduction to Optical Electronics, Holt, Rinehart, and
Winston, and write a brief summary.

CHAPTER 9

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14

MAGNETISM AND MAGNETIC
RESONANCES

Introduction

Review of basic formulas

Magnetic susceptibility

Classification of materials

Langevin diamagnetism
Paramagnetism

Magnetism in metals

Ferromagnetism in insulators .
Antiferromagnetism and ferrimagnetism
Ferromagnetism in metals
Ferromagnetic domains

Paramagnetic resonance; the maser
Nuclear magnetic resonance
Ferromagnetic resonance; spin waves

Where rorcrf.enr in variety we see,
and where, though all things differ, all agree.
Alexander Pope



