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534 Chapter 27 Dielectric Properties of Insulators

Because charge cannot flow freely in insulators, applied electric fields of substantial
amplitude can penetrate into their interiors. There are at least three broad contexts
in which it is important to know how the internal structure of an insulator, both
electronic and ionic, readjusts when an additional electric field is superimposed on
the electric field associated with the periodic lattice potential:

1. We may place a sample of the insulator in a static electric field such as that
existing between the plates of a capacitor. Many important consequences of the
resulting internal distortion can be deduced if one knows the static dielectric
constant €, of the crystal, whose calculation is therefore an important aim of any
microscopic theory of insulators.

2. We may be interested in the optical properties of the insulator—i.e., in its response
to the AC electric field associated with electromagnetic radiation. In this case the
important quantity to calculate is the frequency-dependent dielectric constant
(), or, equivalently, the index of refraction, n = \/E

3. In an ionic crystal, even in the absence of externally applied fields, there may be
long-range electrostatic forces between the ions in addition to the periodic lattice
potential, when the lattice is deformed from its equilibrium configuration (as,
for example, in the course of executing a normal mode). Such forces are often
best dealt with by considering the additional electric field giving rise to them,
whose sources are intrinsic to the crystal.

In dealing with any of these phenomena the theory of the macroscopic Maxwell
equations in a medium is a most valuable tool. We begin with a review of the electro-

static aspects of this theory.

MACROSCOPIC MAXWELL EQUATIONS OF ELECTROSTATICS

When viewed on the atomic scale, the charge density p™“(r) of any insulator is a very
rapidly varying function of position, reflecting the microscopic atomic structure of
the insulator. On the same atomic scale the electrostatic potential ¢™°(r) and the
electric field E™™(r) = — V¢™“(r) also have strong and rapid variations since they

are related to p™(r) by
V- Emicm(r) = 47rpmicm(l'). (27.1)

On the other hand, in the conventional macroscopic electromagnetic theory of an
insulator the charge density p(r), potential ¢(r), and electric field E(r) show no such
rapid variation.! Specifically, in the case of an insulator bearing no excess charge
beyond that of its component ions (or atoms or molecules), the macroscopic electro-
staticfield is determined by the macroscopic Maxwell equation:?

VD) =0, (27.2)

1 Indeed, in an insulating medium in the absence of any externally applied fields, ¢(r) is zero (or
constant).

2 More generally, one writes V - D = 4np, where p is the so-called free charge—i.e., that part of the
macroscopic charge density due to excess charges not intrinsic to the medium. Throughout the following
discussion we assume that there is no free charge, so that our macroscopic charge density is always the
so-called bound charge of macroscopic electrostatics. The inclusion of free charge is straightforward, but
not relevant to any of the applications we wish to make here.
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in conjun.ctio_n with the equation giving the macroscopic electric field E in terms of
the electric displacement D and polarization density P,

D(r) = E(r) + 4=P(r). (27.3)
These imply (in the absence of free charge) that the macroscopic electric field satisfies
V-Er) = —4nV - P(r), (27.4)

whgrg P (to be defined in detail below) is generally a very slowly varying function of
position inside an insulator,
. ‘Although it is very convenient to work with the macroscopic Maxwell equations
it is also essential to deal with the microscopic field acting on individual ions.? Om;
must th_erel"ore keep the relation between macroscopic and microscopic quéntities
clearly in mind. The connection, first derived by Lorentz, can be made as follows:*
Sgppose we have an insulator (not necessarily in its equilibrium configuration)
that is described (at an instant) by a microscopic charge density p™°(r), which reflects
the .detailed atomic arrangement of electrons and nuclei and which gives rise to the
rapidly varying microscopic field, E™°(r). The macroscopic field E(r) is defined to be
an average of E™ over a region about r that is small on the macroscopic scale, but
large cpmpared with characteristic atomic dimensions a (Figure 27.1). We maké the
averaging procedure explicit by using a positive normalized weight function £
satisfying: ,

=20, f)=0, r>ry jdr.f'(l‘) =1; f(—=r) =f). (27.5)
The distance r, beyond which f vanishes is large compared with atomic dimensions

Figure 27.1 a
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We continue with our convention of using the single term “ion” to refer to the ions in ionic crystals
3

but also the atoms or molecules making up molecular crystals.
* The following discussion is very similar to a derivation of all the ma; i i
croscopic Maxwell equ:
by G. Russakoff, 4m. J. Phys. 10, 1188 (1970). g auations
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a, but small on the scale over which macroscopically defined quantities vary.® We also
require that f vary slowly; ie., [Vf|/f should not be appreciably greater than the
minimum value, of order 1/r,, required by Egs. (27.5). Beyond these assumptions,
the form of the macroscopic theory is independent of the properties of the weight

function f. _ .
We can now give a precise definition of the macroscopic electric field E(r) at the

point r: it is the average of the microscopic field in a region Qf radius "o abgut r, with
points displaced by —r' from r receiving a weight proportional to f(r'); ie.,

Er) = Jdr’ E™ @ — ') f(r). (27.6)

Loosely speaking, the operation specified by (27.6) washes out those features of the
microscopic field that vary rapidly on the scale of ry, and preserves .thoiti:crct:eatures
that vary slowly on the scale of r, (Figure 27.2). Note, for exampl;, that if E shou!d
happen to vary slowly on the scale of r, (as would be the case if the point r were in
empty space, far from the insulator), then E(r) would equal E™),

I
T A AR A AR A A
ety

—

Figure 27.2 o . o _
The lighter rapidly oscillatory curve illustrates the characteristic spatial variation of a micro-

scopic quantity. The heavier curve is the corresponding macroscopic quaptity. Only Spatl&lll
variations that occur on a scale comparable to or larger than r, are preserved in the macroscopic

quantity.
Equations (27.6) and (27.1) immediately imply that

V- E(r)

Il

j dr' V- Emeo(r — 1) f(1)
= 4 f e’ g — ¥)f(F). @1.7)
Therefore, to establish (27.4) we must show that
- Jdr’ pmeer — r)f(r)dr' = -V P(r), (27.8)

where P(r) is a slowly varying function that can be interpreted as a dipole moment
density.

5 More precisely, the macroscopic Maxwell equations are valjd.only when the variation in thé;
macroscopic fields is sufficiently slow that their minimum characterist?c wave?leng‘tl‘) allgws a CthCiO
ro satisfying 2 » rg » a. This condition can be satisfied by the field associated with visible light (1 ~ 10%a),
but not by the field associated with X rays (4 ~ a).
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We shall discuss only the case in which the microscopic charge density can be
resolved into a sum of contributions from ions (or atoms or molecules) located at
positions r; characterized by individual charge distributions pAr —r;):

pme(r) = Y pylr — 1), (27.9)
i

Such a resolution is quite natural in ionic or molecular solids, but is rather more
difficult to achieve in covalent crystals, where important parts of the electronic charge
distribution are not readily associated with a particular site in the crystal. Our dis-
cussion is therefore primarily applicable to the former two insulating categories. Quite
a different approach is required to calculate the dielectric properties of covalent
crystals. We shall return to this point below.

We are interested in nonequilibrium configurations of the insulator in which the
ions are displaced from their equilibrium positions r} and are deformed from their
equilibrium shapes,® which are described by charge densities pY. Thus p™(r) will
not, in general, be equal to the equilibrium microscopic charge density,

pEE) = 3 pjir — x)). (27.10)
Using (27.9) we can write (27.7) as: !

V-Er) = 4n Z fdr' pir — 1, — 1) f(r)
J

=4y, Jdr pADS(r — 10 — (F + A)), @7.11)

where A; = r; — r?. The displacement A, of the jth ion from its equilibrium position
is a microscopic distance of order a or less. Furthermore the charge density p;(T)
vanishes when 7 exceeds a microscopic distance of order a. Since the variation in the
weight function f is very small over distances of order a, we can expand (27.11) in
what is effectively a series in powers of a/r, by using the Taylor expansion:

fe—r1) —(F+A)) = f nl’[—(f + Ay V:lnf(r ~19). (27.12)

n=0

If we substitute the first two terms” from (27.12) into (27.11) we find that

V-E@r) = 4n [Z eife — 1) — ¥ (p; + ¢;A) Vf(r — r‘;)} (27.13)
i J

where

e; = J dF p;(F), p; = j dF p(FIF. (27.14)

¢ We have in mind applications (a) to monatomic Bravais lattices (in which the r} are just the Bravais

lattice vectors R and all of the functions p are identical, and (b) to lattices with a basis, in which the rf
run through all vectors R, R + d, etc., and there are as many distinct functional forms for the pf‘ as there
are distinct types of ions in the basis.

7 We shall find that the first (n = 0) term makes no contribution to (27.11), and we must therefore
retain the next (7 = 1) term to get the leading contribution,
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The quantities e; and p; are simply the total charge and dipole moment of the jth ion.

In the case of a monatomic Bravais lattice the charge of each “ion™ must be zero
(since the crystal is neutral and all “ions” are identical). In addition the equilibrium
positions r}’ are the Bravais lattice sites R, so (27.13) reduces to

V-Er) = —4nV-Y f(r — R)p(R), (27.15)

where p(R) is the dipole moment of the atom at site R.

With a straightforward generalization of the definition of p(R), this result remains
valid (to leading order in a/r,) even when we allow for ionic charge and a polyatomic
basis. To see this, suppose that the r{ now run through the sites R + d of a lattice
with a basis. We can then label p; and ¢; by the Bravais lattice vector R and basis
vector d specifying the equilibrium position of the jth ion:®

p,— pR.d), e;—ed), rj >R +d A;—uR,d). (27.16)
Since d is a microscopic length of order a, we can perform the further expansion:
fe—R—-d) =~ f(r — R) —d-Vf(r — R). (27.17)

Substituting this into (27.13) and dropping terms of higher than linear order in a/r,
we again recover (27.15), where p(R) is now the dipole moment of the entire primitive
cell? associated with R:

p(R) = ;[e(d)u(R, d) + p(R, d)]. (27.18)

Comparing (27.15) with the macroscopic Maxwell equation (27.4), we find that
the two are consistent if the polarization density is defined by

Pir) = ZRf (r — R)p(R). (27.19)

If we are dealing with distortions from equilibrium whose form does not vary much

from cell to cell on the microscopic scale, then p(R) will vary only slowly from cell
to cell, and we can evaluate (27.19) as an integral:

P(r) = %ZR uf(r — R)p(R) = % jdf fr —T)p(F), (27.20)

where p(F) is a smooth, slowly varying continuous function equal to the polarization
of the cells in the immediate vicinity of ¥, and v is the volume of the equilibrium

primitive cell.
-

8 Jons separated by Bravais lattice vectors have the same total charge, so ¢; depends only on d, and
not on R.

9 In deriving (27.18) we have used the fact that the total charge of the primitive cell, Ze(d), vanishes.
We have also neglected an additional term, X de(d), which is the dipole moment of the primitive cell in
the undistorted equilibrium crystal. In most crystals this term vanishes for the most natural choices of
primitive cell. If it did not vanish, the crystal would have a polarization density in equilibrium in the
absence of distorting forces or external electric fields. Such crystals do exist, and are known as pyroelectrics.
We shall discuss them later in this chapter, where we shall also make clearer what is meant by “most
natural choices of primitive cell” (see page 554).
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We shall restrict our use of the macroscopic Maxwell equations to situations in
which the variation in cellular polarization is appreciable only over distances large
compared with the dimensions r, of the averaging region; this is certainly the case
for fields whose wavelengths are in the visible part of the spectrum or longer. Since
the integrand in (27.20) vanishes when T is more than r, from r, then if p(F) varies
negligibly over a distance r, from ¥, we can replace p(T) by p(r), and bring it outside
the integral to obtain:

P(r) = Pi_"] de S —7). (27.21)
Since [ dr' f(r') = 1, we finally have
P(r) = %p(r); (27.22)

i.e., provided the dipole moment of each cell varies appreciably only on the macro-
scopic scale, then the macroscopic Maxwell equation (27.4) holds with the polarization
density P(r) defined to be the dipole moment of a primitive cell in the neighborhood
of r, divided by its equilibrium volume.'®

THEORY OF THE LOCAL FIELD

To exploit macroscopic electrostatics, a theory is required relating the polarization
density P back to the macroscopic electric field E. Since each ion has microscopic
dimensions, its displacement and distortion will be determined by the force due to
the microscopic field at the position of the ion, diminished by the contribution to the
microscopic field from the ion itself. This field is frequently called the local (or effective)
field, E(r). p

We can exploit macroscopic electrostatics to simplify the evaluation of E‘(r) by
dividing space into regions near to and far from r. The far region is to contain all
external sources of field, all points outside the crystal, and only points inside the
crystal that are far from r compared with the dimensions r, of the averaging region
used in (Eq. (27.6) ). All other points are said to be in the near region (Figure 27.3).
The reason for this division is that the contribution to E“(r) of all charge in the
far region will vary negligibly over a distance r, about r, and would be unaffected
if we were to apply the averaging procedure specified in (27.6). Therefore the con-
tribution to E'(r) of all charge in the far region is just the macroscopic field, EX<(r),
that would exist at r if only the charge in the far region were present:

() = ERr) + E) = E& (r) + Epeo). (27.23)

Now E(r), the full macroscopic field at r, is constructed by averaging the microscopic
field within r, of r due to all charges, in both the near and the far regions; ic.,

E(r) — Emacr(y r) + Ell'll"LaCl’ﬁ(r)’ (27.24)

far car

10 The derivation of this intuitive result permits us to estimate corrections when required.

... =
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Figure 27.3

In calculating the local field at a point r it is convenient to consider separately contributions from
the far region (i.e., all the crystal outside the sphere of radius r, about r and all external sources
of field) and from the near region (i.e., all points within the sphere about r). The far region is taken
to be far from r on the scale of the averaging length ry, to insure that the microscopic field due
to charges in the far region is equal to its macroscopic average.

where E™*(r) is the macroscopic field that would exist at r if only the charges in
the near region'! were present. We can therefore rewrite Eq. (27.23) as:

E*(r) = E(r) + Ees,(r) — Ep(n) (27.25)

Thus we have related the unknown local field at r to the macroscopic electric field*?
at r and additional terms that depend only on the configuration of charges in the
near region.

We shall apply (27.25) only to nonequilibrium configurations of the crystal with
negligible spatial variation from cell to cell over distances of order ry, the size of the
near region.'? In such cases Ejeo°(r) will be the macroscopic field due to a uniformly
polarized medium, whose shape is that of the near region. If we choose the near region

11 Jgpcluding, of course, the ion on which we are calculating the force.

12 A further complication of a purely macroscopic nature is peripheral to the argument here, in which
E(r) is assumed to be given. If the internal field and polarization are produced by placing the sample in
a specified field E*, then an additional problem in macroscopic electrostatics must be solved to determine
the macroscopic field E in the interior of the sample, since the discontinuity in the polarization density
P at the surface of the sample acts as a bound surface charge, and contributes an additional term to the
macroscopic field in the interior. For certain simply shaped samples in uniform external fields the induced
polarization P and the macroscopic field E in the interior will both be constant and parallel to E*, and
one can write: E = E* — NP, where N, the “depolarization factor,” depends on the geometry of the
sample. The most important elementary case is the sphere, for which N = 4x/3. For a general ellipsoid
(in which P need not be parallel to E) see E. C. Stoner, Phil. Mag. 36, 803 (1945).

13 Note that we are now very macroscopic indeed, requiring that 2 » ry » ry » a.
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to be a sphere, then this field is given by the following elementary result of electro-
statics (see Problem 1): The macroscopic field anywhere inside a uniformly polarized
sphere is just E = —4naP/3, where P is the polarization density. Therefore if the
near region is a sphere over which P has negligible spatial variation, then Eq. (27.25)
becomes

4nP(r)

E*(r) = Er) + Er) + (27.26)

We are thus left with the problem of calculating the microscopic local field EX (r)
appropriate to a spherical region whose center is taken to be the ion on which the
field acts. Inside this region the charge density is the same in every cell (except for
the removal of the ion at the center on which we are calculating the force). In most

applications this calculation is done under the following simplifying assumptions:

1. The spatial dimensions and the displacement from equilibrium of each ion are
considered to be so small that the polarizing field acting on it can be taken to
be uniform over the whole ion and equal to the value of E® at the equilibrium
position of the ion.

2. The spatial dimensions and the displacement from equilibrium of each ion are
considered to be so small that the contribution to the local field at the equilibrium
position of the given ion, from the ion whose equilibrium position is R + d, is
accurately given by the field of a dipole of moment e(d)u(R + d) + p(R + d).

Since the dipole moments of ions at equivalent sites (displaced from each other
by Bravais lattice vectors R) are identical within the near region over which P has
negligible variation, the calculation of Elx at an equilibrium site reduces to the type
of lattice sum we described in Chapter 20. Furthermore, in the special case in which
every equilibrium site in the equilibrium crystal is a center of cubic symmetry, it is
easily shown (Problem 2) that this lattice sum must vanish; i.e., E (r) = 0 at every
equilibrium site. Since this case includes both the solid noble gases and the alkali
halides, it is the only one we consider. For these crystals we may assume that the

field polarizing each ion in the neighborhood of r is**

4nP(r)
=,

E°(r) = E(r) + (27.27)

This result, sometimes known as the Lorentz relation, is widely used in theories of
dielectrics. It is very important to remember the assumptions underlying it, par-
ticularly that of cubic symmetry about every equilibrium site.
Sometimes (27.27) is written in terms of the dielectric constant € of the medium,
using the constitutive relation!®
D(r) = €E(r), (27.28)

!4 Note that implicit in this relation is the fact that the local field acting on an ion depends only
on the general location of the ion but not (in a lattice with a basis) on the type of ion (i.e., it depends on
R but not on d). This convenient simplification is a consequence of our assumption that every ion occupies
a position of cubic symmetry.

!5 In noncubic crystals P, and therefore D, need not be parallel to E, so € is a tensor.

‘L.
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together with the relation (27.3) between D, E, and P, to express P(r) in terms of E(r):
Pe) = <L B (27.29)
r) = — E(r). .
4r

Using this to eliminate P(r) from (27.27), one finds that

E"(r) = E(r). (27.30)

Yet another way of expressing the same result is in terms of the polarizability, «,
of the medium. The polarizability x(d) of the type of ion at position d in the basis
is defined to be the ratio of its induced dipole moment to the field actually acting
on it. Thus

PR + d) + euR + d) = ofd) E*(r)|, <z (27.31)

The polarizability « of the medium is defined as the sum of the polarizabilities of
the ions in a primitive cell:

x =Y ofd). (27.32)
d
Since (cf. (27.18) and (27.22)).
P(r) = %Z [p(R, d) + e(du(R, d)i| , (27.33)
d R=xr
it follows that
P(r) = % E°(r). (27.34)

Using (27.29) and (27.30) to express both P and E** in terms of E, we find that (27.34)
implies that

(27.35)

This equation, known as the Clausius-Mossotti relation,'® provides a valuable
link between macroscopic and microscopic theories. A microscopic theory is required
to calculate «, which gives the response of the ions to the actual field E'* acting on
them. The resulting e can then be used, in conjunction with the macroscopic Maxwell
equations, to predict the optical properties of the insulator.

i

THEORY OF THE POLARIZABILITY

Two terms contribute to the polarizability o The contribution from p (see Eq. (27.31)),
the “atomic polarizability,” arises from the distortion of the ionic charge distribution.

16 When written in terms of the index of refraction, n = \/e_, the Clausius-Mossotti relation is known
as the Lorentz-Lorenz relation. {In the recent physics and chemistry literature of England and the United
States it has become the widespread practice to misspell the last name of O. F. Mossotti with a single
“s,” and/or to interchange his initials.)

B
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The contribution from eu, the “displacement polarizability,” arises from ionic dis-
placements. There is no displacement polarizability in molecular crystals where the
“lons” are uncharged, but in ionic crystals it is comparable to the atomic polarizability.

Atomic Polarizability

We allow the local field acting on the ion in question to be frequency-dependent,
writing
E = Re (Eqe ™), (27.36)

where E,; is independent of position (assumption 1, page 541). The simplest classical
theory of atomic polarizability treats the ion as an electronic shell of charge Z.e
and mass Z;m tied to a heavy, immobile, undeformable ion core, by a harmonic
spring, of spring constant K = Z,mw,? (Figure 27.4). If the displacement of the shell

Figure 27.4

Crude classical model of atomic polarizability.
The ion is represented as a charged shell of
charge Z,e and mass Z;m tied to an immobile
nucleus by a spring of force constant K =
Zmeg?.

Vo000 000000

from its equilibrium position is given by

r = Re (rge™ ™), (27.37)
then the equation of motion of the shell,
Z.mi = —Kr — Z,eE", (27.38)
implies that
= el (27.39
O mwe? — w?) 3
Since the induced dipole moment is p = — Z;er, we have
P = Re(poe™™), (27.40)
with
Zit
Po = E,. (27.41)

m(we? — @?)
Defining the frequency-dependent atomic polarizability by
Po = «"(w)E,, (27.42)
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we have ,
Ze
) = ——5—. (27.43)
O g = )
The model leading to (27.43) is, of course, very crude. However, for our purposes
the most important feature of the result is that if  is small comparfzd with @, the
polarizability will be independent of frequency and equal to its static value:

2
B (27.44)

mmy?

We would expect m,, the frequency of vibration of the electronic shell, to be of the
order of an atomic excitation energy divided by 4. This suggests that, unless Aw is
of the order of several electron volts, we can take the atomic polarizability to be
independent of frequency. This is confirmed by more accurate quantum-mechanical

calculations of o. ‘ o
Note that we can also use (27.44) to estimate the frequency below which o* will

be frequency-independent, in terms of the observed static polarizabilities:

ﬁz _2
hwg = | Z‘ﬂet
4a0 . e i’li

2a,

24
0 Cm x 10.5eV. ° (27.45)

Since the measured polanzab:htws see Table 27. 1) are of the order of 107 %* cm?, we
conclude that the frequency dependence of the atomic polarizability will not come mto
play (in all but the most highly polarizable of ions) until frequencies corresponding
to ultraviolet radiation.

Table 27.1
ATOMIC POLARIZABILITIES OF THE HALOGEN IONS,

NOBLE GAS ATOMS, AND ALKALI METAL IONS*

HALOGENS NOBLE GASES ALKALI METALS
He 02 Lit 003
F~ 12 Ne 04 Na*® 0.2
cl- 3 Ar 16 K* 09
Br~ 45 Kr 25 Rb* 1.7
~ 1 7 Xe 40 Cst 25

 In units of 107 2% ¢m?. Note that entries in the same row have the

same electronic shell structure, but increasing nuclear charge.
Source: A. Dalgarno, Advances Phys. 11, 281 (1962).

Displacement Polarizability

In ionic crystals we must consider the dipole moment due to the displacement of Fhe
charged ions by the electric field, in addition to the atomic polarization resulting

.

Displacement Polarizability 545

from the deformation of their electronic shells by the field. We begin by ignoring
the atomic polarization (rigid-ion approximation). To simplify the discussion we also
consider only crystals with two ions per primitive cell, of charges e and —e. If the
lons are undeformable, then the dipole moment of the primitive cell is just

p=ew, w=u'—u, (27.46)
i

where u* is the displacement of the positive or negative ion from its equilibrium
position.

To determine w(r) we note that the long-range electrostatic forces between ions
are already contained in the field E®°. The remaining short-range interionic forces
(e.g., higher-order electrostatic multipole moments and core-core repulsion) will fall
off rapidly with distance, and we may assume that they produce a restoring force
for an ion at r that depends only on the displacement of the ions in its vicinity. Since
we are considering disturbances that vary slowly on the atomic scale, in the vicinity
of r all ions of the same charge move as a whole with the same displacement, u*(r)
or u”(r). Thus the short-range part of the restoring force acting on an ion at r will
simply be proportional to'” the relative displacement w(r) = u*(r) — u (r) of the
two oppositely charged sublattices in the neighborhood of r.

Consequently in a distortion of the crystal with slow spatial variation on the
microscopic scale, the displacements of the positive and negative ions satisfy equations
of the form:

M it = —k@u®™ — u7) + eE,
M_i~ = —k(u™ — u') — eE", (27.47)
which can be written
e k
- _Eloc = = X
i i w, (27.48)

where M is the ionic reduced mass, M™' = (M,)~! + (M_) ', Letting E“° be an
AC field of the form (27.36), we find that

eEo/M

w = Re(woe ™), w,= -t~ (27.49)
where
o = i (27.50)
= ;
Accordingly,
; 2
s — Po  €eWo _ eﬁ. (27.51)

E,  E, M@ — o

Note that the displacement polarizability (27.51) has the same form as the atomic
polarizability (27.43). However the resonant frequency @ is characteristic of lattice
vibrational frequencies, and therefore i ~ hwp ~ 107! to 1072 eV. This can be
10? to 107 times smaller than the atomic frequency ,, and therefore, in contrast
to the atomic polarizability, the displacement polarizability has a significant frequency
dependence in the infrared and optical range.

17 The proportionality constant in general will be a tensor, but it reduces to a constant in a crystal
of cubic symmetry, the only case we consider here.
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Note also that because the ionic mass M is about 10* times the electronic mass
m, the static (w = 0) ionic and displacement polarizabilities may well be of the
same size. This means that the rigid-ion model we have used is unjustifiable, and
(27.51) must be corrected to take into account the atomic polarizability of the ions
as well. The most naive way to do this is simply to add the two types of contribution
to the polarizability:

e2

T (27.52)

a=@"+a)+

where & and o~ are the atomic polarizabilities of the positive and negative ions.
There is no real justification for this, since the first term in (27.52) was calculated
on the assumption that the ions were immobile but polarizable, while the second
was calculated for ions that could be moved, but not deformed. Evidently a more
reasonable approach would combine the models that lead on the one hand to (27.43)
and, on the other, to (27.51), calculating in one step the response to the local field
of ions that can be both displaced and deformed. Such theories are known as shell
model theories. They generally lead to results that differ considerably in numerical
detail from those predicted by the more naive (27.52), but have many of the same
basic structural features. We therefore explore the consequences of (27.52) further,
indicating later how it should be modified in a more reasonable model.

In conjunction with the Clausius-Mossotti relation (27.35), the approximation
expressed by (27.52) leads to a dielectric constant () for an ionic crystal, given by

ew) — 1 4n

+ - e?

M(®? — »?)

In particular, the static dielectric constant is given by

€ —1 dnf . - e? P
. e 27.54
€ +2 I (Ex teo Ma? ) (@« @), ( )

while the high-frequency'® dielectric constant satisfies

e U
® —— - 7] ; 27.55
. t2 3U(oc +a), (@0 « v « wy) (27.55)

It is convenient to write €(w) in terms of €, and €, since the two limiting forms
are readily measured: ¢, is the static dielectric constant of the crystal, while €, is
the dielectric constant at optical frequencies, and is therefore related to the index of
refraction, n, by n* = €,,. We have

6(60] -1 € 1 1 € — 1 €y — 1
N - 56
dw) +2 €,+2 Tz (0?/@?) (eo 9 e, & 2), (27.56)

18 In this context, by “high frequencies” we shall always mean frequencies high compared with lattice
vibrational frequencies, but low compared with atomic excitation frequencies. The frequency of visible
light generally satisfies this condition.
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which can be solved for e(w):

elw) = €, + _Sw— fo
- @t ert) = 17

5 .mles 2y €0 — €y
wr® = (Eo = 2) =@ (1 —Go = 2). (27.58)

Application to Long-Wavelength Optical Modes of Ionic Crystals

(27.57)

where

To calculate the normal mode dispersion relations in an ionic crystal we could proceed
by the general techniques described in Chapter 22. However, we would encounter
severe computational difficulties because of the very long range of the interionic
electrostatic interactions. Techniques have been developed for dealing with this
problem, similar to those exploited in calculating the cohesive energy of an ionic
crystal (Chapter 20). However, for long-wavelength optical modes one can avoid
such calculations by stating the problem as one in macroscopic electrostatics:

In a long-wavelength (k & 0) optical mode the oppositely charged ions in each
primitive cell undergo oppositely directed displacements, giving rise to a non-
vanishing polarization density P. Associated with this polarization density there will
in general be a macroscopic electric field E and an electric displacement D, related by

D = €¢E = E + 4nP. (27.59)
In the absence of free charge, we have
V-D =0. (27.60)

Furthermore, E™° is the gradient of a potential.'? It follows from (27.6) that E is
also, so that
VxE=Vx(-Vgp)=0. (27.61)

In a cubic crystal D is parallel to E (i.e., € is not a tensor) and therefore, from (27.59),
both are parallel to P. If all three have the spatial dependence,

£ L T b
E ;= Re<E,;e*T, (27.62)
Pl (p,
then (27.60) reduces to k - D, = 0, which requires that

D=0 or D,EandP | k, (27.63)
while (27.61) reduces to k x E, = 0, which requires that

E=0 or ED,andP |k (27.64)

In a longitudinal optical mode the (nonzero) polarization density P is parallel tok,

19 At optical frequencies one might worry about keeping only electrostatic fields, since the right
side of the full Maxwell equation, V x E = —(1/¢) éB/0r need not be negligible. We shall see shortly,
however, that a full electrodynamic treatment leads to very much the same conclusions.

—44¥—
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and Eq. (27.63) therefore requires that D must vanish. This is consistent with (27.59)
only if

E= —47aP, ¢=0 (longitudinal mode). (27.65)
On the other hand, in a transverse optical mode the (nonzero) polarization density
P is perpendicular to k, which is consistent with (27.64) only if E vanishes. This,
however, is consistent with (27.59) only if

E=0 €= (transverse mode). (27.66)

According to (27.57), € = o0 when ®w? = w;?, and therefore the result (27.66)
identifies wy as the frequency of the long-wavelength (k — O) transverse optical
mode. The frequency w; of the longitudinal optical mode is determined by the
condition € = 0 (Eq. (27.65)), and (27.57) therefore gives

(27.67)

This equation, relating the longitudinal and transverse optical-mode frequencies to
the static dielectric constant and index of refraction, is known as the Lyddane-Sachs-
Teller relation. Note that it follows entirely from the interpretation that (27.65) and
(27.66) lend to the zeros and poles of €(w), together with the functional form of
(27.57)—i.e., the fact that in the frequency range of interest € as a function of w? is
a constant plus a simple pole. As a result, the relation has a validity going well beyond
the crude approximation (27.52) of additive polarizabilities, and also applies to the
far more sophisticated shell model theories of diatomic ionic crystals.

Since the crystal is more polarizable at low frequencies?® than at high, w, exceeds
wy. It may seem surprising that «, should differ at all from w5 in the limit of long
wavelengths, since in this limit the ionic displacements in any region of finite extent
are indistinguishable. However, because of the long range of electrostatic forces, their
influence can always persist over distances comparable to the wavelength, no matter
how long that wavelength may be; thus longitudinal and transverse optical modes
will always experience different electrostatic restoring forces.*! Indeed, if we use the
Lorentz relation (27.27) we find from (27.65) that the electrostatic restoring force in
a long-wavelength longitudinal optical mode is given by the local field

47P 8nP

(E*), = E + = 3 {(longitudinal), (27.68)

while (from (27.66)) it is given in a long-wavelength transverse optical mode by

() = ? (transverse). (27.69)

20 At frequencies well above the natural vibrational frequencies of the ions, they fail to respond to
an oscillatory force, and one has only atomic polarizability. At low frequencies both mechanisms can
contribute.

21 This argument, based on instantaneous action at a distance, must be reexamined when the electro-
static approximation (27.61) is dropped (see footnotes 19 and 25).
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Thus in a longitudinal mode the local field acts to reduce the polarization (i.e., it
adds to the short-range restoring force proportional to k = M®?) while in a transverse
mode it acts to support the polarization (i.e., it reduces the short-range restoring
force). This is consistent with (27.58), which predicts that @y is less than @ (since
€y — €, 1s positive). It is also consistent with (27.67), which, with the aid of (27.58),
can be written:

€y — €, 1
oy = i (1 +2 E"OHE&) (27.70)

which indicates that w; exceeds @.

The Lyddane-Sachs-Teller relation (27.67) has been confirmed by comparing
measurements of w; and w, from neutron scattering, with measured values of the
dielectric constant and index of refraction. In two alkali halides (Nal and KBr),
wyfwy and (€y/€,)'"* were found to agree to within the experimental uncertainty of
the measurements (a few percent).??

However, because it is merely a consequence of the analytic form of €(w), the
validity of the Lyddane-Sachs-Teller relation does not provide a very stringent test
of a theory. A more specific prediction can be constructed from Eqs. (27.54), (27.55),
and (27.58), which combine together to give

Ib— ) 5 e?
o L @7.71)

My
Since e*/Mu is determined entirely by the ionic charge, the ionic reduced mass, and
the lattice constant, the right side of (27.71) is known. However, measured values of
€, €, and wr in the alkali halides lead to a value for the left side of (27.71) that can
be expressed in the form (e*)*/Muv, where e* (known as the Szigeti charge) ranges
between about 0.7¢ and 0.9¢. This should not be taken as evidence that the ions are
not fully charged, but as a telling sign of the failure of the crude assumption (27.52) that
atomic and displacement polarizabilities simply add to give the total polarizability.
To remedy this defect, one must turn to a shell model theory in which atomic and
displacement polarizations are calculated together, by allowing the electronic shell
to move relative to the ion core (as done above in calculating the atomic polariz-
ability) at the same time as the ion cores are themselves displaced.?® The general
structural form (27.57) of €(w) is preserved in such a theory, but the specific forms
for the constants €y, €, and wy can be quite different.

Application to the Optical Properties of Ionic Crystals

The above discussion of the transverse optical mode is not completely accurate, based
as it is on the electrostatic approximation (27.61) to the Maxwell equation:**

1JB
VXE=— ——. (27.72)
c Ot

22 A. D. B. Woods et al.,, Phys. Rev. 131, 1025 (1963).

23 An early and particularly simple model is given by S. Roberts, Phys. Rev. 77, 258 (1950).

#*  Qur discussion of the longitudinal optical mode is founded entirely on the Maxwell equation
V+D = 0 and remains valid in a fully electrodynamic analysis.
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When (27.61) is replaced by the more general (27.72), the conclusion (27.66) that the
transverse optical mode frequency is determined by the condition €(w) = oo must be
replaced by the more general result (Eq. (1.34)) that transverse fields with angular
frequency @ and wave vector k can propagate only if

kZCZ

€(m) e (27.73)

Thus for optical modes with wave vectors satisfying ke > o, the approximation
e = oo is reasonable. The frequencies of optical phonons are of order wp = kps,
where s is the speed of sound in the crystal, so this requires that

i = (27.74)

Since kj is comparable to the dimensions of the Brillouin zone, while s/c is of order
10™# to 10773, the electrostatic approximation is fully justified except for optical
modes whose wave vectors are only a small fraction of a percent of the dimensions of
the zone from k = 0.

We can describe the structure of the transverse modes all the way down tok = 0,
by plotting € vs. w (Eq. (27.57)) (Figure 27.5). Note that € is negative between wy and
wy, so Eq. (27.73) requires kc to be imaginary. Thus no radiation can propagate in
the crystal between the transverse and longitudinal optical frequencies. Outside this
forbidden range w is plotted vs. k in Figure 27.6. The dispersion relation has two
branches, lying entirely below wy and entirely above ;. The lower branch has the
form w = wy except when k is so small as to be comparable to wr/c. It describes the
electric field accompanying a transverse optical mode in the constant-frequency
region. However, when k is of order wq /¢ the frequency falls below wy, vanishing as
ke//€o, a relation characteristic of ordinary electromagnetic radiation in a medium
with dielectric constant €.

Figure 27.5
Frequency-dependent dielec-

(w) i
€l
| tric constant for a diatomic
(e(-w) = e(w)) I ionic crystal.
¥
€(0)
S e(oa) ————— e
s /’_—aﬁ
WL [
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Figure 27.6

Solutions to the dispersion
relation @ = kc/\/"&;((u} for
transverse  electromagnetic
modes propagating in a di-
atomic ionic crystal. (The
relation to Figure 27.5 is
most readily seen by rotating
the figure through 90° and
considering it to be a plot of
k = o Elw)/c, vs. w.) In the
linear regions one mode is
clearly photonlike and one
clearly optical phononlike. k
In the curved regions both

modes have a mixed nature,

and are sometimes referred

to as “polaritons.”

The upper branch, on the other hand, assumes the linear form w = kc/\@\,
characteristic of electromagnetic radiation in a medium with dielectric constant €,
when k is large compared with wy/c, but as k approaches zero, the frequency does not
vanish linearly, but levels off to @.°

Finally, note that if the dielectric constant is a real number, then the reflectivity of
the crystal is given by (see Eq. (K.6) in Appendix K)

B Ve — 12
= -J—:—l 3 (27.75)

As € — oo, the reflectivity approaches unity. Thus all incident radiation should be
perfectly reflected at the frequency of the transverse optical mode. This effect can be
amplified by repeated reflections of a ray from crystal faces. Since n reflections will
diminish the intensity by /, after very many reflections only the component of radia-
tion with frequencies very close to @y will survive. This surviving radiation is known
as the reststrahl (residual ray). Such repeated reflections provide a very precise way
of measuring wy, as well as a method for producing very monochromatic radiation
in the infrared.

25 Thus as k — 0 a transverse mode does occur at the same frequency as the longitudinal mode
(see page 548). The reason this behavior emerges in an electrodynamic, but not an electrostatic, analysis
is basically the finite velocity of signal propagation in an electrodynamic theory. Electromagnetic signals,
can only propagate with the speed of light, and therefore no matter how long their spatial range, they
can be effective in distinguishing longitudinal from transverse modes only if they can travel a distance
comparable to a wavelength in a time small compared with a period (i.e., k¢ >» ). The argument on
page 548, which explains why w; and wy differ, implicitly assumes that Coulomb forces act instantaneously
at a distance, and becomes invalid when this assumption fails.

T $
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Table 27.2

STATIC DIELECTRIC CONSTANT, OPTICAL DIELECTRIC
CONSTANT, AND TRANSVERSE OPTICAL PHONON
FREQUENCY FOR ALKALI HALIDE CRYSTALS

To the extent that the lattice vibrations are anharmonic (and therefore damped)
¢ will also have an imaginary part. This broadens the reststrahl resonance. The typical
behavior of observed frequency-dependent dielectric constants in ionic crystals, as
deduced from their optical properties, is shown in Figure 27.7. Alkali halide dielectric

properties are summarized in Table 27.2. COMPOUND €0 € hoog/kg®
0 T/™B
ok LiF 9.01 1.96 442
ho NaF 5.05 1.74 354
KF 5.46 1.85 274
RbF 6.48 1.96 224
401~ ZnS SlE KCI CsF — 2.16 125
= LiCl 11.95 2.78 276
2 NaCl 5.90 2.34 245
; L I KCl 4.84 2.19 215
0 1 - 5 BE 0 gbCl 4.92 2.19 183
sCl 7.2
i 0 2.62 151
—201- LiBr 13.25 3.17 229
] : a NaBr 6.28 2.59 195 2
_aol ﬁ: - EZ; 0 3 6 9 KBr 490 2.34 166
» (102 Hz) RbBr 4.86 2.34 139
gt CsBr 6.67 2.42 114
Lil 16.85 3.80 —
(a) (b) Nal 7.28 2.93 167
KI 5.10 2.62 156
Figure 27.7 Rbl 491 2.59 117.5
(a) Real (solid line) and imaginary (dashed line) parts of the dielectric constant of zinc sulfide. Gsl 6.59 2.62 94.6
(After F. Abeles and J. P. Mathieu, Annales de Physique 3.5(1958); quoted by E. Burstein, Phonons «F th hl peak: i ;
and Phonon Interactions, T. A. Bak, ed., W. A. Benjamin, Menlo Park, California, 1964.) (b) Real SO::Z? Resreizstra . ge; ,Jdeegjre;s Kelvm..
(solid line) and imaginary (dashed line) parts of the dielectric constant of potassium chloride. Pl ed. Aca:i]:riizli)ress. o ‘je\g(zl;kenl,gggyms ogz(;olar Centers, W. B.
(After G. R. Wilkinson and C. Smart; quoted by D. H. Martin, Advances Phys. 14, 39 (1963).) = J d » page b.2o.
Table 27.3
STATIC DIELECTRIC CONSTANTS FOR SELECTED COVALENT AND
COVALENT INSULATORS COVALENT-IONIC CRYSTALS OF THE DIAMOND, ZINCBLENDE,

The above analysis of ionic and molecular crystals has relied on the possibility of AND WLRIZITE SIRLICTURES®

resolving the charge distribution of the crystal into contributions from identifiable CRYSTAL STRUCTURE € CRYSTAL STRUCTURE €
ions (atoms, molecules) as in (27.9). In covalent crystals, however, appreciable elec-
tronic charge density resides between ions (forming the so-called covalent bonds). e ¢ 3.7 Zn0 W 4.6
This part of the total charge distribution is uniquely a property of the condensed 26 Z }zg ;Eg W 2'1
state of matter, bearing no resemblance to the charge distribution of single isolated Sh d 238 ZnT: j 8‘2
ions (atoms, molecules). Furthermore, since it comes from the most loosely bound SiC 5 6:7 cds s 5'2
atomic electrons, it makes a very important contribution to the polarizability of the GaP . 3.4 CdSe o 70
crystal. Therefore, in calculating dielectric properties of covalent crystals one must GaAs z 10.9 CdTe z 7.1
deal with the polarizability of the crystal as a whole, either invoking band theory GaSb z 14.4 BeO w 3.0
from the start or developing a phenomenology of “bond polarizabilities.” InP z 9.6 MgO z 3.0
We shall not pursue this subject here, except to point out that covalent crystals ings z 12.2
n z 15.7

can have quite large dielectric constants, reflecting the relatively delocalized structure

of their electronic charge distributions. Static dielectric constants for selected covalent -
. _ . . . ted by J. C. Phillips, Phys. ‘ ; :
crystals are listed in Table 27.3. As we shall see (Chapter 28), the fact that the dielectric Rt illips, Phys. Rev. Lett. 20, 550 (1968)

‘4¥—__,
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constants can be quite substantial is a point of considerable importance in the theory
of impurity levels in semiconductors.

PYROELECTRICITY
In deriving the macroscopic equation

V:E= —4nV-P (27.76)

for ionic crystals, we assumed (see footnote 9) that the equilibrium dipole moment of
the primitive cell,

Po = ) de(d), (27.77)
d
vanished, and therefore ignored a term
AP = % (27.78)

in the polarization density P. As Figure 27.8 demonstrates, the value of the dipole
moment py, is not independent of the choice of primitive cell. However, since only the
divergence of P has physical significance, an additive constant vector AP does not
affect the physics implied by the macroscopic Maxwell equations.

Figure 27.8
=L+ T+ [+ J+ [+ [+ [+ J+ ole® =3 The dipole moment of the primitive
(a) cell depends on the choice of primi-
i Y S g g g g g ey e B tive c_el]. T.hIS 1s_1llgstrated for a
© one-dimensional ionic crystal.

There would be nothing more to say if all crystals were infinite in extent. However,
real crystals have surfaces, at which the macroscopic polarization density P drops
discontinuously to zero, thereby contributing a singular term on the right side of
(27.76). This term is conventionally interpreted as a bound surface charge per unit
area, whose magnitude is the normal component of P at the surface, P,. Thus an
additive constant in P is far from inconsequential in a finite crystal.

In a finite crystal, however, we must reexamine our assumption that each primitive
cell has zero total charge:

Y e(d) = 0. (27.79)

- d

In an infinite crystal of identical cells this is merely the statement that the crystal as
a whole is neutral, but in a crystal with surfaces, only the interior cells are identically
occupied, and charge neutrality is perfectly consistent with partially filled, and there-
fore charged, surface cells (Figure 27.9). Should one’s choice of cell lead to surface
cells containing net charge, an additional term would have to be added to (27.76) to
represent this bound surface charge, p,. When the choice of cell is changed, both P,
and p, will change, in such a way that the total net macroscopic surface charge density,
P, + p, is unchanged.
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(a) (b) (c)

Figure 27.9

The “natural” choice of primitive cell is one that leads to uncharged cells at the surface. The
cells chosen in (a) and (b) violate this criterion, and their contribution to the polarization density
is cancelled by the contribution from the charged surface cells. The cell in (c) (which is non-
primitive) leads to uncharged surface cells and has no dipole moment.

Thus the “natural” choice of cell for which (27.76) i1s valid without an additional
term representing the unbalanced charge in surface cells, is a cell whose neutrality is
maintained even at the surfaces of actual physical specimens.?®

Crystals whose natural primitive cells have a nonvanishing dipole moment p, are
called pyroelectric.*” In equilibrium a perfect specimen of a pyroelectric crystal has
a total dipole moment of p, times the number of cells in the crystal,>® and thus a
polarization density P = po/v throughout the crystal, even in the absence of an
external field. This immediately implies some severe restrictions on the point-group
symmetries of a pyroelectric crystal, for a symmetry operation must preserve all
crystalline properties and, in particular, the direction of P. Thus the only possible
rotation axis is one parallel to P, and furthermore there cannot be mirror planes
perpendicular to that axis. This excludes all point groups except (Table 7.3) C, and
C,,(n=2,3,46)and C, and Cy, A glance at Table 7.3 reveals that these are the
only point groups compatible with the location of a directed object (an arrow, for
example) at each site.*’

26 This often requires a cell that is not primitive (see Figure 27.9), but it is easily verified that the
earlier analysis in this chapter is in no way affected by using a larger microscopic cell.

27 Thename (pyro = fire) reflects the [act that under ordinary conditions the moment of a pyroelectric
crystal will be masked by neutralizing layers of ions from the atmosphere that collect on the faces of the
crystal. If, however, the crystal is heated, then the masking will no longer be complete, since the polarization
will change due to thermal expansion of the crystal, neutralizing ions will be evaporated, etc. Thus the
effect was first thought to be the production of an electric moment by heat. (Sometimes the term “polar
crystal” is used instead of “pyroelectric crystal.” However, “polar crystal” is also widely used as a synonym
for “1onic crystal” (whether pyroelectric or not), and the term is therefore best avoided.) The net polarization
can also be masked by a domain structure, as in ferromagnets (see Chapter 33).

28 The dipole moment of the surface cells need not be pg, but in the limit of a large crystal this will
have a negligible effect on the total dipole moment, since the overwhelming majority of cells will be in
the interior.

22 Some crystals, though nonpyroelectric in the absence of external stresses can develop a spontaneous
dipole moment when mechanically strained; ie., by suitable squeezing, their crystal structures can be
distorted to ones that can sustain a dipole moment. Such crystals are called piezoelectric. The point group
of a piezoelectric crystal (when unstrained) cannot contain the inversion.
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FERROELECTRICITY

The most stable structure of some crystals is nonpyroelectric above a certain tem-
perature T, (known as the Curie temperature) and pyroelectric below it.*® Such
crystals (examples are given in Table 27.4) are called ferroelectrics.”* The transition
from the unpolarized to the pyroelectric state is called first order if it is discontinuous
(i.e., if P acquires a nonzero value immediately below T,) and second or higher order,
if it is continuous (i.e., if P grows continuously from zero as T drops below T,).*?

Just below the Curie temperature (for a continuous ferroelectric transition) the
distortion of the primitive cell from the unpolarized configuration will be very small,
and it is therefore possible, by applying an electric field opposite to this small polariza-
tion, to diminish and even reverse it. As T drops farther below T, the distortion of
the cell increases, and very much stronger fields are required to reverse the direction
of P. This is sometimes taken as the essential attribute of ferroelectrics, which are
then defined as pyroelectric crystals whose polarization can be reversed by applying
a strong electric field. This is done to include those crystals one feels would satisfy
the first definition (existence of a Curie temperature), except that they melt before
the conjectured Curie temperature can be reached. Well below the Curie temperature,
however, the reversal of polarization may require so drastic a restructuring of the
crystal as to be impossible even in the strongest attainable fields.

Immediately below the Curie temperature of a continuous ferroelectric transition,
the crystal spontaneously and continuously distorts to a polarized state. One would
therefore expect the dielectric constant to be anomalously large in the neighborhood
of T,, reflecting the fact that it requires very little applied field to alter substantially
the displacement polarization of the crystal. Dielectric constants as large as 10° have
been observed near ferroelectric transition points. In an ideal experiment the dielectric
constant should actually become infinite precisely at T,. For a continuous transition
this simply expresses the fact that as T, is approached from above, the net restoring
force opposing a lattice distortion from the unpolarized to the polarized phase
vanishes.

If the restoring force opposing a particular lattice distortion vanishes, there should
be a zero-frequency normal mode whose polarization vectors describe precisely this
distortion. Since the distortion leads to a net dipole moment and therefore involves
a relative displacement between ions of opposite charge, the mode will be an optical
mode. In the vicinity of the transition, relative displacements will be large, anharmonic
terms will be substantial, and this “soft” mode should be rather strongly damped.

These two observations (infinite static dielectric constant and a zero-frequency
optical mode) are not independent. One implies the other by the Lyddane-Sachs-
Teller relation (27.67), which requires the transverse optical-mode frequency to vanish
whenever the static dielectric constant is infinite.

30 Transitions back and forth are also known: e.g., there can be a range of temperatures for the
pyroelectric phase, above and below which the crystal is unpolarized.

31 The name stresses the analogy with ferromagnetic materials, which have a net magnetic moment.
Tt is not meant to suggest that iron has any special relation to the phenomenon.

32 Sometimes the term “ferroelectric™ is reserved for crystals in which the transition is second order.
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. Perhaps the‘simplest type of ferroelectric crystal (and the one most widely studied)
1s the perovskite structure, shown in Figure 27.10. Other ferroelectrics tend to be
substantially more complex. Some characteristic examples are given in Table 27.4.

Figure 27.10

The perovskite structure, characteristic of the barium
titanate (BaTiOj;) class of ferroelectrics in the unpolarized
phase. The crystal is cubic, with Ba™" ions at the cube
corners, O™~ ions at the centers of the cube faces, and
Ti** jons at the cube centers. The first transition is to a
tetragonal structure, the positive ions being displaced
relative to the negative ones, along a [100] direction. The
perovskite structure is an example of a cubic crystal in
which every ion is not at a point of full cubic symmetry.
(The Ba* " and Ti** are, but the O~ ~ ions are not.) There-
fore the local field acting on the oxygen ions is more com-
plicated than that given by the simple Lorentz formula.
This is important in understanding the mechanism for the
ferroelectricity.

Table 27.4
SELECTED FERROELECTRIC CRYSTALS
T. P at T
NAME FORMULA  (K) (uC/cm?) (K)
Potassium dihydrogen phosphate KH,PO, 123 4.75 96
Potassium dideuterium phosphate KD,PO, 213 4.83 180
Rubidium dihydrogen phosphate RbH,PO, 147 5.6 90
Rubidium dideuterium phosphate RbD,PO, 218 — —-
Barium titanate BaTiO, 393 26.0 300
Lead titanate PbTiO, 763 >50 300
Cadmium titanate CdTiO, 55 — —
Potassium niobate KNbO, 708 30.0 523
Rochelle salt NaKC,H, O - 4D,0 {i;} 0.25 278
3081
Deuterated Rochelle salt  NaKC,H,D,0, - 4D,0 251 0.35 279

¢ Has upper and lower T,
Source: F. Jona and G. Shirane, Ferroelectric Crystals, Pergamon, New York, 1962, p. 389.

PROBLEMS

L. Electric Field of a Neutral Uniformly Polarized Sphere of Radius a
Far from the sphere, the potential ¢ will be that of a point dipole of moment p = 4nPa?/3:
_ Pcos?

¢ R (27.80)
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(where the polar axis is along P). Using the fact that the general solution to V2¢ = 0 proportional

to cos 0 is

A cos 8

I,,2

+ Brcos 0, (27.81)

use the boundary conditions at the surface of the sphere to show that the potential inside the
sphere leads to a uniform field E = —4znP/3.

2. Electric Field of an Array of Identical Dipoles with Identical Orientations,
at a Point with Respect to Which the Array Has Cubic Symmetry
The potential at r due to the dipole at r' is

1
b= —p-V (27.82)
Ik —r
By applying the restrictions of cubic symmetry to the tensor
1
PIRAS L (27.83)

and noting that V3(1/r) = 0, r # 0, show that E(r} must vanish, when the positions 1" of the
dipoles have cubic symmetry about r.

3. Polarizability of a Single Hydrogen Atoin
Suppose an electric field E is applied (along the x-axis) to a hydrogen atom in its ground state
with wave function

Yo o e~ "a, (27.84)
(a) Assume a trial function for the atom in the field of the form
Yoo Yol + yx) = Yo + Y, (27.85)

and determine y by minimizing the total energy.
(b) Calculate the polarization

pr= Jdr (—e) x (o OY* + ¥§ oY), (27.86)

using the best trial function, and show that this leads to a polarizability o = 4aqy’. (The exact
answer is 4.5a,>.)

4. Orientational Polarization
The following situation sometimes arises in pure solids and liquids whose molecules have per-

manent dﬁole moments (such as water or ammonia) and also in solids such as ionic crystals with
some ions replaced by others with permanent moments (such as OH™ in KCI).

(a) An electric field tends to align such molecules; thermal disorder favors misalignment.
Using equilibrium statistical mechanics, write down the probability that the dipole makes an
angle in the range from 0 to 6 + d6 with the applied field. If there are N such dipoles of moment
p, show that their total dipole moment in thermal equilibrium is

E
Np<cos 8> = NpL (2= ), (27.87)

Problems 559

where L(x), the “Langevin function,” is given by

1
L(x) = coth x — (—) (27.88)
X

(b) Typical dipole moments are of order 1 Debye unit (10~ ® in esu). Show that for an electric
field of order 10* volts/cm the polarizability at room temperature can be written as

p2

o = i
3kyT

5. Generalized Lyddane-Sachs-Teller Relation

Suppose that the dielectric constant €(w) does not have a single pole as a function of w? (as in
(27.57)) but has the more general structure:

(27.89)

n BL
o) =4+ ) ———3 (27.90)

St — '
Show directly from (27.90) that the Lyddane-Sachs-Teller relation (27.67) is generalized to
0
€g X
] (;) , @7.91)

where the «] are the frequencies at which € vanishes. (Hint: Write the condition € = 0 as an nth-
degree pqunomial in ?, and note that the product of the roots is simply related to the value of the
polynomial at w = 0.) What is the significance of the [requencies w; and w??




