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ABSTRACT
Consider tracking a state space model with multimodal observation
likelihoods using a particle filter (PF). Under certain assumptions
that imply narrowness of the state transition prior, many efficient
importance sampling techniques have been proposed in literature.
For large dimensional state spaces (LDSS), these assumptions may
not always hold. But, it is usually true that at a given time, state
change in all except a few dimensions is small. We use this fact
to design a simple modification (PF-EIS) of an existing importance
sampling technique. Also, importance sampling on an LDSS is ex-
pensive (requires large number of particles,N ) even with the best
technique. But if the “residual space” variance is small enough, we
can replace importance sampling in residual space by Mode Track-
ing (PF-MT). This drastically reduces the importance sampling di-
mension for LDSS, hence greatly reducing the requiredN .

Index Terms: particle filter, mode tracking, importance sam-
pling, Monte Carlo methods, sensor networks.

1. INTRODUCTION
Tracking is the problem of causally estimating a hidden state se-
quence,{Xt}, from a sequence of observations,{Yt} that satisfy the
Hidden Markov Model assumption, i.e.Xt → Yt is a Markov chain
for eacht, with observation likelihood (OL),p(Yt|Xt); andXt−1 →
Xt is also Markov with state transition pdf (STP),p(Xt|Xt−1). The
posteriorp(Xt|Y1:t) , πt(Xt). For nonlinear and/or nonGaussian
state space models,πt can be efficiently approximated using a par-
ticle filter (PF) [1, 2, 3]. One of two main issues in PF design is the
choice of importance sampling density that reduces the variance of
importance weights (improves effective particle size)[2].

The most commonly used importance sampling density is the
STP, p(Xt|X

i
t−1) [1](assumes nothing). But since this does not

use knowledge ofYt, the weight variance can be large. For situ-
ations where the OL is multimodal, but the STP is unimodal and
narrow enough to ensure thatp∗(Xt) , p(Xt|X

i
t−1, Yt) is uni-

modal, [4] proposes to approximatep∗ by a Gaussian at its mode
and importance sample from it. Other solutions that also assume
p∗ is unimodal are [2, 5]. In many situations,p∗ may be multi-
modal but conditioned on a small part of the state space, denoted
Xt,s, it is unimodal (Assumption 1). When this holds, we propose
to modify Doucet [4]’s method as follows. LetXt = [Xt,s, Xt,r].
SampleXt,s from its STP but compute a Gaussian approximation
to p∗(Xt|X

i
t,s) = p∗(Xt,r|X

i
t,s) about its mode and importance

sampleXt,r from it. We refer to this idea as PF-EIS (Algorithm 1).
For large dimensional state spaces (LDSS), which have dimen-

sion more than 10 or 12, the number of particles required for rea-
sonable accuracy is very large [1] and this makes PF an impractical
algorithm. One class of techniques for LDSS is [3, Ch 13],[6] which
resample more than once within a time interval. Alternatively, if
conditioned on a small part of the state (X1:t,s), the rest (Xt,r) has
a linear Gaussian state space model, Rao Blackwellization (RB-PF)
[7] can be used. Now, this assumption may not always hold. But,

in most large dimensional systems, at any given time, “most of the
state change” occurs in a small number of dimensions (“effective ba-
sis”) while the change in the rest of the state space (“residual space”)
is “small” [8, 9]. If the variance of residual state change is “small
enough” so that Theorem 1 is applicable, Assumption 1 will hold. In
addition, if it is even “smaller” to ensure that Theorem 2 holds with
a small enoughǫ, the importance sampling ofXt,r can be replaced
by Mode Tracking (MT). We call this idea PF-MT (Algorithm 2).

MT reduces the importance sampling dimension fromdim(Xt)
to dim(Xt,s) (huge reduction for large dimensional problems). Of
course, the error in the estimate ofXt,r will also increase. But for
200-250 dim problems such as contour tracking [10, 11], this error is
more than offset by the reduction in error due to improved effective
particle size. Note that PF-MT is a generalization of the contour
tracking idea of [10] which was first generalized in [8, 9] and used
in [11]. It can also be understood as an approximate RB-PF [7].

Some example applications are as follows. (i) When there are
two different types of sensors tracking temperature at one location,
each with some probability of failure, OL will be bimodal if one of
them fails. When tracking temperature at a large number of nodes
in a sensor network, the state space dimension can be very large and
also the number of possible OL modes can be very large. (ii) In
visual tracking problems such as deforming contour tracking [6, 10,
11] or tracking illumination change of moving objects [13], OL is
multimodal (due to multiple objects, occlusions or clutter) and state
space dimension is large.

Note PF-EIS or PF-MT will still work if the assumption ofp∗(Xt|X
i
t,s)

being unimodal applies most of the time. Also, if system model
changes with time, effective basis dimension can be changed over
time. Also, note that PF-EIS is also applicable to smaller dimen-
sional problems and PF-MT is also useful in situations wherep∗ is
actually unimodal.

Organization: In Sec. 2, we explain PF-EIS, give sufficient
conditions for Assumption 1 to hold for an LDSS model and show
how to verify these. PF-MT is explained in Sec. 3. Comparisons
with existing PF methods and discussion are given in Sec. 4.

2. PF-EIS: PF-EFFICIENT IMPORTANCE SAMPLING

The “optimal” importance sampling density, i.e. one that minimizes
the conditional variance of weights is [4]p(Xt|X

i
t−1, Yt) , p∗(Xt).

In most cases, this cannot be computed analytically. [4] suggests ap-
proximatingp∗ by a Gaussian about its mode,whenp∗ is unimodal.
But when OL is multimodal,p∗ will be unimodal only if the STP is
narrow enough in at least some dimensions. Whenp∗ is multimodal,
we propose the following modification. Split the state vectorXt as
Xt = [Xt,s, Xt,r] so that variance ofXt,r is small enough s.t.

Assumption 1 Conditioned onXt,s, p∗ is unimodal, i.e.

p∗∗,i(Xt,r) , p∗(Xt|X
i
t,s) = p(Xt,r|X

i
t−1, X

i
t,s, Yt) is unimodal



Algorithm 1 PF-EIS. Going from πN
t−1 to πN

t (Xt) =
∑N

i=1 w
(i)
t δ(Xt − Xi

t), Xi
t = [Xi

t,s, X
i
t,r]

1. Importance SampleXt,s: ∀i, sampleXi
t,s ∼ p(Xi

t,s|X
i
t−1).

2. Importance SampleXt,r: ∀i, sampleXi
t,r ∼ N (Xi

t,r; m
i
t, Σi

IS). Heremi
t(X

i
t−1, X

i
t,s, Yt) = arg minXt,r Li(Xt,r) andΣi

IS ,

(∇2Li(mi
t))

−1 whereLi(Xt,r) , − log[p∗∗,i(Xt,r)] = − log[p(Xt,r|X
i
t−1, X

i
t,s, Yt)].

3. Weight & Resample:Computewi
t =

w̃i
t

∑

N
j=1

w̃
j
t

wherew̃i
t = wi

t−1
p(Yt|X

i
t)p(Xi

t,r|X
i
t−1

,Xi
t,s)

N (Xi
t,r ; mi

t, Σi
IS

)
& resample.t ← t + 1 & go to step 1.

Algorithm 2 PF-MT. Going from πN
t−1 to πN

t (Xt) =
∑N

i=1 w
(i)
t δ(Xt − Xi

t), Xi
t = [Xi

t,s, X
i
t,r]

1. Importance SampleXt,s: ∀i, sampleXi
t,s ∼ p(Xi

t,s|X
i
t−1).

2. Mode TrackXt,r: ∀i, setXi
t,r = mi

t.

3. Weight & Resample:Computewi
t =

w̃i
t

∑

N
j=1

w̃
j
t

wherew̃i
t = wi

t−1p(Yt|X
i
t)p(Xi

t,r|X
i
t−1, X

i
t,s) & resample.t ← t + 1, go to step 1.

When this holds for each particle and for each time, we can use the
Gaussian approximation idea of [4] to approximatep∗∗,i and sample
from it. In practice, even if it holds for most particles at most times,
our proposed algorithm will work. Thus we propose to importance
sample (IS) as follows. SelectXt,s as the minimum number of di-
mensions ofXt required to ensure that Assumption 1 holds. Sample
Xi

t,s from its STP (to sample the possibly multiple modes ofp∗).
SampleXi

t,r from a Gaussian approximation[4] top∗∗,i about its
mode, i.e. sampleXi

t,r fromN (mi
t, Σ

i
IS) where

mi
t=mi

t(X
i
t−1, X

i
t,s, Yt) , min

Xt,r

Li(Xt,r), and

Σi
IS,[(∇2Li)(mi

t)]
−1, Li(Xt,r) , − log[p∗∗,i(Xt,r)] + const

∇2Li denotes the Hessian ofLi. We refer to the above algorithm
as PF with Efficient IS or PF-EIS. It is summarized in Algorithm 1.
For Xt,r = Xt, Algorithm 1 reduces to Doucet’s algorithm [4] and
if Xt,s = Xt, Algorithm 1 reduces to the original PF [1].

2.1. Unimodality of p∗∗,i(Xt,r) for LDSS Models
For the LDSS examples of the introduction, the state dynamics can
be written in the form of equations (1)-(4) of [8]. It is a generic form
of the second order motion model for nonEuclidean state spaces.
The quantityCt (e.g. contour or temperature) has “velocity” (time
derivative),vt, split asvt = Bsvt,s + Brvt,r whereBs denotes
the effective basis directions andBr denotes a basis for the residual
space.vt,s, vt,r are the corresponding coefficients. For e.g.,Bs can
be the dominant eigenvectors of the covariance ofvt or it can be an
interpolation basis.Also, effective basis dimension,dim(vt,s) = K.

If in the LDSS model of [8],Ct belongs to a vector space, we
haveg(Ct−1, vt) = vt anddim(Ct) = M . Then it simplifies to:

Ct=Ct−1 + Bsvt,s + Brvt,r,

vt,s=fs(vt−1,s) + νt,s, νt,s∼N (0, Σs), Σs=diag{∆p}
K
p=1

vt,r=fr(vt−1,r) + νt,r, νt,r∼N (0, Σr), Σr=diag{∆p}
M
p=K+1

p(Yt|Xt) = p(Yt|Ct) , α exp[−EYt(Ct)] (1)

HereXt,s = vt,s andXt,r = [vt,r, Ct]. For the purpose of sam-
pling,Xt,r = vt,r sinceCt is a deterministic function ofCt−1, vt,s,
andvt,r. Also, for the above model,p(Xt,s|Xt−1) = p(Xt,s|Xt−1,s)
andmi

t = mi
t(X

i
t−1,r, X

i
t,s, Yt). We obtain sufficient conditions for

Assumption 1 for this model and extend them to the model of [8].

For the above model, we havep∗∗,i(Xt,r) = p∗∗,i(vt,r) =

p(vt,r|v
i
t−1,r, C

i
t−1, v

i
t,s, Yt) = p(vt,r|v

i
t−1,r, C̃

i
t , Yt).

Let fr(v
i
t−1,r) , f i

r andCi
t−1 + Bsv

i
t,s , C̃i

t . Then,

p∗∗,i(vt,r)∝exp[−E(C̃i
t + Brvt,r)] N (vi

t,r; f
i
r, Σr) (2)

ThusLi(vt,r) = − log[p∗∗,i(vt,r)] + const is

Li(vt,r) = E(C̃i
t + Brvt,r) +

M−K
∑

p=1

([vt,r − f i
r)]p)2

2∆p+K

(3)

where[.]p denotes thepth coordinate of a vector. Now,p∗∗,i will
be unimodal iffLi has a unique minimizer. The second term in
(3) is strongly convex with a unique minimizer atvt,r = f i

r. But
E(Ct) (and henceE as a function ofvt,r) can have multiple min-
imizers since OL can be multimodal. If we can ensure thatΣr is
small enough so thatLi has a single minimizer that lies in the neigh-
borhood off i

r = fr(v
i
t−1,r), we will be done. This idea leads to:

Theorem 1 (Unimodality) Denotefr(v
i
t−1,r) , f i

r and Ci
t−1 +

Bsv
i
t,s , C̃i

t . For the model of (1),p∗∗,i(vt,r) will be unimodal if

1. E is twice differentiable almost everywhere.

2. C̃i
t +Brf

i
r is close enough to a minimizer ofE so thatE(C)

is strongly convex in its neighborhood.

3. ∆p+K , p = 1, 2, . . . M − K satisfy

inf
vt,r∈G

max
p=1,...M−K

(γp(vt,r) − ∆p+K) > 0,

G , ∩M−K
p=1 (AK,p ∪ ZK,p) (4)

γp(vt,r),

{

|[∇D]p|

|[∇E]p| , vt,r ∈ AK,p

0, vt,r ∈ ZK,p

(5)

∇E ,BT
r ∇CE(C̃i

t + Brvt,r)

∇D,vt,r − f i
r (6)

AK,p ,{vt,r ∈ Rc
K,LC : [∇D]p.[∇E]p < 0},

ZK,p ,{vt,r ∈ Rc
K,LC : [∇E]p = 0 & [∇D]p = 0},

RK,LC ,{vt,r ∈ R
M−K : C̃i

t + Brvt,r ∈ RLC}, (7)

whereRLC ⊆ S = R
M is the largest contiguous region in

the neighborhood of̃Ci
t + Brf

i
r which contains a minimizer

of E and whereE(C) is convex. Also,|.| denotes absolute
value and[.]p denotespth coordinate of a vector.
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Fig. 1. Computing∆∗
K for Example 1 (M = 3,K = 1). We usedα1 = 0.1, α2 = 0.4, a = 10, σ2

obs = 1, ∆1 = 5.4, Bs =
[0.64 − 0.56 0.53]′, Br = [0.73 0.66 − 0.18; −0.25 0.5 0.83]′ (we use MATLAB notation). Also,Ci

t−1 = [0 0 0]′, vi
t−1,r = [0 0]′,

vi
t−1,s = 0, Yt = [6.43 1.68 − 3.59 − 2.5 1.59 1.49]′ and vi

t,s = 2.9 (simulated fromN (0, ∆1)). Col. 1: mesh plot ofE as a
function of vt,r. Col. 2: RK,LC , note that the pointf i

r = vi
t−1,r lies inside it. Col. 3,4,5,6: the regions constitutingG, AK,1 ∩ AK,2,

ZK,1 ∩ AK,2, ZK,1 ∩ AK,2, ZK,1 ∩ ZK,2 along with the computed value of∆∗ in the 4 regions (4.84, 745.24, 226.12, 1678.36). The final
value∆∗

K is the minimum of these 4 values, i.e. we have∆∗
K = 4.84. Col. 7: contours of[∇L]1 = 0 and [∇L]2 = 0 for L computed

with ∆2 = ∆3 = 0.9∆∗
K . The contours have only one point of intersection (only one point where∇L = 0). Col. 8: contours of of

[∇L]j = 0, j = 1, 2 for ∆2 = ∆3 = 1.1∆∗
K . There are 3 intersection points (3 points where∇L = 0).

An easy to verify sufficient condition to ensure (4) holds is

max
p=1,...M−K

∆p+K < inf
vt,r∈G

max
p=1,...M−K

γp(vt,r) , ∆∗
K (8)

Proof:www.ece.iastate.edu/∼namrata/pfmt.full.pdf

Remark 1 If E(C) is Lipschitz, we will always get∆∗
K > 0 and

hence we can always find aΣr > 0 for whichp∗∗,i is unimodal.
Corollary 1 For the LDSS model of [8], Theorem 1 applies with
the following modifications: (a) ReplaceBrf

i
r by g(Brf

i
r) every-

where. (b) Redefine∇E , BT
r ∇vg(Brvt,r)∇CE(C̃i

t+g(Brvt,r))

with (∇vg)i,j ,
∂gj

∂vi
. (c) Directly defineRK,LC ⊆ R

M−K as the

largest contiguous region in the neighborhood off i
r whereE(C̃i

t +
g(Brvt,r)) is convex as a function ofvt,r.
Note, the above result is more general than that of [8].

2.2. Numerical Verification of Unimodality
When trying to verify (3) using numerical (finite difference) compu-
tations of gradients and Hessians,0 needs to be replaced by a small
numberǫ0 > 0, i.e. we need conditions to ensure|[∇L]p| > ǫ0 for
somep for all vt,r ∈ Rc

K,LC . To ensure|[∇L]p| > ǫ0 for somep
for all vt,r ∈ Rc

K,LC , the following two modifications are needed:
redefineZK,p andγp(vt,r) as follows

ZK,p ,{vt,r ∈ Rc
K,LC : |[∇E]p| < ǫ0, &[∇E]p.[∇D]p ≥ 0}

γp(vt,r),

{

|[∇D]p|

ǫ0+|[∇E]p| , vt,r ∈ AK,p

|[∇D]p|

ǫ0−|[∇E]p| , vt,r ∈ ZK,p

Example 1 (Computing∆∗
K ) Consider tracking temperature (de-

notedCt) atM locations. Temperature at each location is measured
using two types of sensors that have failure probabilitiesα1 andα2.
If the sensor fails it outputs a random number distributed according
to a pdfpf (y). We assume here thatpf (y) = Unif(y;−a, a). If
the sensor is working, the measured temperature is the actual tem-
perature plus Gaussian noise. The noise is independent of the noise
at other sensors. Failure of all the2M sensors are also independent.
Thus we have the following observation likelihood (OL):

p(Yt|Ct)=
M
∏

p=1

p(Y 1
t,p, Y 2

t,p|Ct,p) = p(Y 1
t,p|Ct,p)p(Y 2

t,p|Ct,p)

p(Y j
t,p|Ct,p)=(1 − αj)N (Y j

t,p; Ct,p, σj
obs

2
) + αpf (Y j

t,p) (9)

The state dynamics follows (1), i.e. change in temperature over time
(vt) at the different sensor locations is assumed to be zero mean

and spatially correlated. The eigenvectors of the covariance ofvt

are [Bs Br] and the eigenvalues are{∆p}. The coefficients along
Bs, Br, denotedvt,s, vt,r, are assumed to follow a random walk
model withfs(vs) = vs andfr(vr) = vr.

ConsiderM = 3 and K = 1 so thatvt,r ∈ R
2. We need

to find a condition on∆2, ∆3 that ensures that assumption 1 holds.
HereG is a subset of the 2D plane and consists of 4 types of regions:
AK,1∩AK,2,ZK,1∩AK,2,AK,1∩ZK,2,ZK,1∩ZK,2. We show an
example computation of∆∗

K in Fig. 1 for which we got∆∗
K = 4.84.

3. PF-MT: PF WITH MODE TRACKER
LDSS problems very often have a small dimensional effective basis,
Xt,s, in which most of the state change occurs and a large dimen-
sional residual space,Xt,r, in which the variance of the state change
is small, i.e. trace(Σr) is small. Thus trace(Σi

IS) ≤ trace(Σr) will
also be small. When this is true, a valid approximation is to replace
importance sampling ofXi

t,r from N (mi
t, Σ

i
IS) (step 2 in Algo-

rithm 1) by deterministically settingXi
t,r = mi

t. We call this the
Mode Tracking (MT) approximation sincemi

t is the mode ofp∗∗,i.
Another valid approximation, whenΣr is small, is to setΣi

IS = Σr.
This and the fact thatXi

t,r = mi
t makes the denominator of̃wi

t

constant (and hence it can be removed). The above modifications,
called PF-MT, are summarized in Algorithm 2.Note, PF-MT (or
PF-EIS) can be made faster (mode computation becomes a least
squares problem) if one can approximate OL by a linear Gaussian
system, linearized about̃Ci

t . This is motivated by (49) of [4].
Now, consider the model of (1). We show below that when

trace(Σr) is small, with high probability, there is little error in re-
placing a random sample fromN (mi

t, Σ
i
IS), by mi

t.
Theorem 2 (IS-MT) For (1), assume that conditions of Theorem
1 are satisfied. Letvi

t,r ∼ N (mi
t, Σ

i
IS). Then,vi

t,r converges
to mi

t in probability as trace(Σr) → 0, for almost all values of
vi

t−1,r, C
i
t−1, v

i
t,s, Yt.

Proof:www.ece.iastate.edu/∼namrata/pfmt.full.pdf
The MT approximation introduces some error in the estimate of

Xt,r (error decreases with decreasing spread ofp∗∗,i). But it reduces
the PF dimension fromdim(Xt) to dim(Xt,s) (huge reduction for
large dimensional problems), thus greatly improving the effective
particle size. For carefully chosen dimension ofXt,s, this results
in much smaller total error when the available number of particles,
N , is small. Note also, that for best performance, one may choose a
smaller dimensionalXt,r (larger dimensionalXt,s) for PF-MT than
that for PF-EIS, i.e. splitXt,r for PF-EIS intoXt,r,s andXt,r,r and
use the MT approximation only onXt,r,r.
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Fig. 2. (a) Comparing RMSE of PF-EIS (black -△) with that of
PF-Doucet (red -*) & PF-Orig (magenta -o). RMSE is computed
by taking the square root of the average (over 30 simulations) of the
squared error norm between the true temperature values,Ct and the
tracked ones (PF estimate ofE[Ct|Y1:t]). M = 3 andK = 1. (b)
Comparing RMSE (over 25 simulations) of PF-MT (blue -¤) with
PF-D, PF-Orig, PF-EIS & PF-K dim (green -x).

4. SIMULATION RESULTS AND DISCUSSION
Example 2 Consider Example 1 withM = 3 sensor nodes and
K = Ksim = 1. Let sensors at locationsK + 1 to M have zero
failure probability (new sensors) and that[Bs Br] = I. Thus OL is
multimodal only as a function ofCt,1:K . Because of the choice of
[Bs Br], Ct,1:K depends only onvt,s and hence OL is multimodal
only as a function ofvt,s (and notvt,r). In factE will be a convex
function of vt,r and henceRc

K,LC will be empty. Thus Theorem
1 holds forK = Ksim = 1 with ∆∗

1 = ∞ and so PF-EIS can
be applied for any values ofΣr. System parameters wereσ2

obs =
1, pf = Unif(−100, 100), α1 = α2 = [0.1 0 0], ∆1 = 10,
∆2 = ∆3 = 5. To demonstrate the need for PF-EIS over PF-Doucet
(PF-D), we ran a biased simulation, i.e. we usedα1(1) = 0.99 &
p1

f = N (Ct/2, 0), for t ≤ 7 while simulating the data.
RMSEs of the tracked temperatures from their true value for this

system, obtained using using PF-EIS withK = Ksim = 1, K = 0
(PF-D [4]), andK = M (original-PF[1]) is shown in Fig. 2(a). As
can be seen, RMSE is smallest for PF-EIS.

Example 3 Consider Example 1 withM = 10 sensor nodes. All
sensors have nonzero failure probability;K = 1 and[Bs Br] was an
M × M orthonormal matrix (notI). The parameters were:σ2

obs =
5, pf = Unif(−10, 10); α1 = [0.4 09], α2 = [0.1 09], Bs =
[0.56 0.289]

′, Br = its orthogonal complement,Σs = 10, Σr = I9.
Here09 denotes a vector 9 zeros. No biased simulation was run.

To track this system, a regular PF (PF-original, PF-D or PF-EIS)
will have to sample onM = 10 dimensions. But PF-MT utilizes
the fact that the variance in residual space,Σr, is much smaller than
Σs. It approximatesvi

t,r by its posterior mode at eacht (instead
of importance sampling for it). This way the importance sampling
dimension is onlyK = 3, but because of the MT step, the perfor-
mance is much better than just running a K-dim original PF (run the
PF only on the firstK dimensions and treatvt,r ≡ 0 for all t). Also,
for small number of particles,N , its effective particle size is much
better than that for either PF-EIS or PF-Original (M dim) and hence
error is much smaller. As can be seen from Fig. 2(b), both PF-K
dim and either of PF-D, PF-EIS or PF-Original perform much worse
than PF-MT. IfN is allowed to increase, PF-EIS or PF-D have the
best performance (depending on amount of multimodality).

Note thatM = 10 is a large enough dimensional state space if
reasonable accuracy is desired with as low asN = 50 particles. In

other practical scenarios (which are difficult to run multiple Monte
Carlo runs of) such as contour tracking [10] or tracking temperature
in a wide area with large number of sensors, the state dimension can
be as large as 200 or 250 while one cannot use more than 50-100
particles (for computational reasons).

There are still some un-addressed issues for PF-MT. If all or
most particles[vi

t,s, v
i
t,r] stick to a wrong region somehow (because

of the strong prior term, this will happen only if there are a sequence
of bad observations), future particles ofvi

t,s may get back because
of random sampling, butvi

t,r will take very long (again because of
strong prior term and no random sampling). This will result in loss of
track. This problem will be much lesser if the dynamics ofvt,r is ei-
ther temporally independent or at least temporally stationary. Under
this assumption, one should be able to show convergence of PF-MT
asǫ (used in Theorem 2) goes to zero. Temporal independence is a
valid model for problems where the state vector can be interpreted as
a “spatial signal” (e.g. temperature in space or contour tracking) and
the effective basis is velocity at a subsampled set of points. For such
problems, the state change (temperature change or contour deforma-
tion) is usually approximately bandlimited (spatially) at a frequency
much smaller than the sampling frequency of the sensors or the im-
age and so the value ofK (computed using Nyquist criterion for the
approximate bandwidth) is much smaller thanM [12].
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