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ABSTRACT in most large dimensional systems, at any given time, “most of the
likelihoods using a particle filter (PF). Under certain assumptionssjs”) while the change in the rest of the state space (“residual space”)
that imply narrowness of the state transition prior, many efficients “small” [8, 9]. If the variance of residual state change is “small
importance sampling techniques have been proposed in literaturgnough” so that Theorem 1 is applicable, Assumption 1 will hold. In
For large dimensional state spaces (LDSS), these assumptions maydition, if it is even “smaller” to ensure that Theorem 2 holds with
not always hold. But, it is usually true that at a given time, stateg gmg|| enougl, the importance sampling of; .. can be replaced
change in all except a few dimensions is small. We use this faghy Mode Tracking (MT). We call this idea PF-MT (Algorithm 2).
to des_ign a simple modifice}tion (PF-EIS) of an existing import_ance MT reduces the importance sampling dimension fidim (X, )
sampling technique. Also, importance sampling on an LDSS is exo dim (X, ,) (huge reduction for large dimensional problems). Of
pensive (requires large number of particlég) even with the best  coyrse, the error in the estimate & . will also increase. But for
technique. But if the “residual space” variance is small enough, weno.250 dim problems such as contour tracking [10, 11], this error is
can replace importance sampling in residual space by Mode Tracknore than offset by the reduction in error due to improved effective
ing (PF-MT). This drastically reduces the importance sampling diparticle size. Note that PF-MT is a generalization of the contour

mension for LDSS, hence greatly reducing the requived tracking idea of [10] which was first generalized in [8, 9] and used
. Index Terms: particle filter, mode tracking, importance sam- jj [11]. It can also be understood as an approximate RB-PF [7].
pling, Monte Carlo methods, sensor networks. Some example applications are as follows. (i) When there are
1. INTRODUCTION two different types of sensors tracking temperature at one location,

Tracking is the problem of causally estimating a hidden state seeach with some probability of failure, OL will be bimodal if one of
quence{ X, }, from a sequence of observatio$; } that satisfy the ~ them fails. When tracking temperature at a large number of nodes
Hidden Markov Model assumption, i.&(; — Y; is a Markov chain  in & sensor network, the state space dimension can be very large and
for eacht, with observation likelihood (OL)(Y;| X;); andX;_; — also the number of possible OL modes can be very large. (ii) In
X, is also Markov with state transition pdf (STR),X|X;—1). The  Visual tracking problems such as deforming contour tracking [6, 10,
posteriorp(X,|Yi.:) £ 7 (X,). For nonlinear and/or nonGaussian 11] or tracking |IIum|nat_|0n chz_ange of moving objects [13], OL is
state space models; can be efficiently approximated using a par- multlmOQaI (dge to multiple objects, occlusions or clutter) and state
ticle filter (PF) [1, 2, 3]. One of two main issues in PF design is theSPace dimensionis large. _ _ .
choice of importance sampling density that reduces the variance of Note PF-EIS or PF-MT will still work if the assumption of (X:| X ;)
importance weights (improves effective particle size)[2]. being unimodal applies most of the time. Also, if system model
The most commonly used importance sampling density is thé?hanges with time, effective b_asis dimens_ion can be change_d over
STP, p(X¢|X;_,) [1](assumes nothing). But since this does nottime. Also, note that PF-EIS is also applicable to smaller dimen-
use knowledge ot;, the weight variance can be large. For situ- sional problems and PF-MT is also useful in situations whéres
ations where the OL is multimodal, but the STP is unimodal andgctually unimodal.
narrow enough to ensure that(X;) 2 p(X;|X{_1,Y:) is uni- Organization: In Sec. 2, we explain PF-EIS, give sufficient
modal, [4] proposes to approximaté by a Gaussian at its mode conditions for Assumption 1 to hold for an LDSS model and show
and importance sample from it. Other solutions that also assum@ow to verify these. PF-MT is explained in Sec. 3. Comparisons

*

p* is unimodal are [2, 5]. In many situationg* may be multi-  With existing PF methods and discussion are given in Sec. 4.

modal but conditioned on a small part of the state space, denoted , e E|s: PE-EFFICIENT IMPORTANCE SAMPLING
X, itis unimodal (Assumption 1). When this holds, we propose . . ) o .
to modify Doucet [4]'s method as follows. Lef; = [X;.., X¢.,] The “optimal” importance sampling density, i.e. one that minimizes
. h) T . . . ! i A %
SampleX, . from its STP but compute a Gaussian approximationtn® conditional variance of weights is [A1.X¢| X1, Y1) = p” (Xy).
to p*(X:|X{,) = p*(X..|X;,) about its mode and importance In most cases, this cannot be computed analytically. [4] suggests ap-
sampleX.,, from it. We refer to this idea as PF-EIS (Algorithm 1), Proximatingp” by a Gaussian about its modehenp" is unimodal
For large dimensional state spaces (LDSS), which have dimerBut when OL |s'mult|modalp W|Il'be un_|modal on_Iy if th(_a STPis
sion more than 10 or 12, the number of particles required for rea?&rrow enough in atleast some dimensions. Wjsteis multimodal,
sonable accuracy is very large [1] and this makes PF an impractic¥{€ Propose the following modification. Split the state vectoras
algorithm. One class of techniques for LDSS is [3, Ch 13],[6] which-X¢ = [Xt,s, X¢.-] s that variance oK, is small enough s.t.
resam_ple more than once within a time interval. Alternatively, ifAssumption 1 Conditioned onX. ., p* is unimodal, i.e.
conditioned on a small part of the stat¥:(; ), the rest &, ) has
a linear Gaussian state space model, Rao Blackwellization (RB-P?M,Z- X & % (XX XX X Vi .
- . r) = s) = | Xi—1, X{ s, Ye) is unimodal
[7] can be used. Now, this assumption may not always hold. But, (Xer) = 7 (Xel Xt o) = p(Xer[ Xem, X5, V2)



Algorithm 1 PF-EIS. Going from =¥, to =¥ (X;) = o, wi?6(X: — X)), X{ = [X{., Xi,]

1. Importance Samplé, .: Vi, sampleX; , ~ p(X{ | X/ 1).

A

2. Importance Samplé; .. Vi, sampleX;, ~ N(X{,;mi, Sig). Heremi(X{_ 1, X{,,Y:) = argminx, , L'(X:,) andXig £
(V2L (m}))~ " whereL'(X;,,) £ —log[p***(X¢,r)] = — log[p(Xe,r| X{_1, X} o, Y2)].

PV Xp(XY o I1XE_1,X] )
N(X{ 05 my, )

3. Weight & Resample:Computew; = ZNLD; — wherew; = wi_; & resamplet < ¢t + 1 & go to step 1.
j=1%t

Algorithm 2 PF-MT. Going from 7Y, to =¥ (X)) = SN wi”6(X, — X{), Xi = [X{.., Xi,]

1. Importance Samplé(; ,: Vi, sampleX; , ~ p(X/ .| X/ _1).
2. Mode TrackX, ,: Vi, setX;, = mj.
@y

N 5
j=1 %%

3. Weight & Resample:Computew; =

wherew] = wi_1p(Y:| X))p(X{ .| X{_1, X! ,) &resamplet « ¢t + 1, goto step 1.

When this holds for each particle and for each time, we can use the For the above model, we haye**(X;,,) = p***(vr) =
Gaussian approximation idea of [4] to approximat&® and sample PVt |V 1.0 Ot 1,015, Y2) = D(Vt,r [V} 10y Ci, Y2).
from it. In practice, even if it holds for most particles at most times, | gt fr(i_i ) 2 fiandCi_, + Bsvi, 2 Ci. Then,
our proposed algorithm will work. Thus we propose to importance o . ' ) )
sample (IS) as follows. Seledf; , as the minimum number of di- P (ve,r) xexp[—E(Cy + Brver)| N(ve 5 [, 50)  (2)
mensions ofX; required to ensure that Assumption 1 holds. Sampl

X; . from its STP (to sample the possibly multiple modegyty. “Thus L (ve,r) = — log[p™™"(ve,,)] + const s

SampleX;, from a Gaussian approximation[4] g about its ; - M-K ([ve.r — £1)]p)2
mode, i.e. sampl&; . from NV(m}, X% ¢) where L*(ve,r) = E(Ct + Brog,r) + Z 7’2&]“{ ®)
p=1
my=mi(Xi_1, Xi ., Ye) = min L'(Xy,r), and where[.], denotes the'" coordinate of a vector. Nowy***! will

tor

i A i i1 n "y be unimodal iff L* has a unique minimizer. The second term in
rs=[(VIL)(my)] ™", L'(Xe,r) = —log[p™*(X¢,r)] +-CONSt (3) is strongly convex with a unique minimizer at, = fi. But

270 g h . ; ‘ he ab laorith E(C:) (and henceE as a function ofv;,,-) can have multiple min-
VZL' denotes the Hessian df . We refer to the above algorithm ji-ers since OL can be multimodal.  If we can ensure thatis

as PF with Efficient I_S or PF-EIS. It is summarized |n_AIgor|thm L gmall enough so that’ has a single minimizer that lies in the neigh-
For X:» = X, Algorithm 1 reduces to Doucet’s algorithm [4] and ;51504 offi = f.(vi_1.), we will be done. This idea leads to:

if X, . = X, Algorithm 1 reduces to the original PF [1]. Theorem 1 (Unimodalit)f) Denote f-(vi_1,,) £ f; andC{_; +
2.1. Unimodality of p**#(X;,,.) for LDSS Models Bvj & Ct. For the model of (1)p***(vy,,.) will be unimodal if

For the LDSS examples of the introduction, the state dynamics can 1. E is twice differentiable almost everywhere.

be written in the form of equations (1)-(4) of [8]. Itis a generic form
of the second order motion model for nonEuclidean state spaces.
The quantityC; (e.g. contour or temperature) has “velocity” (time
derivative), v, split asv, = Bsvi,s + Brvi,» Where By denotes

2. C} + B, flis close enough to a minimizer &fso thatE(C)
is strongly convex in its neighborhood.

3. Apyk,p=1,2,... M — K satisfy

the effective basis directions art}- denotes a basis for the residual inf max  (Vp(ve,r) — Apix) > 0,
spacew,s, vt are the corresponding coefficients. For efgy,,can vt,r€G p=1,..M-K
_be the dominant _eigenvectors_, of the_coyarianqatuir it can be an G2 ﬂi,”;lK(AK,p UZkp) 4)
interpolation basisAlso, effective basis dimensiatim(v,s) = K. (Y Dl
If in the LDSS model of [8],C: belongs to a vector space, we p(Ve.r) 2 I[VE]E\ y Ve € Axp )
haveg(Ci—1,v:) = v anddim(Ct) = M. Then it simplifies to: PR 0, Vi,r € ZKp
Ci=Ci—1 + Bsvs,s + Brog,r, VE= B?VCE(CZ + Broey)
'Ut,s:fs(vt—l,s) + Vt,s, Vt,sNN(O, Es), Es:diag{Ap}le VDéUt,"‘ - f; (6)
Ut,r:fr(vt—l,'r) + Vt,r, Vt,TNN(O, 27‘), Er:diag{Ap}i)M:K+1 AK,Pé{vtﬂ“ € RII:(,LC : [VD]P[VE}P < 0}’
p(Yi|X¢) = p(Yi|Cy) 2 aexp[—Ey, (C})] ) Zrp2{vr € Ricpo: [VE], =0& [VD], =0},

A M-K ~i
Here X, . = v, and X, = [v:, Ci]. For the purpose of sam- Ricpe={v.r €R $Cit Brogr €Rect (0)
pling, X; , = v, sinceC; is a deterministic function of’;_1, v¢ s, whereRrc C S = ]_RM is the largest contiguous region in
anduvy,,. Also, for the above modeb( X¢,s| X¢—1) = p(X¢,s| Xt—1,5) the neighborhood of’y + B, f; which contains a minimizer
andm! = mi(xti—l,ng,th)- We obtain sufficient conditions for of E and whereE(C) is convex. Also|.| denotes absolute
Assumption 1 for this model and extend them to the model of [8]. value and[.], denote®'” coordinate of a vector.




Fig. 1. ComputingA’% for Example 1 (4 = 3,K = 1). We useda; = 0.1, s = 04, a = 10, 02, = 1, Ay = 5.4, B, =
[0.64 — 0.56 0.53]', B, = [0.73 0.66 — 0.18; —0.25 0.5 0.83]’ (we use MATLAB notation). AlsoC; ; = [00 0], vi_;, = [00],
Vi1, =0,Y = [6.43 1.68 — 3.59 — 2.5 1.59 1.49]" andv] , = 2.9 (simulated fromA\(0,A1)). Col. 1: mesh plot off as a
function of v, .. Col. 2: R, rc, note that the poinf: = v;@l,r lies inside it. Col. 3,4,5,6: the regions constitutiig.Ax,1 N Axk,2,
Zri1NAk2, Zr1 N Ak 2, Zk,1 N Zk 2 along with the computed value &* in the 4 regions (4.84, 745.24, 226.12, 1678.36). The final
value A% is the minimum of these 4 values, i.e. we ha¥g = 4.84. Col. 7: contours of VL]; = 0 and[VL]; = 0 for L computed
with A2 = Az = 0.9A%. The contours have only one point of intersection (only one point wRete= 0). Col. 8: contours of of
[VL]; = 0,5 =1,2for Ay = Ag = 1.1A%. There are 3 intersection points (3 points where = 0).

An easy to verify sufficient condition to ensure (4) holds is and spatially correlated. The eigenvectors of the covarianae of
) A are[B, B,] and the eigenvalues afe\,}. The coefficients along
p—T - K Ap+i < ml,rrlgg p:lT%t);—K’Yp(vt’T) =4k () B, B, denotedv, s, v:,», are assumed to follow a random walk
model with fs (vs) = vs and fr(vy) = vy.
Proof:www. ece. i ast at e. edu/ ~nanrata/ pfnt.full.pdf ConsiderM = 3 and K = 1 so thatv,, € R*. We need

to find a condition omM\,, A3 that ensures that assumption 1 holds.
Hereg is a subset of the 2D plane and consists of 4 types of regions:
A 1NAk 2, Zk1NAK 2, Ak 1NZK,2, Zx1NZKk, 2. We show an
example computation @k in Fig. 1 for which we gotA} = 4.84.

Remark 1 If E(C) is Lipschitz, we will always geh7 > 0 and
hence we can always find>a. > 0 for whichp™*"* is unimodal.
Corollary 1 For the LDSS model of [8], Theorem 1 applies with
the following modifications: (a) Repladg. f, by g(B, f;) every-
where. (b) Redefir€ E 2 BF'V,g(B, v, )V E(Ci4g(Brve.r))

with (V,9)i; 2 3? (c) Directly defineRx rc € RM X as the

3. PF-MT: PF WITH MODE TRACKER

L . . i LDSS problems very often have a small dimensional effective basis,
largest con.tlguous region n th? neighborhoodfpfwhere E(C; + Xt,s, in which most of the state change occurs and a large dimen-
9(Byuv,r)) is convex as_ a function ot sional residual space; -, in which the variance of the state change
Note, the above result is more general than that of [8]. is small, i.e. traces, ) is small. Thus trac&?s) < tracg3,.) will
2.2. Numerical Verification of Unimodality also be small. When this is true, a valid approximation is to replace
When trying to verify (3) using numerical (finite difference) compu- importance sampling oX; . from A (m}, X55) (step 2 in Algo-
tations of gradle_znts and Hessmﬁsr_n_eeds to be replaced by a small rithm 1) by deterministically setting(t"'w = m’. We call this the
numberey > 0, i.e. wecneed conditions to ensyf& L],| > o for  pode Tracking (MT) approximation sinee! is the mode of**".
somep for all ve,» € Ri¢ 1. To ensurg[VL],| > o for somep  Another valid approximation, whew, is small, is to seE g = 3.
for all vi € Ri,rc, the following two modifications are needed: Thjs and the fact thaki, = m: makes the denominator ab:
redefineZ., andy, (ve,) as follows constant (and hence it can be removed). The above modifications,
N c ) called PF-MT, are summarized in Algorithm Note, PF-MT (or
Zx.p=1{ver € Ric.pe + [[VElp| < co, &[VE],.[VD], > 0} PF-EIS) can be made faster (mode computation becomes a least
%’ Ver € Arp squares problem) if one can approximate OL by a linear Gaussian
¥ (ve,r) | ol . system, linearized abod;. This is motivated by (49) of [4].
rohT Kop Now, consider the model of (1). We show below that when

EO_HVE]M
Example 1 (ComputingAJ) Consider tracking temperature (de- tracgX,.) is small, with high probablllty, there is little error in re-
notedC:) at M locations. Temperature at each location is measure®/acing & random sample from (my, Xis), by mi.
using two types of sensors that have failure probabiliiegnda,. ~ Theorem 2 (IS-MT) For (1), assume that conditions of Theorem
If the sensor fails it outputs a random number distributed according are satisfied. Levi, ~ N(m;,Tis). Then,v;, converges
to a pdfp;(y). We assume here thay (y) = Unif(y; —a,a). If 10 my in probablllty as trac¢X,) — 0, for almost all values of
the sensor is working, the measured temperature is the actual tef—1,r Ci_1,vts, Ye.
perature plus Gaussian noise. The noise is independent of the noiBeoof:www. ece. i ast at e. edu/ ~nanr at a/ pfnt . ful | . pdf
at other sensors. Failure of all tB@/ sensors are also independent. ~ The MT approximation introduces some error in the estimate of

Thus we have the following observation likelihood (OL): X, (error decreases with decreasing spread of). But it reduces
M the PF dimension fromim(X;) to dim(X, ) (huge reduction for

p(Vi|Co) =[] p(Vip, Y25IC10) = p(Yitp|Crp)p(Yip|Crp) large dimensional problems), thus greatly improving the effective
p=1 particle size. For carefully chosen dimensionf s, this results

j e j in much smaller total error when the available number of particles,
P(Yipl|Crp)=(1 = & )N (Y7 p; Crpr o0, ) +oaps(Yey) ©) N, is small. Note also, that for best performance, one may choose a
The state dynamics follows (1), i.e. change in temperature over timémaller dimensionak,,- (larger dimensionak, ) for PF-MT than

(vy) at the different sensor locations is assumed to be zero medhat for PF-EIS, i.e. splif, . for PF-EIS intoX, , s and X, and
use the MT approximation only oN . ...



RMISE fom ground i, Tracking with N = 40 parices Mean RISE fiom ground ruth, Tracking i N = 50 partcles

—— k=0 (PF-Dauced o
A i e E
—O— Ko PF-Ongra)

P am
—B—eeur
—A—pres

. [ | oo [

/ —— PE-Doucer {“
1/ 8
/ : , ! ‘s

QYR e
/

(a) Example 2/ =3, K =1) (b)Example3{/ =10, K =1)

g KX,

B

5 & 0 12 u % 1B 2
ime, ¢

Fig. 2. (a) Comparing RMSE of PF-EIS (black\) with that of

other practical scenarios (which are difficult to run multiple Monte
Carlo runs of) such as contour tracking [10] or tracking temperature
in a wide area with large number of sensors, the state dimension can
be as large as 200 or 250 while one cannot use more than 50-100
particles (for computational reasons).

There are still some un-addressed issues for PF-MT. If all or
most particles{vi,s, 1)}7,\} stick to a wrong region somehow (because
of the strong prior term, this will happen only if there are a sequence
of bad observations), future particlesmifs may get back because
of random sampling, butiw will take very long (again because of
strong prior term and no random sampling). This will resultin loss of
track. This problem will be much lesser if the dynamicsof is ei-
ther temporally independent or at least temporally stationary. Under
this assumption, one should be able to show convergence of PF-MT

PF-Doucet (red -*) & PF-Orig (magenta -0). RMSE is computedase (used in Theorem 2) goes to zero. Temporal independence is a
by taking the square root of the average (over 30 simulations) of thgalid model for problems where the state vector can be interpreted as

squared error norm between the true temperature valijesnd the
tracked ones (PF estimate BfC:|Y1.¢]). M = 3andK = 1. (b)

Comparing RMSE (over 25 simulations) of PF-MT (blug)-with

PF-D, PF-Orig, PF-EIS & PH< dim (green -x).

4. SIMULATION RESULTS AND DISCUSSION

Example 2 Consider Example 1 witl/ = 3 sensor nodes and
K = Kqm = 1. Let sensors at locations” + 1 to M have zero
failure probability (new sensors) and tH&t, B,| = I. Thus OL is
multimodal only as a function of’; 1.x. Because of the choice of
[Bs By], Ci,1.x depends only om; s and hence OL is multimodal
only as a function ob,_, (and notwv; ,.). In fact E will be a convex
function of v . and henceR% ;- will be empty. Thus Theorem
1 holds forK = K = 1 with A7 = oo and so PF-EIS can
be applied for any values &,. System parameters wesg,, =

1, pf = Unif(—100,100), o' = o® = [0.10 0], A; = 10,

a “spatial signal” (e.g. temperature in space or contour tracking) and
the effective basis is velocity at a subsampled set of points. For such
problems, the state change (temperature change or contour deforma-
tion) is usually approximately bandlimited (spatially) at a frequency
much smaller than the sampling frequency of the sensors or the im-
age and so the value & (computed using Nyquist criterion for the
approximate bandwidth) is much smaller thah[12].

5. REFERENCES

[1] N.J. Gordon, D.J. Salmond, and A.F.M. Smith, “Novel ap-
proach to nonlinear/nongaussian bayesian state estimalfitn,”
Proceedings-F (Radar and Signal Processijmp. 140(2):107—

113, 1993.
S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, ‘A

tutorial on particle filters for on-line non-linear/non-gaussian
bayesian tracking,"I[EEE Trans. Sig. Prog¢.vol. 50, no. 2, pp.
174-188, Feb. 2002.

(2]

Ay = Az = 5. To demonstrate the need for PF-EIS over PF-Doucef3] A. Doucet, N. deFreitas, and N. Gordon, Edeguential Monte

(PF-D), we ran a biased simulation, i.e. we usé(dl) = 0.99 &
p} = N(C¢/2,0), for t < 7 while simulating the data.

RMSEs of the tracked temperatures from their true value for this

system, obtained using using PF-EIS with= K;m = 1, K = 0
(PF-D [4]), andK = M (original-PF[1]) is shown in Fig. 2(a). As
can be seen, RMSE is smallest for PF-EIS.

Example 3 Consider Example 1 witth/ = 10 sensor nodes. All
sensors have nonzero failure probabilify;= 1 and[ B, B,] was an
M x M orthonormal matrix (nof). The parameters were?>,, =
5, pf = Unif(—10,10); o' = [0.4 0g], a® = [0.1 0g], Bs =
[0.56 0.28¢]’, B, = its orthogonal complemeny; = 10, &, = Iy.
HereOy denotes a vector 9 zeros. No biased simulation was run.

To track this system, a regular PF (PF-original, PF-D or PF-EIS)

will have to sample on\/ = 10 dimensions. But PF-MT utilizes
the fact that the variance in residual space, is much smaller than
Y. It approximates; . by its posterior mode at each(instead

Carlo Methods in PracticeSpringer, 2001. )
[4] A. Doucet, “On sequential monte carlo sampling methods for
bayesian filtering,” inTechnical Report CUED/F-INFENG/TR.
310, Cambridge University Department of Engineerih§98.
Rudolph van der Merwe, Nando de Freitas, Arnaud Doucet, and
Eric Wan, “The unscented particle filter,” A&dvances in Neural
Information Processing Systems, Nbv 2001. )
[6] J.P. MacCormick and A. Blake, “A probabilistic contour dis-
criminant for object localisation JEEE Intl. Conf. on Computer
Vision (ICCV) Mumbai, India, June 1998.
R. Chen and J.S. Liu, “Mixture kalman filtersJournal of the
Royal Statistical Societyol. 62(3), pp. 493-508, 2000.
N.Vaswani, A.Yezzi, Y.Rathi, and A.Tannenbaum, “Particle fil-
ters for infinite (or large) dimensional state spaces-part 1,” in
ICASSR2006. ] o ) ]
9] N.Vaswani, “Particle filters for infinite (or large) dimensional
state spaces-part 2,” ITASSP 2006. ] )
[10] Y. Rathi, N. Vaswani, A. Tannenbaum, and A. Yezzi, “Particle

(5]

(7]
(8]

of importance sampling for it). This way the importance sampling
dimension is onlyK = 3, but because of the MT step, the perfor-
mance is much better than just running a K-dim original PF (run the
PF only on the firs& dimensions and treat , = 0 for all ¢). Also,
for small number of particlesy, its effective particle size is much
better than that for either PF-EIS or PF-Origin& dim) and hence
error is much smaller. As can be seen from Fig. 2(b), both/PF-
dim and either of PF-D, PF-EIS or PF-Original perform much worse
than PE-MT. If N is allowed to increase, PF-EIS or PF-D have the
best performance (depending on amount of multimodality).

Note thatM = 10 is a large enough dimensional state space if
reasonable accuracy is desired with as lowNas= 50 particles. In

filtering for geometric active contours and application to track-
ing deforming objects,” inEEE Conf. on Computer Vision and
Pattern Recognition (CVPR2005.

[11] N. Vaswani, A. Yezzi, Y. Rathi, and A. Tannenbaum, “Time-

varying finite dimensional basis for tracking contour deforma-
tions from image sequences,” @DC, 2006.

] N. Vaswani, Y. Rathi, A. Yezzi, and A. Tannenbaum, “Pf-mt

with an interpolation effective basis for tracking local contour
deformations,’submitted 2007.

[13] A. Kale, N. Vaswani, and C. Jaynes, “Particle filter with mode

tracker (pf-mt) for visual tracking across illumination change,”
in ICASSR2007.



