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Modified-CS: Modifying Compressive Sensing for
Problems With Partially Known Support

Namrata Vaswani and Wei Lu

Abstract—We study the problem of reconstructing a sparse
signal from a limited number of its linear projections when a part
of its support is known, although the known part may contain
some errors. The “known” part of the support, denoted , may
be available from prior knowledge. Alternatively, in a problem
of recursively reconstructing time sequences of sparse spatial
signals, one may use the support estimate from the previous time
instant as the “known” part. The idea of our proposed solution
(modified-CS) is to solve a convex relaxation of the following
problem: find the signal that satisfies the data constraint and is
sparsest outside of . We obtain sufficient conditions for exact
reconstruction using modified-CS. These are much weaker than
those needed for compressive sensing (CS) when the sizes of the
unknown part of the support and of errors in the known part are
small compared to the support size. An important extension called
regularized modified-CS (RegModCS) is developed which also
uses prior signal estimate knowledge. Simulation comparisons for
both sparse and compressible signals are shown.

Index Terms—Compressive sensing, modified-CS, partially
known support, prior knowledge, sparse reconstruction.

I. INTRODUCTION

I N this work, we study the sparse reconstruction problem
from noiseless measurements when a part of the support is

known, although the known part may contain some errors. The
“known” part of the support may be available from prior knowl-
edge. For example, consider MR image reconstruction using
the 2-D discrete wavelet transform (DWT) as the sparsifying
basis. If it is known that an image has no (or very little) black
background, all (or most) approximation coefficients will be
nonzero. In this case, the “known support” is the set of indexes
of the approximation coefficients. Alternatively, in a problem
of recursively reconstructing time sequences of sparse spatial
signals, one may use the support estimate from the previous
time instant as the “known support”. This latter problem occurs
in various practical applications such as real-time dynamic MRI
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reconstruction, real-time single-pixel camera video imaging or
video compression/decompression. There are also numerous
other potential applications where sparse reconstruction for
time sequences of signals/images may be needed, e.g., see [3]
and [4].

Sparse reconstruction has been well studied for a while, e.g.,
see [5] and [6]. Recent work on compressed sensing (CS) gives
conditions for its exact reconstruction [7]–[9] and bounds the
error when this is not possible [10], [11].

Our recent work on least squares CS-residual (LS-CS) [12],
[13] can be interpreted as a solution to the problem of sparse
reconstruction with partly known support. LS-CS replaces CS
on the observation by CS on the LS observation residual, com-
puted using the “known” part of the support. Since the obser-
vation residual measures the signal residual which has much
fewer large nonzero components, LS-CS greatly improves re-
construction error when fewer measurements are available. But
the exact sparsity size (total number of nonzero components) of
the signal residual is equal to or larger than that of the signal.
Since the number of measurements required for exact recon-
struction is governed by the exact sparsity size, LS-CS is not
able to achieve exact reconstruction using fewer noiseless mea-
surements than those needed by CS.

Exact reconstruction using fewer noiseless measurements
than those needed for CS is the focus of the current work.
Denote the “known” part of the support by . Our proposed
solution (modified-CS) solves an relaxation of the following
problem: find the signal that satisfies the data constraint and is
sparsest outside of . We derive sufficient conditions for exact
reconstruction using modified-CS. When is a fairly accurate
estimate of the true support, these are much weaker than the
sufficient conditions for CS. For a recursive time sequence
reconstruction problem, this holds if the reconstruction at
is exact and the support changes slowly over time. The former
can be ensured by using more measurements at , while
the latter is often true in practice, e.g., see Fig. 1.

We also develop an important extension called regularized
modified-CS which also uses prior signal estimate knowledge.
It improves the error when exact reconstruction is not possible.

A part of this work appeared in [1]. In parallel and indepen-
dent work in [14], Khajehnejad et al. have also studied a sim-
ilar problem to ours but they assume a probabilistic prior on the
support. Other related work includes [15]. Very recent work on
causal reconstruction of time sequences includes [16] (focuses
on the time-invariant support case) and [17] (use past estimates
to only speed up the current optimization but not to improve
reconstruction error). Except [14], none of these prove exact re-
construction using fewer measurements and except [14], [15],
none of these even demonstrate it.

1053-587X/$26.00 © 2010 IEEE
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Fig. 1. In Fig. 1(a), we show two medical image sequences. In Fig. 1(b), �
refers to the 99% energy support of the two-level Daubechies-4 2-D discrete
wavelet transform (DWT) of these sequences. �� � varied between 4121–4183
�� ������ for larynx and between 1108–1127 �� ������ for cardiac. We
plot the number of additions (left) and the number of removals (right) as a frac-
tion of �� �. (Notice that all changes are less than 2% of the support size.)
(a) Top: Larynx image sequence; bottom: cardiac sequence; (b) slow support
change plots; left: additions; right: removals.

Other recent work, e.g., [18], applies CS on observation dif-
ferences to reconstruct the difference signal. While their goal
is to only estimate the difference signal, the approach could be
easily modified to also reconstruct the actual signal sequence
(we refer to this as CS-diff). But, since all nonzero coefficients
of a sparse signal in any sparsity basis will typically change over
time, though gradually, and some new elements will become
nonzero, thus the exact sparsity size of the signal difference will
also be equal to/larger than that of the signal itself. As a result
CS-diff will also not achieve exact reconstruction using fewer
measurements, e.g., see Fig. 3.

In this work, whenever we use the term CS, we are actually
referring to basis pursuit (BP) [5]. As pointed out by an anony-
mous reviewer, modified-CS is a misnomer and a more appro-
priate name for our approach should be modified-BP.

As pointed out by an anonymous reviewer, modified-CS can
be used in conjunction with multiscale CS for video compres-
sion [19] to improve their compression ratios.

The paper is organized as follows. We give the notation
and problem definition below. Modified-CS is developed in
Section II. We obtain sufficient conditions for exact recon-
struction using it in Section III. In Section IV, we compare
these with the corresponding conditions for CS and we also
do a Monte Carlo comparison of modified-CS and CS. We
discuss dynamic modified-CS and regularized modified CS in
Section V. Comparisons for actual images and image sequences
are given in Section VI and conclusions and future work in
Section VII.

A. Notation

We use for transpose. The notation denotes the norm
of the vector . The pseudo-norm, , counts the number

of nonzero elements in . For a matrix, , denotes its
induced norm, i.e., .

We use the notation to denote the sub-matrix containing
the columns of with indexes belonging to . For a vector, the
notation (or ) refers to a sub-vector that contains the
elements with indexes in . The notation, .
We use to denote the complement of the set w.r.t. ,
i.e., . The set operations, , stand for set union
and intersection, respectively. Also denotes
set difference. For a set , denotes its size (cardinality). But
for a scalar, , denotes the magnitude of .

The -restricted isometry constant [9], , for a matrix, , is
defined as the smallest real number satisfying

(1)

for all subsets of cardinality and all real
vectors of length . The restricted orthogonality constant [9],

, is defined as the smallest real number satisfying

(2)

for all disjoint sets with and
and with , and for all vectors , of length ,

, respectively. By setting in (2), it is easy
to see that

(3)

The notation means that is Gaussian dis-
tributed with mean and covariance while is used
to denote the value of the Gaussian PDF.

B. Problem Definition

We measure an -length vector where

(4)

We need to estimate which is a sparse -length vector with
. The support of , denoted , can be split as

where is the “known” part of the support,
is the error in the known part and is the

unknown part. Thus, and , are disjoint. Also,
.

We use to denote the size of the support ( ),
to denote the size of the known ( ) part of the support,
to denote the size of the error ( ) in the known part and
to denote the size of the unknown ( ) part of the support.

We assume that satisfies the -restricted isometry prop-
erty (RIP) [9] for . -RIP means
that where is the RIP constant for defined in (1).

In a static problem, is available from prior knowledge. For
example, in the MRI problem described in the introduction, let

be the (unknown) set of all DWT coefficients with magni-
tude above a certain zeroing threshold. Assume that the smaller
coefficients are set to zero. Prior knowledge tells us that most
image intensities are nonzero and so the approximation coeffi-
cients are mostly nonzero. Thus, we can let be the (known) set
of indexes of all the approximation coefficients. The (unknown)
set of indexes of the approximation coefficients which are zero
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form . The (unknown) set of indexes of the nonzero detail
coefficients form .

For the time series problem, and with support,
, and is the support estimate

from the previous time instant. If exact reconstruction occurs
at , . In this case, is the
set of indexes of elements that were nonzero at , but are
now zero (deletions) while is the newly added
coefficients at (additions). Slow sparsity pattern change over
time (see, e.g., Fig. 1) then implies that and
are much smaller than .

When exact reconstruction does not occur, includes both
deletions and the extras from , . Similarly,
includes both additions and the misses from , .
In this case slow support change, along with being an
accurate estimate of , still implies that and .

II. MODIFIED COMPRESSIVE SENSING

Our goal is to find a signal that satisfies the data constraint
given in (4) and whose support contains the smallest number
of new additions to , although it may or may not contain all
elements of . In other words, we would like to solve

subject to (5)

If is empty, i.e., if , then the solution of (5) is
also the sparsest solution whose support contains .

As is well known, minimizing the norm is a combinatorial
optimization problem [20]. We propose to use the same trick
that resulted in CS [5], [7], [8], [10]. We replace the norm
by the norm, which is the closest norm to that makes the
optimization problem convex, i.e., we solve

subject to (6)

Denote its output by . If needed, the support can be estimated
as

(7)

where is a zeroing threshold. If exact reconstruction
occurs, can be zero. We discuss threshold setting for cases
where exact reconstruction does not occur in Section V-A.

III. EXACT RECONSTRUCTION RESULT

We first analyze the version of modified-CS in
Section III-A. We then give the exact reconstruction result
for the actual problem in Section III-B. In Section III-C, we
give the two key lemmas that lead to its proof and we explain
how they lead to the proof. The complete proof is given in the
Appendix. The proof of the lemmas is given in Section III-D.

Recall that , , and .

A. Exact Reconstruction Result: Version of Modified-CS

Consider the problem, (5). Using a rank argument similar
to [9, Lemma 1.2], we can show the following. The proof is
given in the Appendix.

Proposition 1: Given a sparse vector, , with support,
, where and are disjoint and . Consider

reconstructing it from by solving (5). is the unique
minimizer of (5) if ( satisfies the -RIP).

Using , this is equivalent to .
Compare this with [9, Lemma 1.2], for the version of CS.
It requires which is much stronger when and

, as is true for time series problems.

B. Exact Reconstruction Result: Modified-CS

Of course we do not solve (5) but its relaxation, (6). Just
like in CS, the sufficient conditions for this to give exact recon-
struction will be slightly stronger. In the next few subsections,
we prove the following result.

Theorem 1 (Exact Reconstruction): Given a sparse vector, ,
whose support, , where and are disjoint and

. Consider reconstructing it from by solving
(6). is the unique minimizer of (6) if

1) and and
2) , where

(8)

The above conditions can be rewritten using .
To understand the second condition better and

relate it to the corresponding CS result, let us sim-
plify it.

. Simplifying
further, a sufficient condition for is

. Further, a suffi-
cient condition for this is

.
To get a condition only in terms of ’s, use the fact that

[9]. A sufficient condition is
. Further, notice that if and if

, then
.

Corollary 1 (Exact Reconstruction): Given a sparse vector, ,
whose support, , where and are disjoint and

. Consider reconstructing it from by solving
(6).

• is the unique minimizer of (6) if and

(9)

• This, in turn, holds if

• This, in turn, holds if and

These conditions can be rewritten by substituting .
Compare (9) to the sufficient condition for CS given in [9]:

(10)

As shown in Fig. 1, usually , and (which
means that ). Consider the case when the number of mea-
surements, , is smaller than what is needed for exact recon-
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struction for a given support size, , but is large enough to ensure
that . Under these assumptions, compare (9) with
(10). Notice that (a) the first bracket of the left-hand side (LHS)
of (9) will be small compared to the LHS of (10). The same will
hold for the second and third terms of its second bracket com-
pared with the second and third terms of (10). The first term of
its second bracket, , will be smaller than the first term of (10),

. Thus, for a certain range of values of , it may happen that
(9) holds, but (10) does not hold, e.g., if , (10) will not
hold, but if , (9) can hold if are small
enough. A detailed comparison is done in Section IV.

Proof of Theorem 1: Main Lemmas and Proof Outline

The idea of the proof is motivated by that of [9, Theorem 1.3].
Suppose that we want to minimize a convex function sub-
ject to and that is differentiable. The Lagrange mul-
tiplier optimality condition requires that there exists a Lagrange
multiplier, , s.t. . Thus, for to be a solu-
tion we need . In our case,

. Thus, for and
for . For , . Since is not dif-

ferentiable at 0, we require that lie in
the subgradient set of at 0, which is the set [21].
In summary, we need a that satisfies

if

if and

if (11)

Lemma 1 below shows that by using (11) but with
replaced by for all , we get a set of
sufficient conditions for to be the unique solution of (6).

Lemma 1: The sparse signal, , with support as defined in
Theorem 1, and with , is the unique minimizer of (6) if

and if we can find a vector satisfying the following:
1) if ;
2) if ;
3) if .

Recall that and .
The proof is given in the next subsection.
Next we give Lemma 2 which constructs a which satisfies

and for any set disjoint with of size
and for any given vector of size . It also bounds

for all where is called an “exceptional
set.” We prove Theorem 1 by applying Lemma 2 iteratively to
construct a that satisfies the conditions of Lemma 1 under the
assumptions of Theorem 1.

Lemma 2: Given the known part of the support, , of size .
Let , be such that and .
Let be a vector supported on a set , that is disjoint with , of
size . Then there exists a vector and an exceptional
set, , disjoint with , s.t.

(12)

and

(13)

where is defined in (8) and

(14)

The proof is given in the next subsection.
Proof Outline of Theorem 1: To prove Theorem 1, apply

Lemma 2 iteratively, in a fashion similar to that of the proof
of [9, Lemma 2.2], (this proof had some important typos). The
main idea is as follows. At iteration zero, apply Lemma 2 with

(so that ), , and ,
to get a and an exceptional set , of size less than , that
satisfy the above conditions. At iteration , apply Lemma
2 with (so that ), ,

and to get a and an ex-
ceptional set , of size less than . Lemma 2 is applicable
in the above fashion because condition 1 of Theorem 1 holds.
Define . We then argue that if condition
2 of Theorem 1 holds, satisfies the conditions of Lemma 1.
Applying Lemma 1, the result follows. We give the entire proof
in the Appendix.

Proofs of Lemmas 1 and 2

We prove the lemmas from the previous subsection here. Re-
call that and .

Proof of Lemma 1: The proof is motivated by [9, Sec. II-A].
There is clearly at least one element in the feasible set of (6) - -
and hence there will be at least one minimizer of (6). Let be a
minimizer of (6). We need to prove that if the conditions of the
lemma hold, it is equal to . For any minimizer, ,

(15)

Recall that is zero outside of , and are disjoint,
and is always nonzero on the set . Take a that satisfies the
three conditions of the lemma. Then

(16)
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Now, the only way (16) and (15) can hold simultaneously is if
all inequalities in (16) are actually equalities. Consider the first
inequality. Since is strictly less than 1 for all ,
the only way is if
for all .

Since both and solve (6), . Since
for all , this means that

or that . Since
, is full rank and so the only way this can

happen is if . Thus, any minimizer, ,
i.e., is the unique minimizer of (6).

Proof of Lemma 2: The proof of this lemma is significantly
different from that of the corresponding lemma in [9], even
though the form of the final result is similar.

Any that satisfies will be of the form

(17)

We need to find a s.t. , i.e., . Let
. Then .

This follows because since is a projec-
tion matrix. Thus

(18)

Consider any set with disjoint with . Then

(19)

Consider the first term from the right-hand side (RHS) of (19).

(20)

Consider the second term from the RHS of (19). Since
is non-negative definite

(21)

Now,
which is the difference of two symmetric non-negative definite
matrices. Let denote the first matrix and the second one.
Use the fact that

where denote the min-
imum, maximum eigenvalue. Since and

,
thus

(22)

as long as the denominator is positive. It is positive because we
have assumed that . Using (20) and (22) to
bound (19), we get that for any set with ,

(23)

where is defined in (8). Notice that is non-
decreasing in , , . Define an exceptional set as

(24)

Notice that must obey since otherwise we can
contradict (23) by taking .

Since and is disjoint with , (23) holds for
, i.e., . Also, by definition of

, , for all . Finally,

(25)

since (holds because is a projection matrix). Thus,
all equations of (13) hold. Using (18), (12) holds.

IV. COMPARISON OF CS AND MODIFIED-CS

In Theorem 1 and Corollary 1, we derived sufficient
conditions for exact reconstruction using modified-CS. In
Section IV-A, we compare the sufficient conditions for mod-
ified-CS with those for CS. In Section IV-B, we use Monte
Carlo to compare the probabilities of exact reconstruction for
both methods.

A. Comparing Sufficient Conditions

We compare the sufficient conditions for modified-CS and for
CS, expressed only in terms of ’s. Sufficient conditions for
an algorithm serve as a designer’s tool to decide the number of
measurements needed for it and in that sense comparing the two
sufficient conditions is meaningful.

For modified-CS, from Corollary 1, the sufficient condition
in terms of only ’s is .
Using , this becomes

(26)

For CS, two of the best (weakest) sufficient conditions that use
only ’s are given in [22], [23], and [11]. Between these two,
it is not obvious which one is weaker. Using [22] and [11], CS
achieves exact reconstruction if either

(27)

To compare (26) and (27), we use which
is typical for time series applications (see Fig. 1). One way to
compare them is to use [24, Corollary 3.4] to get the
LHS’s of both in terms of a scalar multiple of . Thus, (26)
holds if and . Since

, the second condition implies the first, and so
only is sufficient. On the other hand, (27) holds
if which is clearly stronger.

Alternatively, we can compare (26) and (27) using the high
probability upper bounds on as in [9]. Using [9, eq. 3.22],
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Fig. 2. Plots of � and � (in (a) and (b)) and � (in (c)) against ��� for 3 different values of ���. For � , we used � � � � ����. Notice that,
for any given ���, the maximum allowed sparsity, ���, for � � � is larger than that for which either � � � or � �

�
�� �. Also, both are much

smaller than what is observed in simulations (a) Plots of � defined in (29). (b) Plots of � defined in (29). (c) Plots of � defined in (28).

for an random Gaussian matrix, with high probability
(w.h.p.), , where

where

and binary entropy for
. Thus, w.h.p., modified-CS achieves exact reconstruction

from random-Gaussian measurements if

(28)

Similarly, from (27), w.h.p., CS achieves exact reconstruction
from random-Gaussian measurements if either

or

(29)

In Fig. 2, we plot , and against for three
different choices of . For , we use
(from Fig. 1). As can be seen, the maximum allowed sparsity,
i.e., the maximum allowed value of , for which either

or is smaller than that for which .
Thus, for a given number of measurements, , w.h.p., modi-
fied-CS will give exact reconstruction from random-Gaussian
measurements, for larger sparsity sizes, , than CS would.
As also noted in [9], in all cases, the maximum allowed is
much smaller than what is observed in simulations, because of
the looseness of the bounds. For the same reason, the difference
between CS and modified-CS is also not as significant.

B. Comparison Using Monte Carlo

So far we only compared sufficient conditions. The actual
allowed for CS may be much larger. To actually compare exact
reconstruction ability of modified-CS with that of CS, we thus

need Monte Carlo. We use the following procedure to obtain a
Monte Carlo estimate of the probability of exact reconstruction
using CS and modified-CS, for a given (i.e., we average over
the joint distribution of and given ).

1) Fix signal length, and its support size,
. Select , and .

2) Generate the random-Gaussian matrix, (gen-
erate an matrix with independent identically dis-
tributed (i.i.d.) zero mean Gaussian entries and normalize
each column to unit norm).1

3) Repeat the following times.
a) Generate the support, , of size , uniformly at

random from .
b) Generate . Set .
c) Set .
d) Generate of size uniformly at random from the

elements of .
e) Generate of size , uniformly at random from the

elements of .
f) Let . Run modified-CS, i.e., solve

(6)). Call the output .
g) Run CS, i.e., solve (6) with being the empty set.

Call the output .
4) Estimate the probability of exact reconstruction

using modified-CS by counting the number of times
was equal to (“equal” was defined as

) and dividing by .
5) Do the same for CS using .
6) Repeat for various values of , , and .
We set and and we varied between

and . For each , we varied
between to and between 0 to . We

tabulate our results in Table I. The case and
corresponds to CS. Notice that when is just

, modified-CS achieves exact reconstruction more than 99.8%
of the times if and . In this case, CS has
zero probability of exact reconstruction. With ,
CS has a very small (14%) chance of exact reconstruction. On
the other hand, modified-CS works almost all the time for

1As pointed out by an anonymous reviewer, we actually do not need to nor-
malize each column to unit norm. As proved in [25], a matrix with i.i.d. zero
mean Gaussian entries with variance ��� will itself satisfy the RIP. If the vari-
ance is not ���, there will just be a scaling factor in the RIP. This does not affect
reconstruction performance in any way.
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TABLE I
PROBABILITY OF EXACT RECONSTRUCTION FOR MODIFIED-CS. RECALL THAT � � ���, � � �� � AND � � �� �. NOTICE THAT � � � AND � � �

CORRESPONDS TO CS. (a) � � �����; (b) � � �����; (c) � � �����; (d) � � ��	��; AND (e) � � ��
��

and . CS needs at least to work
reliably.

The above simulation was done in a fashion similar to that of
[9]. It does not compute the required for Theorem 1 to hold.
Theorem 1 says that if is large enough for a given , , ,
so that the two conditions given there hold, modified-CS will
always work. But all we show above is that (a) for certain large
enough values of , the Monte Carlo estimate of the probability
of exact reconstruction using modified-CS is one (probability
computed by averaging over the joint distribution of and );
and (b) when , , this happens for much smaller values of

with modified-CS than with CS.
As pointed out by an anonymous reviewer, Monte Carlo only

computes expected values (here, expectation of the indicator
function of the event that exact reconstruction occurs) and thus,
it ignores the pathological cases which occur with zero proba-
bility [26], [27]. In [26], the authors give a greedy pursuit al-
gorithm to find these pathological cases for CS, i.e., to find the
sparsest vector for which CS does not give exact reconstruc-
tion. The support size of this vector then gives an upper bound on
the sparsity that CS can handle. Developing a similar approach
for modified-CS is a useful open problem.

C. Robustness to Noise

Using an anonymous reviewer’s suggestion, we studied the
robustness of modified-CS to measurement noise. Of course no-
tice that in this case the true signal, , does not satisfy the data
constraint. Thus, it is not clear if (6) will even be feasible. A
correct way to approach noisy measurements is to relax the data
constraint as is done for CS in [5] or [22]. This is done for mod-
ified-CS in our recent work [28] and also in [29].

In practice though, at least with random Gaussian measure-
ments and small enough noise, (6) did turn out to be feasible,
i.e., we were able find a solution, in all our simulations. We used

, , and . We ran
the simulation as in step 3 of the previous subsection with the
following change. The measurements were generated as

where . We varied and compared
the normalized root mean squared error (N-RMSE) of modi-
fied-CS with that of CS in Table II. N-RMSE is computed as

where denotes the expected value
computed using Monte Carlo. Recall that .

TABLE II
RECONSTRUCTION ERROR (N-RMSE) FROM NOISY MEASUREMENTS

When the noise is small enough, modified-CS has small error.
CS has large error in all cases since is too small for it.

V. EXTENSIONS OF MODIFIED-CS

We now discuss some key extensions—dynamic modi-
fied-CS, regularized modified-CS (RegModCS), and dynamic
RegModCS. RegModCS is useful when exact reconstruction
does not occur—either is too small for exact reconstruction
or the signal is compressible. The dynamic versions are for
recursive reconstruction of a time sequence of sparse signals.

Before going further we define the -energy support.
Definition 1 ( -Energy Support or -Support): For sparse

signals, clearly the support is . For
compressible signals, we misuse notation slightly and let be
the -energy support, i.e., , where

is the largest real number for which contains at least of
the signal energy, e.g., in Fig. 1.

A. Dynamic Modified-CS: Modified-CS for Recursive
Reconstruction of Signal Sequences

The most important application of modified-CS is for recur-
sive reconstruction of time sequences of sparse or compressible
signals. To apply it to time sequences, at each time , we solve
(6) with where is the support estimate from

and is computed using (7). At we can either initialize
with CS, i.e., set to be the empty set, or with modified-CS
with being the support available from prior knowledge, e.g.,
for wavelet sparse images, could be the set of indexes of the
approximation coefficients. The prior knowledge is usually not
very accurate and thus at one will usually need more mea-
surements i.e., one will need to use where is an

measurement matrix with . The full algorithm
is summarized in Algorithm 1.

Algorithm 1 Dynamic Modified-CS: At , compute
as the solution of , where



4602 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 9, SEPTEMBER 2010

is either empty or is available from prior knowledge. Compute
. For , do:

1) Modified-CS: Let . Compute as the solution
of .

2) Estimate the Support: .
3) Output the reconstruction .

Feedback , increment , and go to step 1).
1) Threshold Selection: If is large enough for exact recon-

struction, the support estimation threshold, , can be set to zero.
In case of very accurate reconstruction, if we set to be equal/
slightly smaller than the magnitude of the smallest element of
the support, it will ensure zero misses and fewest false additions.
As is reduced further (error increases), should be increased
further to prevent too many false additions. For compressible
signals, one should do the above but with “support” replaced
by the -support, i.e., should be equal/slightly smaller than
the magnitude of the smallest element of the -support. For a
given , should be chosen to be just large enough so that the
elements of the -support can be exactly reconstructed.

Alternatively, one can use the approach proposed in [13, Sec-
tion II]. First, only detect additions to the support using a small
threshold (or keep adding largest elements into and stop when
the condition number of becomes too large); then compute
an LS estimate on that support and then use this LS estimate to
perform support deletion, typically, using a larger threshold. If
there are few misses in the support addition step, the LS esti-
mate will have lower error than the output of modified-CS, thus
making deletion more accurate.

B. RegModCS: Regularized Modified-CS

So far we only used prior knowledge about the support to re-
duce the required for exact reconstruction or to reduce the
error in cases where exact reconstruction is not possible. If we
also know something about how the signal along was gener-
ated, e.g., we know that the elements of were generated from
some distribution with mean , we can use this knowledge2 to
reduce the reconstruction error by solving

(30)

We call the above regularized modified-CS or RegModCS. De-
note its output by .

We ran a Monte Carlo simulation to compare modified-CS
with RegModCS for sparse signals. We fixed ,

, . We used
in three sets of simulations done in a fashion similar to that of
Section IV-B, but with the following change. In each run of a
simulation, we generated each element of to be i.i.d.
with probability (w.p.) 1/2 and each element of and of to
be i.i.d. w.p. 1/2. We generated and
we set . We set . We tested RegModCS with
various values of ( corresponds to modified-CS). We
used . The results are tabulated in Table III. We com-
puted the exact reconstruction probability as in Section IV-B by
counting the number of times equals and normalizing.

2Because of error in � , this knowledge is also not completely correct.

TABLE III
COMPARING PROBABILITY OF EXACT RECONSTRUCTION (PROB)
AND RECONSTRUCTION ERROR (ERROR) OF REGMODCS WITH

DIFFERENT �’S. � � � CORRESPONDS TO MODIFIED-CS.
(a) � � �����; (b) � � �����; AND (c) � � �����

As can be seen, RegModCS does not improve the exact recon-
struction probability, in fact it can reduce it. This is primarily
because the elements of are often nonzero, though
small3. But, it significantly reduces the reconstruction error, par-
ticularly when is small.

C. Setting Using an MAP Interpretation of RegModCS

One way to select is to interpret the solution of (30) as
a maximum a posteriori (MAP) estimate under the following
prior model and under the observation model of (4). Given the
prior support and signal estimates, and , assume that
and are mutually independent and

(31)

i.e., all elements of are mutually independent; each element
of is zero mean Laplace distributed with parameter ; and
the element of is Gaussian with mean and variance .
Under the above model, if in (30), then, clearly, its
solution, , will be an MAP solution.

Given i.i.d. training data, the maximum likelihood esti-
mate (MLE) of , can be easily computed in closed form.

D. Dynamic Regularized Modified-CS

To apply RegModCS to time sequences, we solve (30) with
and . Thus, we use Algorithm 1 with

step 1 replaced by

(32)
and in the last step of Algorithm 1, we feed back and .

In Appendix I-C, we give the conditions under which the so-
lution of (32) becomes a causal MAP estimate. To summarize
that discussion, if we set where are the
parameters of the signal model given in Appendix I-C, and if
we assume that the previous signal is perfectly estimated from

with the estimate being zero outside and equal

3But if we use �� to first estimate the support using a small threshold,�, and
then estimate the signal as � �	, this probability does not decrease as much
and in fact it even increases when � is smaller.
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Fig. 3. Reconstructing the sparsified 32� 32 cardiac image sequence. � � ����, � � �����, � � ������. (a)� � � , (b)� ��	 . Similar results were also
obtained for the larynx sequence. These are shown in [2, Fig. 3], (not repeated here due to lack of space). (a) � � � , 
 � ����,
 � ����� (b) � ��	 ,

 � ����, 
 � �����.

Fig. 4. Reconstructing a 32� 32 block of the actual (compressible) larynx sequence from random Gaussian measurements. � � ����, 99%-energy support size,
� � �����, � � ������ and � � ������. Modified-CS used � � �� when 
 � ���	� and increased it to � � 
� when 
 � ����� (a) � � � ,

 � ���	�, 
 � ���	� (b) � � � , 
 � ���	�, 
 � �����.

to on it, then the solution of (32) will be the causal
MAP solution under that model.

In practice, the model parameters are usually not known. But,
if we have a training time sequence of signals, we can compute
their MLEs using (42), also given in Appendix I-C.

VI. RECONSTRUCTING SPARSIFIED/TRUE IMAGES FROM

SIMULATED MEASUREMENTS

We simulated two applications: CS-based image/video com-
pression (or single-pixel camera imaging) and static/dynamic
MRI. The measurement matrix was where is the
sparsity basis of the image and models the measurement ac-
quisition. All operations are explained by rewriting the image as
a 1-D vector. We used where is an orthonormal ma-
trix corresponding to a 2D-DWT for a two-level Daubechies-4
wavelet. For video compression (or single-pixel imaging),
is a random Gaussian matrix, denoted , (i.i.d. zero mean
Gaussian matrix with columns normalized to unit
norm). For MRI, is a partial Fourier matrix, i.e.,
where is an mask which contains a single 1 at a dif-
ferent randomly selected location in each row and all other en-
tries are zero and is the matrix corresponding to the 2-D dis-
crete Fourier transform (DFT).

N-RMSE, defined here as , is used to com-
pare the reconstruction performance. We first used the sparsified
and then the true image and then did the same for image se-
quences. In all cases, the image was sparsified by computing its
2D-DWT, retaining the coefficients from the 99%-energy sup-
port while setting others to zero and taking the inverse DWT. We
used the two-level Daubechies-4 2D-DWT as the sparsifying
basis. We compare modified-CS and RegModCS with simple
CS, CS-diff [18] and LS-CS [13].

For solving the minimization problems given in (6) and (30),
we used CVX, http://www.stanford.edu/ boyd/cvx/, for smaller
sized problems . All simulations of Section IV and
all results of Table IV and Figs. 3 and 4 used CVX. For bigger
signals/images, (i) the size of the matrix becomes too large
to store on a PC (needed by most existing solvers including
the ones in CVX) and (ii) direct matrix multiplications take too
much time. For bigger images and structured matrices like DFT
times DWT, we wrote our own solver for (6) by using a modifi-
cation of the code in L1Magic [30]. We show results using this
code on a 256 256 larynx image sequence in
Fig. 5. This code used the operator form of primal-dual interior
point method. With this, one only needs to store the sampling
mask which takes bits of storage and one uses FFT and fast
DWT to perform matrix-vector multiplications in
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Fig. 5. Reconstructing the 256� 256 actual (compressible) vocal tract (larynx) image sequence from simulated MRI measurements, i.e., � � �� . All three
figures used � � ����� for � � � but used different values of � . Image size, � � ��� � �����. 99% energy support, �	 � � ���	�; 
 � ������.
In Fig. 5(a), modified-CS used � � �� which is the smallest magnitude element in the 99% support. (a) Reconstructed sequence. � � �� . � � �����,
� � ����; (b) � � �� , � � ����, � � �����; and (c) � � �� , � � �����,� � �����.

TABLE IV
RECONSTRUCTION ERROR (N-RMSE)

time instead of time. In fact for a image the cost dif-
ference is versus . All our code, for both small
and large problems, is posted online at http://www.ece.iastate.
edu/~namrata/SequentialCS.html. This page also links to more
experimental results.

A. Sparsified and True (Compressible) Single Image

We first evaluated the single image reconstruction problem
for a sparsified image. The image used was a 32 32 cardiac
image (obtained by decimating the full 128 128 cardiac
image shown in Fig. 1), i.e., . Its support size

. We used the set of indexes of the approxi-
mation coefficients as the known part of the support, . Thus,

and so which is a significantly
large fraction of . We compare the N-RMSE in Table IV. Even
with such a large unknown support size, modified-CS achieved
exact reconstruction from 29% random Gaussian and 19%

partial Fourier measurements. CS error in these cases was 34%
and 13%, respectively.

We also did a comparison for actual cardiac and larynx im-
ages (which are only approximately sparse). The results are tab-
ulated in Table IV. Modified-CS works better than CS, though
not by much since is a large fraction of . Here refers
to the support for any large , e.g., .

B. Sparsified Image Sequences

We compared modified-CS with simple CS (CS at each time
instant), CS-diff and LS-CS [13] for the sparsified 32 32 car-
diac sequence in Fig. 3. Modified-CS was implemented as in
Algorithm 1. At , the set was empty and we used
50% measurements. For this sequence, ,

and . Since
and , modified-CS achieves exact recon-

struction with as few as 16% measurements at . Fig. 3
used (compression/single-pixel imaging) and Fig. 3
used (MRI). As can be seen, simple CS has very
large error. CS-diff and LS-CS also have significantly nonzero
error since the exact sparsity size of both the signal difference
and the signal residual is equal to/larger than the signal’s spar-
sity size. Modified-CS error is or less (exact for numerical
implementation). Similar conclusions were also obtained for the
sparsified larynx sequence, see [2, Fig. 3]. This is not repeated
here due to lack of space.
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C. True (Compressible) Image Sequences

Finally we did the comparison for actual image sequences
which are only compressible. We show results on the larynx
(vocal tract) image sequence of Fig. 1. For Fig. 4, we used a
32 32 block of it with random Gaussian measurements. For
Fig. 5 we used the entire 256 256 image sequence with partial
Fourier measurements. At , modified-CS, RegModCS and
LS-CS used to be the set of indexes of the approximation
coefficients.

For the subfigures in Fig. 4, we used (random
Gaussian) and . Fig. 4 and 4 used

, respectively. At each , RegModCS-MAP solved
(32) with estimated using (42) from a few frames of the
sequence treated as training data. The resulting
was 0.007. RegModCS-exp-opt solved (30) with ,

and we experimented with many values of
and chose the one which gave the smallest error. Notice from
Fig. 4 that RegModCS-MAP gives MSEs which are very close
to those of RegModCS-exp-opt.

Fig. 5 shows reconstruction of the full larynx sequence using
, and three choices of . In 5(a), we

compare the reconstructed image sequence using modified-CS
with that using simple CS. The error (N-RMSE) was 8–11% for
CS, while it was stable at 2% or lesser for modified-CS. Since

is large enough for CS to work, the N-RMSE of CS-diff
(not shown) also started at a small value of 2% for the first few
frames, but kept increasing slowly over time. In 5(b), we show
N-RMSE comparisons with simple CS, CS-diff and LS-CS. In
the plot shown, the LS-CS error is close to that of modified-CS
because we implemented LS estimation using conjugate gra-
dient and did not allow the solution to converge (forcibly ran
it with a reduced number of iterations). Without this tweeking,
LS-CS error was much higher, since the computed initial LS es-
timate itself was inaccurate.

Notice from both Figs. 4 and 5, that modifiedCS and Reg-
ModCS significantly outperform CS and CS-diff. In most cases,
both also outperform LS-CS. RegModCS always outperforms
all the others, with the difference being largest when is
smallest, i.e., in Fig. 4. In Figs. 4 and 5, CS-diff performs so
poorly, in part, because the initial error at is very large
(since we use only ). As a result the difference
signal at is not compressible enough, making its error
large and so on. But even when is larger, e.g., in Fig. 5, and
the initial error is small, CS-diff is still the worst and its error
still increases over time, though more slowly.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

We studied the problem of reconstructing a sparse signal
from a limited number of its linear projections when the support
is partly known (although the known part may contain some
errors). Denote the known support by . Modified-CS solves
an relaxation of the following problem: find the signal that
is sparsest outside of and that satisfies the data constraint.
We derived sufficient conditions for exact reconstruction using
modified-CS. These are much weaker than those for CS when
the sizes of the unknown part of the support and of errors in

the known part are small compared to the support size. An
important extension, called RegModCS, was developed that
also uses prior signal estimate knowledge. Simulation results
showing greatly improved performance of modified-CS and
RegModCS using both random Gaussian and partial Fourier
measurements were shown.

The current work does not bound the error either under noisy
measurements or for compressible signals or for the TV norm.
The former is done in [28] and [31] for modified-CS and Reg-
ModCS, respectively, and, in parallel, also in [29] for modi-
fied-CS. A more important question for recursive reconstruction
of signal sequences from noisy measurements, is the stability of
the error over time (i.e., how to obtain a time-invariant and small
bound on the error over time). This is studied in ongoing work
[32]. The stability of RegModCS over time is a much more dif-
ficult and open question. This is due to its dependence on both
the previous support and the previous signal estimates.

A key application of our work is for recursive reconstruction
of time sequences of (approximately) sparse signals, e.g., for
real-time dynamic MRI. As pointed out by an anonymous re-
viewer, many MRI problems minimize the total variation (TV)
norm. The modified-CS idea can be applied easily for the TV
norm as follows. Let contain the set of pixel indexes whose
spatial gradient magnitude was nonzero at the previous time (or
should be nonzero based on some other available prior knowl-
edge). Minimize the TV norm of the image along all pixels not
in subject to the data constraint. Also, by designing homo-
topy methods, similar to those in [17] for CS, one can efficiently
handle sequentially arriving measurements and this can be very
useful for MRI applications.

APPENDIX

Recall that , , and .

A. Proof of Proposition 1

The proof follows by contradiction. Suppose that we can find
two different solutions and that satisfy
and have the same norm, , along . Thus, is nonzero
along (or a subset of it) and some set of size while

is nonzero along (or a subset of it) and some set also
of size . The sets and may or may not overlap. Thus,

. Since is supported on ,
this is equivalent to . But if

, is full rank and so the only way this can
happen is if , i.e., .

Therefore there can be only one solution with norm along
that satisfies that data constraint. Since is one such solu-

tion, any other solution has to be equal to .

B. Proof of Theorem 1

We construct a that satisfies the conditions of Lemma 1 by
applying Lemma 2 iteratively as follows and defining using
(37) below. At iteration zero, we apply Lemma 2 with
(so that ), (so that

), and with . Lemma 2 can be applied because
(follows from condition 1 of the theorem). From
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Lemma 2, there exists a and an exceptional set , disjoint
with , of size less than , s.t.

(33)

At iteration , apply Lemma 2 with (so that
), , and

. Call the exceptional set . Lemma 2 can be applied
because (condition 1 of the theorem). From
Lemma 2, there exists a and an exceptional set ,
disjoint with , of size less than , s.t.

(34)

Notice that (at iteration zero) and (at
iteration ) ensures that for all .

The last three equations of (34), combined with the fourth
equation of (33), simplify to

(35)

(36)

We can define

(37)

Since , approaches zero with , and so
the above summation is absolutely convergent, i.e., is well-
defined.

From the first two equations of (33) and (34),

(38)

Consider for some . If
for a given , , then (gets canceled
by the term). If , then

(gets canceled by the term). Since and are
disjoint, cannot belong to both of them. Thus,

(39)

Consider a given in the above summation. Since
, we can use (35) to get

. Thus, for all ,

(40)

Since (condition 2 of the theorem),

(41)

Thus, from (38) and (41), we have found a that satisfies
the conditions of Lemma 1. From condition 1 of the theorem,

. Applying Lemma 1, the claim follows.

C. Causal MAP Interpretation of Dynamic RegModCS

The solution of (32) becomes a causal MAP estimate under
the following assumptions. Let denote the conditional
PDF of of given and let denote the Dirac delta func-
tion. Assume the following.

1) The random processes satisfy the hidden
Markov model property; (re-state-
ment of the observation model); and

where

i.e., given (and hence given ), and
are conditionally independent; is

Gaussian with mean while is zero
mean Laplace.

2) is perfectly estimated from , and

3) is the solution of (32) with .
If the first two assumptions above hold, it is easy to see that

the “causal posterior” at time , , satisfies

where and is the normalizing constant. Clearly,
the second assumption is only an approximation since it as-
sumes that the posterior estimate of is exactly sparse.

If the last assumption also holds, then the solution of (32) is a
maximizer of , i.e., it is a causal MAP solution.
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The MLE of can be computed from a training time se-
quence of signals, as follows. Denote their
supports ( -energy supports in case of compressible signal se-
quences) by . Then the MLE is

(42)
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