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Abstract—We study the problem of reconstructing a sparse than the signal itself. But note that its exact sparsity §iatal

signal from a limited number of its linear projections when number of nonzero coefficients) is larger/equal to that ef th

a part of its support is known. This may be available from gjqna| Since the number of measurements required for exact
prior knowledge. Alternatively, in a problem of recursively L L .
reconstructing time sequences of sparse spatial signals, one ma))'econstructlon IS governeq by the exact sparsity size, !mngt .
use the support estimate from the previous time instant as the We were not able to achieve was exact reconstruction using
“known” part of the support. The idea of our solution (modified- fewer (noiseless) measurements than those needed by CS.
CS) is to solve a convex relaxation of the following problem: find  Exact reconstruction using fewer measurements is the focus
the signal that satisfies the data constraint and whose support of the current work. The idea of our solution (modified-CS)

contains the smallest number of new additions to the known . t dify CS f bl h t of th F
support. We obtain sufficient conditions for exact reconstructim 'S 0 MO ify or problems where part of the support IS

using modified-CS. These turn out to be much weaker than those Known (in the time sequence case, it is the estimated support
needed for CS, particularly when the known part of the support from the previous time instant). Denote the known part of

is large compared to the unknown part. the support byT. Modified-CS solves arf; relaxation of
the following problem: find the signal that satisfies the data
constraint and whose support contains the smallest nuniber o
Consider the problem of recursively and causally reconew additions td@” (or in other words the support set difference
structing a time sequence of sparse spatial signals (ordg)agirom T is smallest). We derive sufficient conditions for exact
from a sequence of observations, when the current obsemnvatieconstruction using modified-CS. These turn out to be much
vector contains a limited (less-than-Nyquist) number oééir weaker than the sufficient conditions required for simple CS
projections of the current signal. The observation vecsor Experimental results showing greatly improved perforneanc
assumed to be incoherent with respect to the sparsity basisbmodified-CS over simple CS are also shown.
the signal/image [1], [2]. Important applications includsl- Notice that the same idea also applies to a static reconstruc
time (causal and recursive) dynamic MRI reconstruction [3fion problem where we know a part of the support from prior
[4], real-time single-pixel video imaging [5] or real-tintiene-  knowledge. For example, consider MR image reconstruction
varying spatial field estimation using sensor networks [6]. using the wavelet basis as the sparsifying basis. If it istkmo
Since the introduction of compressive sensing (CS) in recahat an image has no (or very little) black background, all
work [1], [7] the static version of the above problem hagor most) elements of the lowest subband of its wavelet
been thoroughly studied. But, with the exception of [8],, [9]coefficients will be nonzero. In this case, the Feis the set
most existing solutions for the time series problem are noof indices of the lowest subband coefficients.
causal or batch solutions with very high complexity sinagyth o
jointly reconstruct the entire video by first collecting #tle A. Problem Definition
observations. The alternative solution - separately dégy We measure an-length vectory where
at each time (simple CS) - is causal and low complexity, but y = Az )
requires many more measurements for accurate reconstructi
In recent work [10], [11], we studied the causal recond/e need to estimate which is a sparse:-length vector with
struction problem from noisy measurements and proposed> n. The support ofz, denotedNV, can be split agVv =
a solution called Kalman filtered CS and its non-BayesighU A\ A, whereT is the “known” part of the support),
version, least squares CS (LS-CS). Our solutions used ikehe error in the the known part atl is the unknown part.
empirically observed fact that thgparsity pattern (support In a static problem, the suppdft is available from prior
set of the signal) changes slowly over tinTéne key idea of knowledge, e.g. it may be the set of the lowest subband wavele
LS-CS was to replace CS on the observation by CS on the t&efficients. Typically there is a small black background in
observation residual computed using the previous estimfatean image, so that only most (not all) lowest subband wavelet
the support. Kalman filtered CS replaced the LS residual &y thoefficients will be nonzero. The indices of the lowest suliba
Kalman filter residual. The reason LS-CS, or Kalman filterecbefficients which are zero formd\;. For the time series
CS, significantly outperformed simple CS was that the signatoblem,y = y; andx = xz, with support,N; = T U A\ Ay.
minus its LS estimate (computed using the previous suppétére 7' := N,_; is the support estimate from— 1. Also,
estimate) contains much fewer significantly nonzero eléme\; := T \ N; is the set of indices of elements that were

I. INTRODUCTION



nonzero at — 1, but are now zero whil\ := N, \ T is the
newly added coefficients at time Both A, A4 are typically
much smaller than|T|. This follows from the empirical
observation that sparsity patterns change slowly [11], [4]

In our proposed solution, we computeby assuming that
the support ofc containsT". Whenn is large enough for exact
reconstruction (i.e. the conditions of Theorem 1 hold}:
and soz can be used to comput¥ (and A, if needed).

We assume that the measurement matdx,is “approxi-
mately orthonormal” for sub-matrices containisg= (|7| +
2|Al) or less columns, i.e. it satisfies tiseRIP [2].

Notation: We usé€ for transpose. The notatidfz||;, denotes
the ¢;, norm of the vector. For a matrix,||M|| denotes its
spectral norm (induced, norm). We use the notatior
to denote the sub-matrix containing the columnsAfwith
indices belonging t@". For a vector, the notatio3); forms
a sub-vector that contains elements with indice§’in

The S-restricted isometry constant [2]g, for a matrix, A,
is defined as the smallest real number satisfying

(1= ds)l[ell3 < [|Arcll3 < (1+ds)llel3 )

for all subsetsT” C [1 : m] of cardinality || < S and all
real vectorsc of length |T'|. S-RIP means thats < 1. A
related quantity, the restricted orthogonality constahtfs s,
is defined as the smallest real number that satisfies

®3)

for all disjoint setsTy,7> C [1 : m] with |T3| < S and
|Tz| < S and with S + S’ < m, and for all vectors:, ¢y of
length T3], |Tz| respectively. By setting; = Ar,’Az,co in
(3), it is easy to see thatAr, Az, || < 0s.s/.
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Fig. 1. Modified-CS for time sequence reconstruction

where o is a small threshold (ideally zero). With this we
automatically estimaté\ = N, \ 7" and A, = 7'\ N,.

A block diagram of our proposed approach is given in
Fig. 1. Note that at = 1, we perform CS and use enough
observations for CS to give exact reconstruction.

IIl. EXACT RECONSTRUCTIONRESULT
We first study they version and then the actuél version.

A. Exact Reconstructior?, version of modified-CS

Consider the, problem, (4). Using a rank argument similar
to [2, Lemma 1.2] we can show the following

Proposition 1: Given a sparse vector;, whose support,
N=TUA\ Ay, whereA andT are disjoint andA; C T.
Consider reconstructing it from := Ax by solving (4). The
true signal,z, is its unique minimizer iy 12 < 1.
Compare this with [2, Lemma 1.2]. Since theversion of CS
does not use the knowledge @f it requiresdy r|42ja] < 1
which is much stronger.

B. Exact Reconstruction: modified-CS

We do not solve (4) but its, relaxation, (5). Just like in CS,
the sufficient conditions for this to give exact reconstiuct
will be slightly stronger. We show the following.

Theorem 1 (Exact Reconstructiongiven a sparse vector,
x, whose supportN = T U A\ Ay, whereA and T are
disjoint andA,; C T'. Consider reconstructing it from:= Ax
by solving (5).z is its unique minimizer ifj|; 4] < 1 and

Our goal is to find the sparsest possible signal estimqfea(zm‘ \AL|T]) + a(|A], |A], |T]) < 1, where
whose support containg and which satisfies the data con- Y T ’

straint (1), i.e. we would like to find & which solves 05,5 + ‘95%;23"“
| | a(S,8',|T]) = ~ 7)
min ||(8)re||o Subject toy = Aj (4) 1—3g — 27
B 1=0r|
whereT* := [1 : m] \ T denotes the complement @f. To understand the above condition better and relate

As is well known, minimizing the/, norm has combi- it to the corresponding CS result [2, Theorem 1.3],
natorial complexity. We propose to use the same trick thg ys simplify it. a(2|A]L|AL|T)) + a(JA],|A|L|T]) <
resulted in compressive sensing. We replace4heorm by 2 2
the ¢; norm, which is the closest norm % that makes the
optimization problem convex, i.e. we solve

min | ()
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this is 9|A|,2|A\ + Q\A\,\A\ + 16 + 52\A\ < 1.
Further, a sufficient condition for this 8 a| + d2ja| +
0al,21a] + 07 + QTAMTI + 203717 < 1. To get a condition
only in terms ofég’s, use the #act thatls s+ < dsys/. A suffi-
cient condition i§52|A|+53‘A‘+6‘T‘+6|2T|+‘A‘+26|2T|+2|A| <
1. Further, notice that ifA| < |T'| and if §|742/a] < 1/5, then
283|a) + 8312 + 07| + Oy 1a) + 2070 1oja) < 4Opmit2ia) +
071 +2(a (307 421a]) < (44 3/5)d 71214 < 23/25 < 1.
Corollary 1 (Exact Reconstruction)Given a sparse vector,
x, whose supportN = T U A\ Ay, where A andT are

1_52\A\ -

1 Subject toy = Af (5)

A. Recursive Reconstruction of Signal Sequences

Consider the recursive reconstruction problem whetrey;
and z = x; with support N = N;. The known part of the
support,” = N,_;. In this case, at each time, we solve
(5) and denote its output b¥; meacs The support at, N, is
computed by thresholding; moedcs i.€.

N, = {ie[l:m]: (it,modcs)f > a}

(6)



disjoint andA,; C T'. Consider reconstructing it from:= Az Now, the only way (9) and (8) can hold simultaneously is
by solving (5).z is its unique minimizer if5|; 4] < 1 and if all inequalities in (9) are actually equalities. Congidbe
0\a1,1a] + O21a] + Ojal,21a] + 07 + 9|2A|,|T| + 29§\A\,|T| < 1. first inequality. Sincelw’A;| is strictly less than 1, for all
This holds if252‘A‘ +63|A| +5|T| +5\2T\+|A| +26\2T\+2\A\ < 1. ] ¢ T UA, the Onl'y Waij¢TUA |63| = EnguA w/Aij
This, in turn, holds iffA| < |T| anddj7|4oa) < 1/5. is if 3; =0forall j ¢ TUA.

Compare the above with the requirement for CS: Since both3 andz solve (5),y = Ax = Ap. Sincef; =
252(\T\+|A|) + 53(\T|+\AD < 1 which holds if 53(|T|+|A|) < 0= T forall j ¢ TUA, this means thag = ATUA(&)TUA =
1/3. Itis clear that iff A| is small compared t{|, § 7| 9a] < Arua(®)rua OF that Arua((B)rua — (2)rua) = 0. Since
1/5 is a much weaker requirement. di7+1a] < 1, ATua is full rank and so the only way this can

happen is if(3)rua = (z)Tua. Thus any minimizers = =,
C. Proof of Theorem 1 i.e.x is the l(m?que mirfirr)ﬂzer of (5). This proves the clalin.

For the proof of Theorem 1, we use an approach similar toNext, we begin by developing a lemma (Lemma 2) that
that used to prove [2, Theorem 1.3]. Suppose that we wajginstructs aw which satisfiesAr’'w = 0 and Ap/w = ¢
to minimize a convex function/(3) subject toA3 = y and for any given vector and any sefl;; disjoint with T' of size
that J is differentiable. The Lagrange multiplier optimality|7,| < S. The lemma also boundd;'w| for all j ¢ TUT,UE
condition requires that there exists a Lagrange multiplier where E is called an “exceptional set”. Finally, we use this
s.t. VJ(3) — A'w = 0. Thus forz to be a solution we need lemma to find aw that satisfies the conditions of Lemma 1.
A'w = VJ(z). Inour caseJ(x) = [|lxre|[1 = > cpe [75]. Lemma 2: Given the known part of the suppoff, of size
Thus (VJ(z)); = 0 for j € T and (VJ(z)); = sgn(z;) for |T|. Let S, S be such thabr,s < 1 and|T|+S+S' < m.
jeA Forj¢ TUA, z; = 0. SinceJ is not differentiable et ¢ be a vector supported on a $gf, that is disjoint with
at 0, we require thatA'w); = Aj'w = w'A; lie in the T, of size|T,| < S. Then there exists a vectar s.t. A;'w =
subgradient set of/(z;) at 0, which is the sef-1,1]. In ¢, V jc T, andA;/w =0, V¥ j € T. Also, there exists an

summary, we need a that satisfiesw’A; = 0 if j € exceptional se®, disjoint with 7' U T}, of size|E| < S’ s.t.
T, wAj; =sgn(z;)if j € A, and |w'A;| <1, if j ¢ TUA. a(S, S, |T)
We show below that by using the above conditions but with |4 w] < ———2||c|[» Vj ¢ TUT,UE and
|lw'A;| <1 replaced bylw'A;| < 1 for j ¢ TUA, we get Vs
a set of sufficient conditions to ensure thatis the unique |AE"wll2 < a(S, 8", |T])][e]|2 (10)
solution of (5). | , _where a(S,5,|T]) is defined in (7). Also,|jw|| <
Lemma 1:The sparse signal;, with support as defined in K (S, |T))||c|2, where
Theorem 1, is the unique minimizer of (5)dfr|a < 1 and ’ ’
if we can find a vectorw satisfying K(S,|T|) = V14 0s (11)
1) wA;=0if jeT ’ 1—6g — Sl
2) w'A; =sgnz;) if j €A 1=0m
8) [wid| <1, it j ¢ TUA Proof. Any w that satisfiesds’w = 0 will be of the form
Proof. Standard convex arguments give that there is at least
one minimizer of (5). We need to prove that, if the conditions w = [I — Ar(Ar" A7)t A7y := M~y (12)
of the lemma hold, any minimizer3, of (5) is equal toz. \ye need to find & st Ar w=cie Ap My =c. Lety —
Sincex also satisfies the data constraint, M’ Ap,n. Thenn = (ATd’MM’ATd)’lc 2 (Ap, MAgz,) 'e
1B)rell < ll@)7elh ==Y |l (8) (sinceMM’ = M? = M). Thus,
jea w=MM'Ar,(Ar,’ MAg,) " ¢ = MAr,(Ap,’ M Ag,) " e (13)

for any minimizerg3. Take aw that satisfies the conditions of

the lemma. Recall that is zero outside of’ U A. Then, Consider a sef; of size|T;| < S’ disjoint with T’UT}. Then

1@)relle = 3l + (85 =zl + > 1851 [ Az, wll2 < [| Ay MAz, || [|(Ar, MAz,) 7| [lell2 (14)
Jen JETUA Consider the first term from the RHS of (14).
z o+ (85— x5) + 'A;B; )
> jezg |25 + (85 — =) ngAw B Az M Az, || < || Azy' Az, || + || Azy' Ar(Az’ Ar) ™ Ag’ Ag, |
Og 171 0
> > sgrtey)(z; + (B —2y) + > w'Ab <bs.s+ %{SS\T\ (15)
jeA JETUA T
— Z |z + Z w' A;(8; — ;) + Z W A B; Consider the second term from the RHS of (14).
- J J\Mj J iPj
JEA JEA JETUA (Ar "M Ar )_1H _ 1 (16)
+5 w48 - ) a a Non (Ar M Ar)
JeT NOW, ATd/MATd = ATd/ATd —_ ATd/AT(ATIAT)_lATIATd.

= ||zre||1 + w'(AB — Ax) = ||zre||1 (9) This is the difference of two non-negative definite matrides



is easy to see that B, and B, are two non-negative definite exists aw, 4+, and an exceptional séf; ,; that satisfy
matrices, them,in (B1 — B2) > Amin(B1) — Amax(B2). Let / .
min min max A w 1 — O \v/ ] e A
By = Ap,Ar, and By := Ar, Ar(Ar' Ap) "t A7 Ar, . 7 et ’
1 Ty Ta 2 Ta T( T T) T ATy Aj,wn+1 :Ajlwn7 Vj c Td,n

Then Apin(B1) > (1 — dg). AlSO, Apax(B2) = ||Bz|| < , ‘
Az, AD)|1® _ 05,7 Ajfwp 1 =0VjeT

. Thus,
o o [Tl < 8" =14
/ 1 1 AT, i wntall2 < aIAL AL T Az, ,"wnl]
(Ar, M A,) " || € —————— an a2|Al, A |T))

S,|T| |Aj/wn+1| <

—0g — Ar, Tw,
|- b5 — g S Al
v.] ¢ TUAUTd,n UTd,n—H

as long as the denominator is positive. Using (15) and (17) to

bound (14), we get [[wnsall < KQIALITD Az, wall  (22)
The last three equations above simplify to
| Az, wl|2 < a(S, 8, |T]) |lcll2 (18)  [|Azy i wntll2 < a2IALIAL TD a(|AL [AL T VIA]
| A wni1| < a2AL AL T a(|AL AL ITY),
\évhere a.( ) fis d(_afinecfi iﬂ .(7). Notice that( ) is a non-  vj¢TUAU Tyn UTgns (23)
ecreasing function of all its arguments. e
asing ) J [wnta]] < K@IAL T)alAL [ALIT)" al|AL AL [T VIA]
Define an “exceptional setE as
(24)
) . a(S, s, |T Now, assume that(2|Al, |A[,|T|) < 1 and define
B {ie@ut:1afu] > D) e .
w = Z(—l)" Wp, (25)
Notice that|E| must obey|E| < S’ since otherwise we can n=l o
contradict (18) by taking?; C E. Since a(2|Al, |A[,|T]) < 1, the above summation is abso-
Since|E| < §' and E is disjoint with T U Ty, (18) holds lutely convergent and so is a well defined vector. Also,
for T/, = E. Finally, notice that Aj'w =sgn(z;), Vj €A
Aj/w=0,VjeT (26)
/ -1
lwllz < [|M Az, (Az, MAz,) ™| lel]2 Considerd;'w = A;">">°  (—1)"tw,, for somej ¢ TUA.
< |IM|| [|Az,|| [[(Az," M Az,) M| llell2 If for a givenn, j € Ty, then Aj/w, = A/ w,4, (gets
5 J J
V1+dg canceled by the+ 1" term). If for some othefi, j € Tai-1.
< | se_ B llellz = K (S, [T]llellz (20)  ghen Aj'wi = Ajw;—y (gets canceled by the — 1** term).
OS5 T 156 Also, sinceT,, andT,,_; are disjoint,j cannot belong to
both of them. Thus,
This proves the lemmdll . . Aj’w _ Z (—1)”_1Aj’wn, Vi ¢ TUA (27)
Proof of Theorem 1.Let us apply Lemma 2 iteratively to @ T OTm 1
make the size of the exceptional detsmaller and smaller. At ) o h i o
iteration zero, apply Lemma 2 witFy, = A (so thats = |A|), Consider a givenn in the above summation. Slnqe ¢
¢; = sgn(z;), ¥ j € A (so that||c|[x = /]A]), and with Tin U Tan—1 Uglu A, we can use (23) to'gehAj wn| <
S’ = |Al. Call the exceptional séE, ;. Thus there exists a a(2|A[ |ALLIT)™  a(|AL AL ITT). Thus, forj ¢ TU A,
and an exceptional s s.t. |4;"w] < > a(2|AL|ALIT)"  a(|A] |AL|T]) (28)
n:ngd,nUTd,n—l
Aj'wy = sgn(z;), ¥V j € A If a(2|Al,]Al,|T]) < 1, this simplifies to
Ajwr =0,V jeT a(|AL 1A, 7))
Alw| < L - ¢ T UA 2
Tual < 8= 1A Al T @anapmy YETYA @9
[|Ar, ,"will2 < a(JA], JA]|T)V]A| Thus, if we can assume thata(2|A[,|A]|T]) +
|A; wi| < a(|Al,|ALT]), Vj ¢ TUAUT,, a(|Al,|A},[T]) < 1, then we will have
llwi]| < K(IA[|T]) VA (21) |Aj'w| <1, Vj¢ TUA (30)

Thus, from (26) and (30), if a(2]A,|A|T]) +
At iteration n, apply Lemma 2 withly; = A U Ty, (so that a(|A|,|A],|T]) < 1 then, we have found a that satisfies
S=2|Al),¢; =0,V jeAandc; = Aj'w,, ¥V j € Ty, the three conditions of Lemma 1. Applying Lemma 1, the
and with.S” = |A|. Call the exceptional séf; ,,.1. Thus there exact reconstruction claim of Theorem 1 follovil.
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Fig. 2. (a) Reconstructing &2 x 32 sparsified cardiac imag 1
(m = 1024) from n = 0.19m = 195 random Fourier measuremen S =16 15 2 T e
Support size7'U A| = 107 and |T| = 64. Modified-CS achieveu Comet _
exact reconstruction, while the CS reconstruction error (square r@gtSparsified seq, Fourier meas (b) Real seq, Gaussian meas

. 0 ; .
of normalized MSE) was 13%. (b) Recqr_]structlon using: 0.29m Fig. 3. (a) Exact reconstruction of a sparsified cardiac sequence
random Gaussian measurements. Modified-CS achieved exact requ}n only n = 0.16m random Fourier measurements (MR imaging)

struction, while the CS reconstruction error was 34%. Support size|N| ~ 0.1m. Simple CS (referred to as CS in the
figure) has very large (20-25%) error while modified-CS gives exac
IV. SIMULATION RESULTS reconstruction. (b) Reconstructing a real cardiac sequencerfrem
We first evaluated the static problem. The image used wa%‘oér?n”;Iir;‘:(??vlrggz‘\ithg;gasuremems' We plot the square root of
sparsified32 x 32 block (m = 1024) of a cardiac image. This '
was obtained by taking a discrete wavelet transform (DWT) of

the original image block, retaining the largest 107 co&fits  modified-CS with Least Squares CS [11] for the noisy mea-
(corresponds t®9% of image energy) while setting the resisyrements case, and (c) developing Bayesian extensioigs whi
to zero and taking the inverse DWT. A 2-level DWT served|so use knowledge of the previously reconstructed signal
as the sparsifying basis. We used its lowest subband as {Bfies and analyzing their performance. (d) Whenever exact
known part of the supporfl". Thus, |T| = 64. Support size reconstruction does not occur, an important question teveins
[N| = 107. We show reconstruction from only = 0.19m = s when will the algorithm be stable over time, i.e. under tvha
195 random Fourier measurements in Fig. 2(a). Modified-C&nditions will the reconstruction error remain boundekiisT
achieved exact reconstruction, while CS reconstructioarer automatically holds for modified-CS for noiseless measure-
(square root of normalized MSE) was 13%. Notice thét < ments if the assumption of Theorem 1 holds at all times. It has
2|N| = 214, which is the minimumn necessary for exact heen shown to hold with high probability for LS-CS and KF-
reconstruction using CS for [@V|-sparse vector. Comparisoncs for noisy measurements in [11] under strong assumptions.
for random-Gaussian measurements is shown in Fig. 2(b). oyr goal would be to prove it for modified-CS for noisy

Next, we evaluated the time sequence problem usingnfeasurements under weaker assumptions.
sparsified cardiac image sequence created the same way as
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