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LS-CS-Residual (LS-CS): Compressive Sensing on
Least Squares Residual

Namrata Vaswani

Abstract—We consider the problem of recursively and causally
reconstructing time sequences of sparse signals (with unknown
and time-varying sparsity patterns) from a limited number of
noisy linear measurements. The sparsity pattern is assumed to
change slowly with time. The key idea of our proposed solution,
LS-CS-residual (LS-CS), is to replace compressed sensing (CS) on
the observation by CS on the least squares (LS) residual computed
using the previous estimate of the support. We bound CS-residual
error and show that when the number of available measurements
is small, the bound is much smaller than that on CS error if the
sparsity pattern changes slowly enough. Most importantly, under
fairly mild assumptions, we show “stability” of LS-CS over time
for a signal model that allows support additions and removals,
and that allows coefficients to gradually increase (decrease) until
they reach a constant value (become zero). By “stability,” we mean
that the number of misses and extras in the support estimate
remain bounded by time-invariant values (in turn implying a
time-invariant bound on LS-CS error). Numerical experiments,
and a dynamic MRI example, backing our claims are shown.

Index Terms—Compressive sensing, least squares, recursive re-
construction, sparse reconstructions.

I. INTRODUCTION

C ONSIDER the problem of recursively and causally re-
constructing time sequences of spatially sparse signals

(with unknown and time-varying sparsity patterns) from a lim-
ited number of linear incoherent measurements with additive
noise. The signals are sparse in some transform domain referred
to as the “sparsity basis” [3]. An important example of this
problem occurs in dynamic magnetic resonance (MR) image
reconstruction of deforming brain shapes or the beating heart
in real-time applications such as MR image guided surgery or
other interventional radiology procedures [4] or functional MRI.
Human organ images are piecewise smooth [see Fig. 1], and so
the wavelet transform is a valid sparsity basis [5]. MRI captures
a limited number of Fourier coefficients of the image, which are
incoherent with respect to the wavelet transform [5], [6]. Other
examples include real-time single-pixel video imaging [7] or
real-time sensor network based sensing of time-varying fields.
Due to strong temporal dependencies in the signal sequence, it
is usually valid to assume that its sparsity pattern (support of
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Fig. 1. In (a), we show two medical image sequences. In (b), � refers to the
99% energy support of the two-level Daubechies-4 2-D discrete wavelet trans-
form (DWT) of these sequences. �� � varied between 4121–4183 �� ���� ��
for larynx and between 1108–1127 �� ������ for cardiac. We plot the number
of additions (left) and the number of removals (right) as a fraction of �� �. No-
tice that all changes are less than 2% of the support size. (a) Top: larynx image
sequence; bottom: cardiac sequence. (b) Slow support change plots. Left: addi-
tions; right: removals.

the sparsity transform vector) changes slowly over time. This is
verified in Fig. 1. See also [8] and [9].

The solution to the static version of the above problem
is provided by compressed sensing (CS) [3], [10]. CS for
noisy observations, e.g., Dantzig selector [6], basis pursuit
denoising (BPDN) [11], [12] or Lasso [13], [14] have been
shown to have small error as long as incoherence assumptions
hold. Most existing solutions for the dynamic problem, e.g., [7]
and [15], are noncausal and batch solutions. Batch solutions
process the entire time sequence in one go and thus have much
higher reconstruction complexity. An alternative would be to
apply CS at each time separately (simple CS), which is online
and low-complexity, but since it does not use past observations,
its reconstruction error is much larger when the number of
available observations is small [see [5, Table I or Figs. 4(a)]].

The question is, For a time sequence of sparse signals, how
can we obtain a recursive solution that improves the accuracy
of simple CS by using past observations? By “recursive,” we
mean a solution that uses only the previous signal estimate and
the current observation vector at the current time. The key idea
of our proposed solution, LS-CS-residual (LS-CS), is to replace
CS on the observation by CS on the least squares (LS) residual
computed using the previous support estimate. Its complexity is
equal to that of simple CS which is where is the
signal length and is the time duration [16, Table 1]. Compare
this to for a batch solution.
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Other somewhat related work includes [17] and [18] (use the
previous estimate to speed up the current optimization, but not to
improve reconstruction error), and [19] (does not allow the sup-
port to change over time). Both [18] and [19] appeared after [1].
The work of [20] gives an approximate batch solution for dy-
namic MRI which is quite fast (but offline). Some other related
work, but all for reconstructing a single sparse signal, includes
[21] (uses a recursive algorithm) and [22] (related model, but
offline algorithm). None of these works bound the reconstruc-
tion error or show its stability over time. We do both of these
things for LS-CS in this paper.

In this work, we do “CS”, whether in simple CS or in
CS-residual, using the Dantzig selector (DS) [6]. This choice
was motivated by the fact that its guarantees are stronger and its
results are simpler to apply/modify (they depend only on signal
support size) as compared to those for BPDN given in [12]
(these depend on the actual support elements). In later work
[8], [9], for practical experiments with larger sized images, we
have also used BPDN since it runs faster. Between DS and
Lasso ( constrained minimization) [13], [14], either can be
used. If Lasso is used, by starting with results of [14], results
analogous to our Theorems 1 and 2 can be proved in the same
way and their implications will also remain the same. With a
little more work, this can also be done for BPDN.

Paper Organization. The LS-CS-residual (LS-CS) algorithm
is developed in Section II. We bound its error and compare it
with CS in Section III. Conditions for “stability” are obtained
in Section IV. Numerical experiments are given in Section V
and conclusions and future work in Section VI.

A. Notation

The set operations , , and have the usual meanings.
denotes the complement of w.r.t. , i.e.,

. denotes the size (cardinality) of .
For a vector, , and a set, , denotes the length sub-

vector containing the elements of corresponding to the indexes
in the set . denotes the norm of a vector . If just
is used, it refers to . Also, refers to the th largest mag-
nitude element of (notation taken from [3]). Thus, for an
length vector, . We use the nota-
tion to denote the subvector of containing the smallest
magnitude elements of .

For a matrix , denotes its induced -norm, while
just refers to . denotes the transpose of . For
a tall matrix, , .

For a fat matrix , denotes the submatrix obtained by
extracting the columns of corresponding to the indexes in .
The -restricted isometry constant [3], , for an matrix
(with ), , is the smallest real number satisfying

(1)

for all subsets of cardinality and all real
vectors of length . The restricted orthogonality constant [3],

, is the smallest real number satisfying

(2)

for all disjoint sets with , ,
, and for all vectors , of length , .

B. Problem Definition and Some More Notation

Let denote the spatial signal at time and ,
with , denote its noise-corrupted measurements’ vector
at , i.e., where is measurement noise. The
signal, , is sparse in a given sparsity basis (e.g., wavelet) with
orthonormal basis matrix, , i.e., is sparse.
Denote its support by . Thus, the observation model is

(3)
We assume that has unit norm columns. Our goal is to recur-
sively estimate (or equivalently the signal, ) using

. By recursively, we mean, use only and the estimate
from , , to compute the estimate at .

We state our assumptions after the following definition.
Definition 1 (Define , ): For ,

1) let denote the largest for which (the choice
1/2 is arbitrary, we can replace it by any );

2) let denote the largest for which .
Assumption 1: In the entire paper, we assume the following.

1) Sparsity and Slow Support Change. The support size,
and the additions,

and the removals, .
2) Incoherence. The measurement matrix, , satisfies

and for some (as we argue later
suffices).

Sparsity and slow support change is verified in Fig. 1. Incoher-
ence (approximate orthonormality of -column submatrices of

) is known to hold with high probability (w.h.p.) when is a
random Gaussian, Rademacher, or partial Fourier matrix and
is large enough [3], [6].

1) More Notation: We use to denote the estimate of
given by our algorithm at time and to denote its support
estimate. To keep notation simple, we avoid using the subscript

wherever possible. We will use the following sets often.
Definition 2 (Define , , ): We use to denote

the support estimate from the previous time. This serves as an
initial estimate of the current support. We use to
denote the unknown part of the support at the current time. We
use to denote the “erroneous” part of . We attach
the subscript, , e.g., , , etc., where necessary.

Definition 3 (Define , , ): We use to denote
the final estimate of the current support. We use
to denote the “misses” in the final estimate and
to denote the “extras”.

Notice that . Some more
notation— , , , , ,—is defined in Section II.

II. LEAST SQUARES CS-RESIDUAL (LS-CS)

We develop the LS-CS-residual (LS-CS) algorithm in
Section II-A and summarize it in Algorithm 1. We discuss
heuristics for threshold selection in Section II-B. A useful exten-
sion, Kalman filtered CS-residual, is introduced in Section II-C.

A. LS-CS-Residual Idea and Algorithm

Given observation, , the Dantzig selector [6] solves

(4)
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Now consider the recursive reconstruction problem. If the sup-
port of , , were known at each , we could simply compute
its least squares (LS) estimate along while setting all other
values to zero. We refer to this estimate as the “genie-aided”
LS estimate. When is not known, one could do simple CS at
each time, i.e., solve (4) with , followed by thresholding
the output to estimate its support, and then do the same thing
using the support estimate instead of . But in doing so,
we are throwing away the information contained in past obser-
vations. If the available number of measurements, , is small,
this incurs large error [see Table I in Section V].

To use the information contained in past observations, along
with the knowledge that support changes slowly, we propose the
following idea. Assume for a moment that the support has not
changed from to . Use to compute an initial
LS estimate and compute the LS residual, i.e., compute

Notice that the LS residual, , can be rewritten as

(5)

where is a -sparse vector with ,

(6)

(7)

In the above, (6) follows because and

. The last equality holds because
and . Here .

Notice that and
. From Section I-B, and
. If is small enough and is an accurate

enough estimate of (so that and are small enough)
and is incoherent enough (so that is small enough),

will be small (compressible) along . In other words, will
be only -approximately-sparse. In this case, doing CS on

should incur much less error than doing CS on (simple
CS), which needs to reconstruct a -sparse signal, . This is
the key idea of our approach.

Thus, we propose to do CS on the LS residual (CS-residual),
i.e., solve (4) with and denote its output by . Now,

(8)

can serve as one possible estimate of . But, as explained in [6],
since is obtained after norm minimization, it will be biased
towards zero. Thus, will also be biased (its elements
along will be biased towards zero, while those along may be
biased away from zero). We can use the Gauss–Dantzig selector
trick of [6] to reduce the bias. To do that, we first detect the new
additions as follows:

(9)

and then we use to compute an LS estimate

(10)

If , will be unbiased. In fact, it will be the
best linear unbiased estimate, in terms of minimizing the mean
squared error (MSE). But even if is roughly accurate, the
bias and MSE will be significantly reduced.

If the addition threshold, , is not large enough, occasion-
ally there will be some false detections (coefficients whose true
value is zero but they wrongly get detected due to error in the
CS-residual step). Also, there may have been actual removals
from the true support. This necessitates a “deletion” step to
delete these elements from the support estimate. Deletion can
be done by thresholding , i.e., we compute

(11)

The above is better than deleting using which, as ex-
plained above, usually has a larger MSE than that of .

A final LS estimate can be computed using as

(12)

We summarize the complete algorithm in Algorithm 1.

Algorithm 1: LS-CS-Residual (LS-CS) Algorithm

Initialization : At the initial time, , we run simple
CS with a large enough number of measurements,
(usually much larger), i.e., we solve (4) with and

( , and hence , will be an matrix). This
is followed by support estimation and then LS estimation as in
the Gauss-Dantzig selector [6]. We denote the final output by
and its estimated support by . For do,

1) Initial LS. Use to compute the initial LS estimate,
, and the LS residual, , using (5).

2) CS-residual. Do CS (Dantzig selector) on the LS residual, i.e.,
solve (4) with and denote its output by . Compute

using (8).

3) Detection and LS. Use (9) to detect additions to the support to
get . Compute the LS estimate, , using , as given
in (10).

4) Deletion and LS. Use (11) to detect deletions from the support
to get . Compute the LS estimate, , using , as given
in (12).

5) Output and . Feedback .

Increment and go to step 1.

In most places in the paper, we use “addition” (“removal”)
to refer to additions (removals) from the actual support, while
using “detection” (“deletion”) to refer to additions (removals)
from the support estimate. Occasionally, this is not followed.

We define the following sets which will be used in Section IV.
Definition 4 (Define , , ): The set is de-

fined in (9), and .

B. Selecting the Thresholds and

A thumb rule from literature is to set at the noise level
[6]. But, for our problem, the more elements of that one can
detect without making badly conditioned, the better it is in
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terms of reducing the MSE of . Thus, a better option than
setting explicitly, may be to keep adding the largest magnitude
elements of to until just exceeds a condition
number threshold (for the given noise level).

If is appropriately set (either explicitly or implicitly) and
the noise is small enough, the MSE of will be significantly
lower than that of . So, one can set to a larger value
than , and still not have too many false deletions, while en-
suring that most false detections get deleted. A good heuristic
is to set to a fraction of the minimum nonzero coefficient
value. But if the noise is large, the MSE of may not be
much lower and also one would have used a larger value of .
In this case it is better to just set .

Another heuristic, which ensures robustness to occasional
large noise, is to limit the maximum number of detections at a
given time to a little more than (if is known).

C. Kalman Filtered CS-Residual (KF-CS): Regularized LS-CS

Now, LS-CS does not use to improve the current
estimate. But, often, in practice, coefficient values also change
slowly. To use this fact, we can replace the initial LS estimate
by a regularized LS estimate. If training data is available to learn
a linear prior model for signal coefficients’ change, this can be
done by using a Kalman filter (KF). We develop and study the
KF-CS algorithm in [1], [23]. As we demonstrate in [23], KF-CS
significantly improves upon LS-CS when (condition number
of is larger) or noise is larger.

III. BOUNDING CS-RESIDUAL ERROR

We first bound the CS-residual reconstruction error and com-
pare it with the bound on CS error. In Section III-C, we give a
tighter bound on the CS-residual error, but which holds under
stronger assumptions. All bounds depend on , .

To simplify notation, in this section, we remove the subscript
. Consider reconstructing with support, , from
. The support can be written as where is

the “known” part of the support (equal to support estimate from
the previous time), and .

A. Bounding CS-Residual Error

If is largeenoughsothat , then
we can use the bounds given in [6, Theorems 1.1 or 1.2] to bound
the CS-residual error. But recall that CS-residual is primarily de-
signed for situations where is smaller. It applies CS to the ob-
servation residual where is a

-sparsesignal, that iscompressible(small)along .Tobound
its error,we first prove Lemma 1 which modifies [6, Theorem1.3]
to apply it to “sparse-compressible signals”, i.e., sparse signals
that are partly (or fully) compressible. Next, we bound (the

“compressible” part of ). Finally we use this lemma along with
the bound on to obtain the CS-residual error bound.

Lemma 1 (CS Error Bound—Sparse-Compressible Signal):
Assume that (bounded noise). Let is an

-sparse vector with support , and we measure
. Its estimate, , obtained by solving (4), obeys the following.

For all sets of size and for all
,

where

and (13)

The proof is given in Appendix A. Recall that is defined in
Definition 1.

Recall that can be rewritten as

(14)

As long as , can be bounded as follows.

(15)

The above follows by using (a)
(if ) and (b)

. (a) follows because is
the inverse of the minimum eigenvalue of . (b) follows
from (2) by setting , , and .

From (15), it is clear that if the noise is small and if ,
are small enough so that is small, is small. Using (15)
along with Lemma 1 and the definition of , we can prove the
following result.

Theorem 1 (CS-Residual Error Bound): Assume that
and . Then

satisfies (16), shown at the bottom of the page, where
and , are defined in (13).

The proof is given in Appendix A. Recall: is the
vector containing the smallest magnitude elements of .

A simple corollary of the above result follows by applying it
for a particular value of , when . This will

if
if

(16)
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usually result in the smallest bound in situations where is
not much larger than . When , which
is anyway quite small. It is not immediately clear which value
of is the best. We retain the in this case. We also bound

by its maximum value, .
Corollary 1 (Simpler CS-Residual Error Bound): Assume

that , and .
1) If ,

(17)

2) If , where

(18)

where , are defined in (13).
This corollary is used in the LS-CS stability result.
Remark 1: It is easy to modify the above results for Gaussian

noise, , in a fashion analogous to the results of
[6]. Like [6], we will also get “large probability” results. We do
not do this here because any large probability result will make
the study of stability over time difficult.

Remark 2: In the bounds of Theorem 1 or Corollary 1, there
is a term that is proportional to or to respec-
tively. This comes from Lemma 1 when we bound the norm
term, , by times . A similar
term is also there in the CS bound given below in (19) (bound
for CS error which holds under the same weak assumptions as
those used by our result1).

B. Comparing CS-Residual and CS Error Bounds

We now compare the CS-residual bound with that of CS.
Remark 3: By showing that the upper bound on CS-residual

error is much smaller, we only show that the performance guar-
antees for CS-residual are better than those for CS. To actually
compare their errors, we use simulations.

To compare the CS-residual bound with CS, first note that the
CS error bounds for sparse signals given in [6, Theorems 1.1 and
1.2] apply only when holds for , i.e.,
when . When is small and this does not hold, these
results are not applicable. On the other hand, Lemma 1 does
not assume anything about . Let denote the simple CS
output. Using Lemma 1, it is easy to see that

(19)

1A term containing the � norm of the “compressible” part appears in all
bounds for CS for compressible signals, e.g., [6, Theorem 1.3] or [14, Theorem
1], and hence also appears when we bound CS error for sparse signals with not
enough measurements.

Compare (16) with (19) under the following assumptions.
1) The magnitude of the largest element of is smaller

than or equal to that of the smallest element of , i.e.,
. This is reasonable since

contains the recently added elements which will typically
be smaller while contains the previously added el-
ements which should have a larger value.

2) , are small enough (i.e., is small enough and
) and the noise is small enough so that

a) and (this ensures that
);

b) , and
.

3) is small so that , but is just large enough
so that . along with assumption
2a ensures that .

The above assumptions ensure that
, i.e.,

is “compressible enough.”
Under the above assumptions, we show that in

(16) is significantly smaller than in (19) for each value
of and hence the same will hold for the upper bounds.2 For
any , the first term in and is the same.
In the second term, the main difference is in versus

. The constants are almost the same, their ratio is

(follows since and ). Thus, if
we can show that is much smaller than , we will
be done. First consider . In this case,

(20)

Now consider

(21)

Thus, in all cases. Denote the
common first term in and by . Denote the
second terms by and . Thus,

2Notice that �� ����� ���� � � for all � implies
that ���� � ����� ���� � � for all �. Since this
holds for all �, it also holds for the max taken over �, i.e.,
���� � ������� � ���� � ��� ���� � ����� ���� �
�.
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. Thus, for all . By footnote
2, the same holds for the bounds.

Furthermore, if the noise is small enough, and for ,
the second term is the dominant term in , i.e.,

. Then
, i.e.,

is also roughly less than 9/32 for all .
From footnote 2, this means that the CS-residual bound is also
roughly (9/32) times the CS bound (is significantly smaller).

If , assumption 2b does not hold and so the above
comparison does not hold. But clearly, under high enough SNR,

in Corollary 1 is much smaller than (19).
Monte Carlo Comparison. We used Monte Carlo to com-

pare CS-residual reconstruction error with that of CS for a static
problem. This is discussed in Section V-A and Table I.

C. Tighter CS-Residual Bound Under Stronger Assumptions

To address an anonymous reviewer’s comment, we give
below a tighter error bound for CS-residual (does not contain a
term proportional to ). But this also holds under a stronger
assumption. This section can be skipped in a quick reading.

Using (14), .

Notice that if the noise is small and is small, will be
small. In particular, if , by applying the first
inequality of Lemma 1 with , ,
and ; using ; and combining
the resulting bound with that given in Corollary 1, we get the
following.

Corollary 2: Assume the following:
1) , , ;

2) and
for a

then,

(22)

If , condition 2 cannot hold. In this case,
with defined in Corollary 1.

Notice that the first term in the does not contain . The
above bound is tighter when this first term is smaller, i.e., is
small enough (happens if small but large).

IV. LS-CS STABILITY

So far we bounded CS-residual error as a function of , .
The bound is small as long as and are small. A bound
on LS-CS error as a function of , is also easy to obtain.
The next questions are:

1) Under what conditions on the measurement model and
the signal model, will the number of extras, , and
the number of misses, , and hence also , , be
bounded by a time-invariant value, i.e., be “stable”? This
will imply a time-invariant bound on LS-CS error.

2) If additions/removals occur every-so-often, under what
conditions can we claim that , will become zero
within a finite delay of an addition time? This will mean
that the LS-CS estimate becomes equal to the genie-aided
LS estimate (LS estimate computed using ).

The answers to both questions are, of course, interrelated.
We first describe our signal model for studying stability in

Section IV-A. The three key lemmas leading to our stability re-
sult are given in Section IV-B and the result itself is derived in
Section IV-C. We discuss its implications in Section IV-D. We
argue that if Assumption 1 holds, a) the bounds on the misses
and extras are small compared to the support size (“stability” is
meaningful) and b) stability holds under weaker assumptions on
the measurement matrix than those required for simple CS.

A. Signal Model

For stability, we need a signal model. We assume the fol-
lowing deterministic model that a) assumes a nonzero delay
between new coefficient addition and removal times, b) allows
new coefficients’ magnitudes to gradually increase from zero for
sometime and finally reach a constant value, and c) allows co-
efficients to gradually decrease and become zero (get removed
from support). At , we assume that is sparse
with all “large” coefficients with values .

Signal Model 1: The model is as follows.
1) Initialization. At , is sparse. All its

nonzero coefficients have values .
2) Addition. At , for all ,

new coefficients get added. Denote the set of indexes
of coefficients added at by . A new
coefficient, , gets added at an initial magnitude (its
sign can be ) and then its magnitude increases at a rate

until it either reaches or for time units. Thus, the
maximum magnitude of the th coefficient is
for , and is for .

3) Removal. coefficients get removed at
for all . Denote the set of indexes of coefficients
which get removed at by . During

, the elements of start to decrease
and become zero at . For coefficient, , the
rate of decrease is per unit time.

4) The sets and are disjoint, i.e., the coefficients
that just got added do not get removed.

Thus at any , the support can be split as
(increasing coefficients) and (constant coefficients),

where . At any , it can be
split as (increasing), (decreasing), (constant).
At , (all constant).

Notice that in the above model the signal support size remains
roughly constant. It is or at all times. Also, the
maximum signal power is bounded by .

B. Three Key Lemmas

Proving stability, i.e., showing that the number of misses,
, and extras, , remain bounded, requires finding suffi-

cient conditions for the following three things to hold at the cur-
rent time: a) one, or a certain number of, large undetected co-
efficients definitely get detected; b) large enough detected co-
efficients definitely do not get falsely deleted, and c) every-so-
often the extras (false detects or true removals) definitely do get
deleted. a) and b) are used to ensure that remains bounded
while (c) is used to ensure that , and hence ,
remains bounded. These three things are done in the following
three lemmas.
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Lemma 2 (Detection Condition): Assume that ,
, and . The current largest mag-

nitude undetected element, , will definitely get detected
at the current time if , ,

(23)

Lemma 3 (No False Deletion Condition): Assume that
, and . For a given

, let . All will not get
(falsely) deleted at the current time if , and

(24)

Lemma 4 (Deletion Condition): Assume that
, and . All elements

of will get deleted if and
.

These lemmas follow easily from Corollary 1 and a few
simple facts. They are proved in Appendix B.

C. The Main Result

By running simple CS at with an appropriate number
of measurements, (usually much larger), we assume
that we detect all nonzero coefficients and there are no false de-
tects, i.e., . This assumption is made for simplicity.
For stability, we need to ensure that within a finite delay of a
new addition time, all new additions definitely get detected (call
this delay the “worst case detection delay”) and that this delay
plus the coefficient decrease time, , is smaller than the delay
between two addition times, . This needs to be done while en-
suring that there are no false deletions of either the constant or
the definitely detected increasing coefficients. Also, the deletion
threshold needs to be high enough to definitely delete the extras
every-so-often (ensure bounded).

To obtain our result, the above is done by splitting
into the four subintervals shown in Fig. 2

and using the lemmas from the previous subsection to find suf-
ficient conditions so that the following hold for some :

1) At all , there is no false deletion of
the constant coefficients (during this time the increasing
coefficients may be too small and we do not care if they
get detected or not). This prevents the number of misses
from increasing.

2) At every , for , (a) the th
largest increasing coefficient is definitely detected, and (b)
all constant coefficients and the first largest increasing
coefficients are not falsely deleted. This ensures that by

, the number of misses becomes
zero, i.e., the “worst case detection delay” is .

3) At , all false detects get deleted. This
is needed to keep bounded.

4) At all , (a) the current
falsely detected set is immediately deleted and (b) none of
the constant or increasing coefficients get falsely deleted.

Fig. 2. Our approach to show stability (prove Theorem 2). We split �� � � �
�� into the four subintervals shown above and ensure no false deletion (No-FD)/
detection (DET)/deletion (DEL) of the coefficients listed in each. The notation
� refers to the �th largest increasing coefficient. Recall: in �� � � �����,
� is the increasing coefficients’ set and � �� is the constant coefficients’ set.

5) At all , (a) the current falsely de-
tected set is deleted and (b) none of the decreasing, constant
or increasing coefficients are falsely deleted.

6) At , all falsely detected and removed coefficients
are deleted and there is no false deletion.

Doing the above leads to the following result.
Theorem 2 (LS-CS Stability): Under Signal Model 1, if there

exists a , so that the following conditions hold:
1) (initialization) all elements of get correctly detected and

there are no false additions, i.e., ;
2) (algorithm—thresholds) we set and

we set large enough so that there are at most false
detections per unit time;

3) (measurement model)
a) , , ;

and
b) with

and ;
4) (signal model—additions & no false deletions of

increasing coefficients) the following hold for all
and for all for all :

a) with and ,

b) with , and
,

5) (signal model—no false deletions of constant coefficients)
with , ,

6) (signal model—no false deletions of decreasing coeff’s)
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7) (signal model—delay b/w addition times large enough)

where , are defined in (17), then,
1) at all , , and

and the same bounds also hold for , ,
respectively; and

2) for all , ,
and thus (LS-CS estimate = genie-LS estimate).

The proof is given in Appendix C. Note that in , the
is taken over and same for . We now

give a simple corollary of Theorem 2 (proved in Appendix D).
Corollary 3: If the conditions given in Theorem 2 hold,

1) at all , the LS-CS error satisfies

with computed at , ;
2) at all , the CS-residual error,

with , , computed at ,
, and defined in (18).

Remark 4: Note that the initialization assumption is not re-
strictive. Denote the bound given by [6, Theorem 1.1] for

by . It is easy to see that this assumption will hold
if the addition threshold at is (ensures no
false detects) and if (ensures all
true adds detected). If the noise is small enough, by choosing
large enough, we can make small enough.

Even if this cannot be done, our result will only change
slightly. The misses can be combined with the new additions at

. Extras will at most increase the bound on by .

D. Discussion and Extensions

Notice that Signal Model 1 results in bounded SNR and
roughly constant signal support size at all times. Theorem 2
and Corollary 3 show that under Signal Model 1 and under the
initialization assumption (made only for simplicity), if

1) the noise is bounded and is large enough so that
condition 3 holds;

2) the addition/deletion thresholds are appropriately set (con-
dition 2);

3) for a given noise bound and ,
a) the smallest constant coefficient magnitude is large

enough (condition 5);
b) the rates of coefficient magnitude increase and de-

crease are large enough (conditions 4, 6);
c) and the delay between addition times, , is larger than

the “worst case detection delay” plus coefficient de-
crease time, (condition 7 );

then,
1) the number of misses, , and the number of extras,

and the same bounds hold for ,

(here is the smallest integer for which conditions
of Theorem 2 hold);

2) within a finite delay, , all new additions get
detected and not falsely deleted , and the extras
get deleted , i.e., the LS-CS estimate becomes
equal to the genie-LS estimate;

3) the LS-CS error and the CS-residual error are bounded by
the time-invariant values given in Corollary 3.

From Assumption 1 (given in Section I-B), . When
is large enough (as required above), it is easy to set so that
is small, e.g., in our simulations the average was often less

than 1 while . With a fast enough signal increase (as
required above), will also be small. Thus, we can claim that

and will be bounded by a small value compared to the
signal support size, , i.e., “stability” is meaningful.

Under the above assumptions, compare our requirements on
(condition 3 of Theorem 2) to those of the CS error bound

[6], which needs . The comparison is easier to do if
we slightly modify the definition of to be the largest for
which and (this will imply that

). Clearly is much weaker than
. If , and are small enough (argued above), both

and condition 3b will also be much
weaker than .

Notice that our signal model assumes that support changes
occur every time instants. This may be slightly restrictive.
But it is necessary in order to answer our second question (do
the support errors ever become zero?). If we do not care about
answering this, we can assume a signal model with and
modify our arguments to still ensure stability. But the support
errors may never become zero. We do this in [24].

Also, note that if is large (slow rate of decrease), condition
6 becomes difficult to satisfy. If we remove this, we may not
be able to prevent false deletion of the decreasing coefficients
when they become too small (go below ).
But since they are small, this will increase the CS-residual error
at the next time instant only slightly. With small changes to our
arguments, it should be possible to still prove stability.

V. NUMERICAL EXPERIMENTS

In Section V-A, we study a static problem and com-
pare CS-residual error with that of CS. In Section V-B, we
verify LS-CS stability. In Section V-C, we simulate lower
SNRs and faster additions. In all these simulations, was
random-Gaussian. We averaged over 100 simulations (noise
and signal supports for all times randomly generated) for all
the time-series simulations and over 50 for the static one.
In Section V-D, we show a dynamic MRI reconstruction
example. Our MATLAB code is posted at http://www.ece.ias-
tate.edu/~namrata/research/SequentialCS.html. All our code
used , www.stanford.edu/~boyd/cvx/.

A. Comparing CS-Residual With CS

We simulated a single time instant reconstruction problem
(reconstruct from ) with , ,
and with . The noise was zero
mean i.i.d Gaussian. The nonzero signal values, , were i.i.d.

with equal probability. The sets , and
were uniformly randomly generated each time. We used four
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TABLE I
COMPARING NORMALIZED MSE OF CS-RESIDUAL (WITH � � ��) WITH THAT OF CS (DANTZIG SELECTOR (DS)) WITH THREE DIFFERENT �’S. WE USED

� � ���, �� � � ��, ��� � �� � � �. COMPARISON SHOWN FOR THREE CHOICES OF � � ��������� IN THE THREE

different noise standard deviations
and three different choices of (45, 59, 100). In Table I, we
compare the normalized MSE (NMSE) of CS-residual output
with that of CS. CS (Dantzig selector) was run with different
choices of while for CS-residual we fixed . Except
when , in all other cases CS-residual outperforms CS
significantly. For (large ), if , CS (with
smallest ) is better, and if , both are similar.

A few other observations. Equation (1) When is small, the
best CS error occurs when we run it with the smallest . Smaller

reduces the size of the feasible set and thus the norm of the
minimizer, , is larger, i.e., more of its elements are nonzero
(if is too large, will be feasible and will be the so-
lution). Equation (2) We also compared the CS-residual error
with the error of the final LS-CS output (not shown). Only when
CS-residual error was small, the support estimation was accu-
rate and in this situation the final LS-CS error was much smaller.

B. Verifying LS-CS Stability

In Fig. 3, we verify LS-CS stability. We simulated Signal
Model 1 with , , and with ,

, . Half the ’s were 0.5, the other half were
0.25. We used and the noise was with

. The LS-CS algorithm used ,
and a larger . We assumed that the initial-

ization condition holds, i.e., we started LS-CS with .
In all 100 simulations, the number of misses and extras be-

came exactly zero within time units of the
addition time, i.e., the LS-CS estimate became equal to that of
the genie-LS. Thus, according to the simulations, was 3.

The NMSE of LS-CS was stable below 0.4%. Compare this
to that of CS or Gauss-CS with small , which was 30%–40%.

C. Lower SNR and Faster Additions

Next we ran two sets of simulations—slow-adds and fast-
adds—with much lower SNRs. Slow-adds used , while
fast-adds used . In all simulations, , ,

and the noise was uniform . Also, we used a
smaller , since it encourages more additions.

We define two quantities: minimum average signal to
noise ratio (min-SNR) and maximum average signal to noise
ratio (max-SNR). Min (max) SNR is the ratio of minimum
(maximum) average signal magnitude to the noise standard de-
viation. For unif noise, the standard deviation is .
Min-SNR, which occurs right after a new addition, decides
how quickly new additions start getting detected (decides ).
Max-SNR decides whether becomes zero before the next
addition. Both also depend on of course.

For the previous subsection (Fig. 3), . Minimum
average signal magnitude was while

Fig. 3. Verifying LS-CS stability.

Fig. 4. Lower SNRs and Faster additions. LS-CS-no-deletion refers to LS-CS
without deletion step. � axis is log scale in (a), (c). (a) Low SNR, Slow adds,
� � ��. (b) Low SNR, Slow adds, � � ��. (c) Low SNR, Fast adds, � � ��.
(d) Low SNR, Fast adds, � � ��.

maximum was .
Thus, min-SNR was 12.3 while max-SNR was 82.

In slow-adds [Fig. 4(a) and (b)], we use ,
and Signal Model 1 with , , and .
Thus, min-SNR was while max-SNR
was (both are much smaller than 12.3
and 82, respectively). LS-CS used ,

. We restricted the maximum number of detects at a
time to . We also evaluated our assumption that CS
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at done with large enough finds the support without
any error. With , this was true 90% of the times, while
in other cases there were one to two errors. Notice the following
from Fig. 4(a) and (b): 1) Most additions get detected within two
time units and there are occasionally a few extras, and 2) as long
as remains well-conditioned, a few extras do not increase
the error visibly above that of the genie-LS. Notice from the
plots that even when LS-CS genie-LS, the average extras,

, are not zero. (3) LS-CS error (NMSE) is stable at 2.5%
while the CS errors are much larger at 40%–60%.

In fast-adds [Fig. 4(c), (d)], we use , and a
slightly modified Signal Model 1 with , ,
and . Thus, min SNR was while
max SNR was . Both are smaller than the
stability simulation, but larger than the slow-adds simulation.
This was needed because in this case the delay between addition
times was only 3, and so quick detection was needed to ensure
error stability. LS-CS error (NMSE) is still stable at 1%. LS-CS
used , and maximum allowed
detects at a time of .

D. Dynamic MRI Reconstruction Example

To address a reviewer comment, in Fig. 5, we show the ap-
plicability of LS-CS to accurately reconstruct a sparsified car-
diac image sequence from only 35% (simulated) MRI measure-
ments. Clearly, LS-CS error is stable at 2% while that of CS
is much larger. Detailed comparisons for actual (not sparsified)
image sequences, using practical MR data acquisition schemes,
and with using BPDN are given in [9].

For Fig. 5, the sparsity basis was the two-level Daubechies-4
2-D DWT. Images were 32 32 and were spar-
sified by retaining the largest magnitude DWT coefficients that
make up 99.5% of the total image energy and computing the
inverse DWT. The support size of the sparsified DWT vector
varied between 106–110, and the number of additions to (or re-
movals from) the support from any to varied between
1–3. Denote the 1-D DWT matrix by and the DFT ma-
trix by . Then and the measurement matrix,

where is an random row se-
lection matrix and denotes the Kronecker product. We used

and . Noise was zero mean i.i.d.
Gaussian with variance . Both LS-CS and CS used

. We also tried running CS with smaller values of
: and , but these resulted in (4) being

infeasible.

VI. CONCLUSIONS AND FUTURE WORK

We formulated the problem of recursive reconstruction of
sparse signal sequences from noisy observations as one of noisy
CS with partly known support (the support estimate from the
previous time serves as the “known” part). Our proposed solu-
tion, LS CS-residual (LS-CS), replaces CS on the raw observa-
tion by CS on the LS residual, computed using the known part
of the support. We obtained bounds on CS-residual error. When
the number of available measurements, , is small, we showed
that our bound is much smaller than the CS error bound if ,

are small enough. We used this bound to prove the stability
of LS-CS over time. By “stability” we mean that the support
estimation errors, , , remain bounded by time-invariant

Fig. 5. Dynamic MRI. Reconstructing a sparsified cardiac sequence. (a) NMSE
comparison (� axis is log scale). (b) Frames 2, 11, 20: original and reconstructed.

values. Extensive numerical experiments backing our claims are
shown.

An open question is how to prove stability of LS-CS for a
stochastic signal model that uses a random walk model with
drift given by the current model for coefficient increase/decrease
while using a (statistically) stationary model for “constant” co-
efficients, and that assumes a prior on support change, e.g., one
can modify the model of [25]. An even more difficult open ques-
tion is how to extend this analysis to show stability of KF-CS
[1], [23] under similar assumptions (this is more difficult since
KF-CS error also depends on the previous reconstructed signal,
not just its support estimate).

In this work, we did not study exact reconstruction using
much fewer noise-free measurements. We do this in [26] and
[27].

APPENDIX

A. CS-Residual Bound: Proof of Lemma 1 and Theorem 1

Proof of Lemma 1: The proof is a modification of the proof
of Theorem 1.3 given in [6]. Let , . Let

. Let be a size subset with
and let . implies that

. Thus, [6, eq. (3.1)] holds with
probability (w.p.) 1 and so is feasible. Thus,

(25)

(26)

The second equation is [6, eq. (3.3)]. The first follows by sim-
plifying [6].

Recall that is the largest value of for which
. Thus, we can apply [6, Lemma 3.1] for any . Let

contain the indexes of the largest magnitude elements of
outside of . Let . Thus,

and for any norm. Apply [6, Lemma 3.1]
and use (25) and (26) to upper bound its first inequality. Then
use to simplify the resulting
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inequality, and then use to square it.
Finally, use to get

(27)

Using to simplify the square of (25); using
the resulting bound in the second inequality of [6, Lemma 3.1];
and then finally using (27), we get

(28)
Since and , thus .
Thus, . This gives our result
which holds for any set of size .

Proof of Theorem 1: The result follows by applying
Lemma 1 with , and picking the set

of size as follows. For , pick
of size and bound by .

Use (15) to bound , and use to simplify the
final expression. For , pick the set as the set

union with smallest elements of . Finally use
and to get .

Lastly, from the definitions, .

B. LS-CS Stability: Proofs of the Key Lemmas for Theorem 2

The proofs of the three lemmas essentially follow from Corol-
lary 1 and the following simple facts.

1) An (an undetected element) will definitely get de-
tected at current time if 3.

2) An (a nonzero element of the current
detected set) will definitely not get falsely deleted at the
current time if .

3) All (a zero element of the current detected set)
will get deleted if .

4) If and , then

.

5) The bound in fact 4 is non-decreasing in and .
Proof of Lemma 2: From Corollary 1 and the fact that

, if , and
, then with

, , computed at , . , are defined in (17).
Using fact 1 from above, the largest undetected element,

, will definitely get detected at the current time if
. Clearly this holds

if and .
If it is only known that and then our
conclusion will hold if the maximum of the left-hand sides
(LHS) over and is less than the right
side. This gives the lemma. The LHS of the first inequality is
non-decreasing in , and hence is maximized for .
The LHS of the second one is non-decreasing in but is not
monotonic in .

3An � � � will get detected if ���� � � � �. Since ���� � � � �� � �
�� ���� � � � �� ������� �, this holds if �� � � ������� �.
This, in turn, holds if � � �� � ���� �� � .

Proof of Lemma 3: It follows from facts 2, 4, and 5.
Proof of Lemma 4: It follows from facts 3, 4, and 5.

C. LS-CS Stability: Proof of Theorem 2

Let (call it the zeroth addition time). The first addition
time, . We prove Theorem 2 by induction. At ,
all the coefficients are correctly detected (according to
the initialization condition), and thus and

. Thus, for the initial interval , our
result holds. This proves the base case. Now for the induction
step, assume that

Assumption 2 (Induction Step Assumption): The re-
sult holds for all . Thus, at ,

and .
Then prove that the result holds for . The

following facts will be frequently used in the proof.
1) Recall that . Also, coefficient decrease of the

elements of begins at and the
coefficients get removed at . Since

(condition 7 of the theorem), thus, coefficient decrease
does not begin until or later.

2) At all , , while at ,
. Also, there are additions at

and none in the rest of the interval . There are
removals at , and none in the rest of the

interval before that.
3) and

. If there are no new additions, . Similarly,
if there are no new removals, .

The induction step proof follows by combining the results of
the following six claims. In each claim, we bound , ,

in one of the subintervals shown in Fig. 2. Using the last
two facts above, the bounds for , , follow directly.

Claim 1: At all , for all ,
, , .

Proof: We prove this by induction. Consider the base case,
. At this time there are new additions and

. Using Assumption 2 (induction step assumption),
, . In the detection step, and

so . There are at most false
detects (condition 2), so that . Thus,

.
The smallest constant coefficient has magnitude

. Apply Lemma 3 with ,
, . It is applicable since

conditions 3a and 5 hold. Thus, none of the constant
coefficients will get falsely deleted and so . Also,
clearly . Thus, .

For the induction step, assume that the result holds for
. Thus, at , and

. Using condition 2, after the detection
step, . Thus, . Also,

and so .
Applying Lemma 3 with , ,

(applicable since conditions 3a and 5
hold), none of the constant coefficients will get falsely deleted.
Thus, . Also, clearly .
Thus, .
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Claim 2: At , for all ,
, , , and the

first largest increasing coefficients are definitely detected.
Proof: We prove this by induction. Consider the base case

. Using the previous claim, , ,
. At this time, either the largest element of

, which has magnitude , has already
been detected so that the number of undetected elements already
satisfies or it has not been detected. If it has been
detected, then . If it has not been detected,
then . Apply Lemma 2 with

, . It is applicable since conditions 3a
and 3b hold and condition 4a holds for . Thus, the largest
element will definitely get detected. Thus, in all cases,

and so . Using
condition 2, and so .

Applying Lemma 3 with , ,
(applicable since condition 3a

holds and 4b holds for ), the largest increasing coefficient
will not get falsely deleted. Further, applying Lemma 3 with

(applicable since conditions 3a and 5
hold), none of the constant coefficients will get falsely deleted.
Thus, . Also and so

.
For the induction step, assume that the result holds for

. Thus, at , ,
, and the

first largest elements have already definitely been detected.
Either the th largest element has also been already detected, in
which case or it has not been detected. If it has,
then . If it has not been detected, then

. As before, use conditions
3a, 3b, and 4a and apply Lemma 2 to claim that the th largest
element will definitely get detected. Thus, in all cases,

and so . Using
condition 2, and so .
Also as before, apply Lemma 3 first with

and then with (applicable
since conditions 3a, 4b, and 5 hold) to claim that all constant
coefficients and all the largest increasing coefficients will not
get falsely deleted. Thus, . Also,
and .

Claim 3: At , .
Proof: In the previous proof we have shown that at

, i.e., for , and
. Apply Lemma 4 with ,

(applicable since conditions 3a and 2 hold). Thus,
all false detects will get deleted, i.e., .

Claim 4: At all , ,
. Thus, and .

Proof: Using the previous two claims, the result holds for
(base case). For the induction step, assume

that it holds for . Thus, at ,
, and . Since ,

and thus . Using condition 2,
and thus . Use conditions 3a, 4b (for ),
and 5 to first apply Lemma 3 with , ,

(smallest increasing
coefficient) and then with (smallest
constant coefficient) to show that there are no false deletions of
either constant or increasing coefficients. Thus, . Use
conditions 3a and 2 and apply Lemma 4 with , to show
that .

Claim 5: At , , .
Thus, and .

Proof: The proof again follows by induction and argu-
ments similar to those of the previous claim. The only difference
is the following. At any , one applies Lemma
3 three times: the first two times for increasing and constant co-
efficients (as before) and then a third time with ,

, (for the cur-
rent smallest decreasing coefficient). This last one is applicable
since conditions 3a and 6 hold.

Claim 6: At , , . Thus,
and .

The only difference at this time is that the decreasing coeffi-
cients get removed. As a result, ,
and . But . As before, using
conditions 3a and 2 and applying Lemma 4 with , all
extras will still get removed and so still . Everything
else is the same as before.

D. LS-CS Stability: Proof of Corollary 3

We have shown that and
. We can bound as follows. In the first subinterval,

and the maximum value of any element of at
any in this interval is so that

. In the second subinterval, at
, and

. In the last two subintervals, . Thus,

(29)

This gives the LS-CS error bound. In a similar fashion, we can
argue that . Using
this in Corollary 1 gives the CS-residual error bound.
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