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ABSTRACT and all S;-column sub-matrices of “approximately orthonormal”,

. . l.e.ds, < 1[2,eq. (1.3)].w; is independent af; and is i.i.d,Vt.

In recent work, we studied the problem of causally reconstructing Let N, denote the the support setaf, i.e. the set of its non-zero
time sequences of spatially sparse signals, with unknown and Slo@'oordinates and &k, 2 N, denote its estimate. Also, e, denote
time-varying sparsity patterns, from a limited number of linear “in—the undetected nonzero set at titie. A, 2 N.\T ' and letA
coherent” measurements. We proposed a solution called Kalmanenote its estimate. Th@s — T UAt Le:S ZI‘N | wherte
Filtered Compressed Sensing (KF-CS). The key ideaistorunar | denotes the size.of a set_AIs,to_lfor arz)./feiett(v;T dénote the

duced order KF only for the current signal’s estimated nonzero co T lenath sub ‘ taining the el S dina t
efficients’ set, while performing CS on the Kalman filtering error to 7] ength sub-vector containing the elements @orresponding to
rgﬂe indices in the séf'. For a matrix4, A+ denotes the sub-matrix

estimate new additions, if any, to the set. KF may be replaced b biained b ina th | P i he indi
Least Squares (LS) estimation and we call the resulting algorith taine yextractlngt_ e columns.dfcorresponding to t € Indices
In T. We use the notatio(Q)r, 7, to denote the sub-matrix @

LS-CS. In this work, (a) we bound the error in performing CS on the o - o

LS error and (b) we obtain the conditions under which the KF-CSCOm"’“r"ng.rOWS acnd columns corresponding to the entridg “ﬁmd
(or LS-CS) estimate converges to that of a genie-aided KF (or LS)T2 rispecnvely.T denotes the complement 8fw.rt. [1 : m], i.e.
i.e. the KF (or LS) which knows the true nonzero sets. T° £ [1:m]\T. ¢ refers to the empty set.denotes transpose.

Keywords: compressed sensing, kalman filter, least squares 1Nem X m matrix I is defined as follows(I7)r,r = I wherel
is a|T'|-identity matrix while(I1)7e (1.m] = 0, (I7)[1:m], 7 = O.

1. INTRODUCTION The nonzero coefficients’ séf; changes slowly over time. For
the currently nonzero coefficients of, (z;)n,, we assume a spa-

tially i.i.d. Gaussian random walk model, while the rest of the coef-
icients remain constant, i.e.

In recent work [1], we studied the problem of causally reconstruct
ing time sequences of sparse signals, with unknown and slow tim
varying sparsity patterns, from a limited number of noise-corrupte
“incoherent” measurements. We proposed a solution called Kalmang, — 0, z, = =, 1 + vy, vi ~N(0,Q:), Qi = Ufysfzvt 2)
Filtered Compressed Sensing (KF-CS). With the exception of CS [2]
and of [3], most other work [4, 5] treats the entire time sequence oWherev; is temporally i.i.d.. The current nonzero sefy, is un-
signals/images as a single spatiotemporal signal and performs CSkoownvt. Our goal is to recursively get the best estimated’pand
reconstruct it. This is a non-causal solution and also has high conme: (or equivalently of the signak; = ®x:) usingyi, . . . y:.
putational cost. On the other hand, if the number of observations
is small, performing CS [2] at each time (simple CS) incurs much 2. KALMAN FILTERED CS AND LEAST SQUARES CS
larger error than KF-CS, see Fig. 1. Potential applications of KF\We describe a simple modification of KF-CS [1] and introduce Least
CS include making dynamic MRI real-time (causal and fast enoughpquares CS. Let,,_,, 2, K; and P,,_,, P; denote the predicted
[4, 6]; real-time video imaging using a single-pixel camera [5]; orand updated state estimates at timée Kalman gain and the pre-
real-time tracking of temperature, or other, time-varying fields usingliction and updated error covariances given by the KF in KF-CS
sensor networks that transmit random projections of the field [7].  (since KF-CS does not always use the correct valug:QftP,,_, or

In this work, in Sec. 2, we describe a simple modification of P; are not equal to the actual covariances of- .1 Or x¢ — Z+).
KF-CS [1] and introduce its non-Bayesian version, Least Square, s . .
(LS)-CS. Ourkey contributionsare: (a) in Sec. 3, we bound the 5'1' Modified Kalman F|Itered Compressed Sensing (KF'(?S)
error in performing CS on the LS error in the observation and comKF-CS can be summarized as running a KF for the systemin (1), (2)
pare it with that for performing CS on the observation (simple CS)put with Q replaced byQ; = o2, Ir,. The new additions, if any,
and (b) in Sec. 4, we obtain the conditions under which the KF-CSre estimated by performing CS on the Kalman filtering etjof.
(or LS-CS) estimate converges to that of a genie-aided KF (or LS). At time ¢, we first run a “temporary” Kalman prediction and

Simulation comparisons are given in Sec. 5. update step using; = ainIthl, i.e. we compute

Problem Definition. The problem definition is the same as in . .
[1]. Let (2¢)mx1 denote the spatial signal of interest at timand Ktmp = (Po1 4+ Qi) A (A(Pic1 + Qo)A + 02, 1)
(yt)nx1, With n < m, denote its noise-corrupted observation vector Framp = (I — KpimpA) 211 + Kitmp Yt (3)

att. The signalz., is sparse in a given sparsity basis (e.g. wavelet)

with orthonormal basis matrix®,,, x., i.e. z; = &'z is a sparse LetT 2 T, ;. The filtering error is

vector (onlyS; << m elements ofz, are non-zero). The observa-

tions are “incoherent” w.r.t. the sparsity basis of the signal, i.e. Gi.p = ye — At imp = An, (@e)a, + Ar(ze — 24) 7 +we (4)

g = Azy +wi, A2 HO, Elw] = 0, Elww,] = 0%, (1) As explained in [1], if the filtering error normis large, there is a need
to estimateA,. One can rewritgj, y asy,,f = AB: + wy, Where
This research was partially supported by NSF grant ECCS®&¥2 B 2 (e — )7, (Tt) Ay, O¢rua,)e] is a “sparse-compressible”




Algorithm 1 Kalman Filtered Compressive Sensing (KF-CS)
Initialization: Setzo = 0, Py = 0, To = ¢ (if unknown) or equal to the known support. Ror 0, do,

1. Temporary Kalman prediction and update. Implement (3) using), = ofysITt_l.

A~

2. Compute Additions using CS. Compute the KF errofj, s = y; — A&y tmp. Check ifFEN £ yt,le;el’tg}t,f > ayge. Ifitis,
(a) Do CS ony,, s followed by thresholding.e. computed, using (5), (6). The new estimated suppoffis= T} 1 U A,.
3. Kalman prediction and update. Implement (7) using); = ainITt.

(@) (KF-CS with final LS): If Ty # T;—1, implement (7) using); = oolr,, i.e. seti; = (A, Ar,) ' A,y and (P, 1, =
(A7, A1) "ol (Pi)1e,: = 0, (Pr).7e = 0.

4. Compute Deletions. If T} == T;_1 - - - == T;_1 (nonzero set has not changed for long enough, i.e. w.h.p. KHiztal),

(a) Check for “zero” coefficients, i.e. compufey = {i € T, : 30, ;. (8-4)? /K < az}with k' < k. SetT, — T, \ Az.
Set(&t)s, = 0. S€UP) A, (1. = 0@NA(F) (1,4, =0

5. Output T3, &, and the signal estimatez;, = ®z,. Increment and go to the first step.

signal with a “large” or “non-compressible” nonzero pdtt;)a, , When a coefficient;, is detected as being zero, we remove it
and a “small” or “compressible” nonzero pafty; — Z:)r. The  fromT;, we sete;; = 0andwe SetP:); 1:m) = 0, (Pt)[1:m),i = 0.
Dantzig selector (DS) [2] followed by thresholding can be applied towWe summarize the entire KF-CS algorithm in Algorithm 1.

detect the “non-compressible” nonzero part as follows: 2.2. Least Squares CS: Non-Bayesian KF-CS

B: = argmin ||8||1, s.t. [|A"(e.r — AB)|oo < AmOobs (5) In applications where training data is not be available to learn the
p prior model parameters required by KF-CS, one can use a non-
Av={ieTf: Bf, >t (6) Bayesian version of KF-CS i.e. replace the KF in KF-CS by Least
Squares (LS) estimation. The LS step is also faster than the KF step.
where),, £ /2Togm anda, is the addition threshold. Thus, the

estimated support set at timés 7; = T' U Ay =Ti_1 UA,. 3. ANALYZING CS ON LS ERROR (LSE)
Next we run the Kalman prediction/update usipg= o?,.Ir,:  LetT £ T,_; andA £ A, = N, \ Ti_1. The true nonzero sets
R at any time, N, are assumed to be non-random. But= T;_;
Pyji—1=Pi1+Q, Ky =Py 1A (AP A"+ o) ! is a random variable since its value dependsgjon and7;_» (or
P, = (I — K,A)Py;_y equivalently ory:..—1). We useE[] to denote expectation w.r.t. all
de = (I — KeA)der + Keye ) random quantitiesy., z1.¢ at timet) while usingE[-|y1.1—1] to

denote the expected value conditionedwn_;. Conditioned on
with initialization Py = Op1.pm (1:m]> £0 = Of1.m)- y1:—1, the setl’, and hence also the s&t= N, \ T', is known.
The key difference between simple CS and LS-CS is that simple

Remark 1 For easy notation, in (3),(7) we write the KF equations CS applies (5) ow: = Ax; + w, to estimate théN, |-sparse signal,
for the entirex,. But actually we are running a reduced order KF z,, while LS-CS applies (5) on the LS error (LSE}, s = y: —
for only the coefficients i’ (T' = T:—1 for (3) andT = T for (7). At tmp = ABr+we to estimated; := x¢ — &t tmp, WhEres tmp =

(A/TAT)_IA/Tyt- ﬁt = [(wt - j:t,tmp)Ty (-Tt)A,OTUAC] =
2.1.1. Deleting Zero Coefficients (Ar A7)~ Ap(Aa(zi)a + wi), (2e)a, 0ruac] is what we call
If the addition thresholdy,, is not large enough, occasionally there 2 “sparse-compressible” signal: it(i& U A|-sparse but, if the spar-
will be some false additions (coefficients whose true value is zer§'Y pa_ttgrn changes slowly enoggh, itis compressible a1b.ng\/e_
but they wrongly get added due to error in the CS step). Also, therdse th_ls idea to bound the error in CS on LSE and to show that if th_e
may be coefficients that actually become and remain zero. All sucfiParsity pattern changes Sl.OWIy enough, the CS-LSE error bound is
coefficients need to be detected and removed ffono prevent un- much smaller than that of S'T“P.'e Cs. i
necessary increase fifi|. IncreasedZ;| implies smaller minimum We use the following definition of compressibility of the random
eigenvalue ofA”, A7, and thus increased estimation error. The in-Processd: = i (wr, y1:1)-
crease is especially large.fy, Ar, is close to becoming singular.  Definition 1 We say thai3; is compressibleif the maximum over

One possible way to detect if a coefficientis zero isto checkif T of the average of3;)?, conditioned on past observations, is

the magnitude of its estimates in the last few time instants is smalsmaller than the minimum average squared value of any cur-
e.g. one can check ' _, ,, ,(#-:)°/k' < o.. This scheme rently nonzero component af, i.e. if maxier E[(5:)?|y1.c—1] <
would be fairly accurate (small enough false alarm and miss probamin;e v, E[(x)?]. This is a valid definition sincsin;c n, E[(z:)7] <
bilities), if the estimation errok, ; = x-,; — @, ; is small enough, min;ea E[(x:)?] = min;ea E[(8:)?] for all choicesA = A(y1.t—1).
forall - € [t — k' + 1,¢]. If we check for zeroing only whef} ) )
has not changed for long enough (w.h.p. this implies that all pasf\ssumption 1 (model, algorithm) Assume that

additions have been detected, i.&; = N;, and the KF forT; 1. y¢, x¢ follow (1), (2); we, v+ are independent of each other
has stabilized), the variance ef ; would be approximately equal and over time; andv: has bounded support (e.g. truncated
10 (Pr)iyi < 025/ Amin (A A7), i.e. it would be small enough. Gaussian) with cutoffs atm in all dimensions.



2. Ni—1 € Ny forall tandS; := |N¢| < Smaz. Lemma 1 [8] Assume that there existsta s.t. V¢t > to, T: =

3. The number of false additions is bounded,|[T&\ ;| < Sy, V¢ = N« and assume thai .| < 1. Consider KF-CS without the
for all . This implies thatTi| < S; + Sta < Smaz + Sta- Qeletlon step, i.e. witly, = 0, and with thg step 3a‘(KF-CS with
4.5 L 5o — 5<(A)is defined in 12 13 final LS) replacing step 3 if; # T;—1. The difference in the KF-CS
- 08aat5p, < 1. 05 = 05(A) is defined in [2, eq. (1.3)]. and GA-KF estimatesl, £ |2, ¢caxr — &/, converges to zero in
Bounded measurement noise (Assumption 1.1) is usually valid. Asmean square and hence also in probability.

sumption 1.3 is observed in all our simulations, as long as the ad-
dition thresholdw, is large enough. Assumption 1.4 quantifies the ~ Assume that Assumption 1 holds. The bounded support assump-
required amount of incoherency of the measurement matrix w.r.t. théon onw; ensures thatAjw:| < ||we|[oo]|Ail[1 < Am0obs, Vi.
sparsity basis. Consider Assumption 1.2. While this assumption i¥Vith this, the theorems of [2] can be directly modified to hold with
not strictly true, it is observed (for medical image sequences) that jprobability one. This helps prove the following.

is approximately true:_the sel; \ Ny, a_n(_j_the total eV \ No, Lemma 2 Assume that (i) Assumption 1 holds and thag,,,, +

are both smaI.I..AIso, if we relax the definition of sypport to denote(sgsmaz < 1 (stronger incoherency requirement than earlier); and
any set containing all nonzero elementsefthen this is true.

. . ii) in Algorithm 1, we setv, = B1 £ CiA2,Smaz02, (C1 is
Under the above assumptions, we can prove the following [8]: Ei(gfined I% [2, Thm. 1.1]). Then, at éac,kthelfollowing hcb)ldg !

Theorem 1 Assume that Assumption 1 holds. tet ¢,(¢) denote
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the last addition time before or at [lze — &t,tmp — Bel|” < B1 = Ci A Smazoops  (8)

1. If |A| is small enough to ensure thét — t, + 1)02,, > Ay © Ni, and solt © Ny, and sOT; U Agyr = Nepr (9)
02 G2 . . .
%Amaz (E[(z¢)a(@e)a|yr:e—1])+ o5, thenss; == Proof: We prove this result by induction. At aywhen solv-
¢ — &4,0mp IS COMpressibleds ¢ is defined in [2, eq. (1.5)]. 19 (3), ?t,tmrzi = 0, Vi € Ti",. The sparse vector to be es-
2. The following bound on the CS-LSE error holds timated isf; = [(z¢ — &t.tmp)1; 1, (¥¢)a,, Ong]. First consider
the base case¢, = 1. Att = 1, T:—1 = To = ¢ (empty) and
E[||z: — &,cs1se])3|y1e—1] < 1<r§lil}e Besrse(S) SO0 Z1,tmp,i = 0, Vi. ThusB:r = 1 with nonzero set\; = Ni.

A Since|Ni| < Sma and since the observation noise,, satisfies
- /
Bossu(S) = Ca(8)S0%. + C5(S) UTI+]AI=5) ;4 |Alwe| < Amoobs, we can apply Theorem 1.1 of [2] to get (8) to
S always hold at = 1.
Also, for anyi € Nf, z1,; = 0and so37; = (z1,; — B1,1)*> <
2 _ |1 — &1.6mp — B1]|*> < By (from (8)). Bute, = By. Thus, from
(T + A= 8) 125 it S>|Al (6), A; C Ny. ThusTy £ Ty U A, C Ny. But Ny C Na. Thus,
oF T1 C N». SinceA; = Ny \ To, this implies thaly U Ay = No.
IT].1A 2|, 1 & N2 1 1 0s p 1 2 2
((1—5\2T|)2 + DE[I(@e)allPlyse—]+ Thus (9) also holds for = 1. This proves the base case.
|T| {22k if S <|A] For the inductive step, assume that (9) and (8) hold:fer1.
I Thus,T;—1 U A, = Ny, which is the nonzero set fgh.. But|N¢| <
wherez; csrse is the output of (5) withy:, y = ye — AZ¢,tmp Smaz. Thus Theorem 1.1 of [2] can be applied to get (8) to hold for
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and iy mp = (A7 A7) A y:. t. Also, for anyi € Nf, z¢; = 0 and s03?; = (e, — Br.i)? <
Notice thatE[(z;) a (1) |y1.+—1], andits traceR || (z:) a||*[y1_1], [Tt = Tetmp — Bel|* < Br = .. Thus from (6),A; C N;. Thus
can be computed by running a genie-aided KF. Ty £ T,y UA; € Ny € Nygy. SinceAiyr 2 Nygy \ Ty, this

In [8], we also derive a bound on the unconditional CS-LSEmeans thafl; U A1 = Ny41. Thus (9) holds fot. This proves
error, i.e. the error averaged over all values of the past obsemgatio the induction step and thus the result holds.

under slightly stronger assumptions. We also discuss why the bound ) )

on the CS-LSE error is much smaller than that on simple CS error, L8émma 3 Assume that (i) Assumption 1 h°|df ar;d Qt&ﬁmaw iy
03Smae < 1; (i) in Algorithm 1, we setv, = B1 = CT A, Smaz05ps;

4. CONVERGENCE TO GENIE-AIDED KF (OR LS) and (i) all additions occur before a finite timetq maz, 1.€.

Consider the genie-aided KF, i.e. the KF which knows the trueVt = New oy V& > tamas. LetN. £ Ny, ... Then,
nonzero set)V;, at eacht. It is the linear MMSE estimator of, ~ 1iMi—oco Pr(Tivr = Nigr = Nu, V7 > 0) =1
from yu1, ...y if the nonzero sets)N,’s, are known. It would be . : - .
the MMSE estimator (i.e. it would be the best estimator among all, Proof. Since (i) and (") hpld, Lemma 2 rlo'di Forang A,
possible estimators) if the observation noise were Gaussian insted@!”»* ~ 0. Thus, (8) |mpI|gs thatz:: — fr4)” < By and so
of truncated Gaussian. The genie-aided KF can be summarized &%l = |7t *_\/B_l- Thus, if |z,i| > VB1 + oa = 2VBy,
running (7) withQ: = o2,,In,. In this section, we obtain condi- thens?; > aa, i.e.i € A. In other words,Pr({i € Adfaf, >
tions under which the KF-CS estimate converges to the genie-aidet31}) = 1. The same argument applies even if we consider all
KF estimate in probability. As a corollary, we also get conditions fori € A;. Thus,Pr({A; C Ay}{a?, > 4B1 Vi € As}) = 1.
LS-CS to converge to genie-aided LS. But from (9) and (6),A, C A,. Thus, ifz, > 4By, Vi €

We begin by giving Lemma 1 states that if the true nonzeron, A, = A, and soT, 2 T,_, UA, = N;. Thus, Pr(T, =
set does not change after a certain time, and if eventually it is CON, [{z?, > 4By Vi € A}) = 1. NOW, V¢ > ta,maz, Ni = N..
rectly detected, then KF-CS converges to GA-KF. This is followedthys fort > ¢, 40, T = N. implies thatA,; = ¢. This implies
by Lemmas 2 and 3 which prove that, if the addition threshold iy, ,¢ A, — ¢and soly1 = T, = N.. Thus, 7, = N. implies that
high enough, the probability of false addition is zero and the prob-, ~_ s VEk > 0. Thus. for allt > ¢

™ : . .. t+k *y = ’ a,max,

ability of correct set detection approaches one withCombining
these lemmas gives the final result. Pr(Tiyr = No V7 > 0[{a;, > 4B Vi € A}) = 1 (10)




Now, 27, ~ N(0, (t — t;)o2,.) Wheret; is the time at which ele-
menti got added. Note that < ¢4 mas. Thus,

4B1

(t - ta,maa:)o'gys

Pr(z;,; > 4B;) > 2Q(

) (11)

whereQ is the Gaussian Q-function. Combining (10), (11) and usin¢
the fact that the different, ;'s are independent,
Smaz
)) 12)

Thus for anye > 0, Pr(Ti+r = N.,,¥V7 > 0) > 1 —€if t >

tamaz + Te, Te = [ 1((?’2)1/57%1 )]21, where[.] is the
G=ol/Smaz

4B

Pr(Tysr = NoVT >0) > (2Q() —
(t - ta,maz)agys

o3ys[Q™
greatest integer function. Thus the claim follouls.
Combining Lemma 3 with Lemma 1 we get the final result.

Theorem 2 Assume that (i) Assumption 1 holds and that .. +
835, < 1; (i) in Algorithm 1, we setv, = By 2 CFA2,Smaz02ps;
and (iii) all additions occur before a finite timet, maz, i.€.
Nt = Ntgmawr Yt > tamae. Consider KF-CS without the
deletion step, i.e. witlv, = 0, and with the step 3a (KF-CS with
final LS) replacing step 3 if} # T;_1. Thend: £ &;.caxr — 2t

converges to zero in probability, i.e. the KF-CS estimate converges

to the Genie-Aided KF estimate in probability, ias+ oc.

— Genie-Aided KF|
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——KF-CS
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Fig. 1. MSE plots comparison. Fig. 1(a): Large KF-CS error occurs
at and after the new addition times,= 10, 20, 30. But once the
addition is detected, the error gradually reduces to that of GA-KF
(or slightly higher). The error of simple CS (labeled as CS) is much
larger (max value 45). Fig. 1(b): Simple CS error beyond 50
whensS; > 26 than is much larger in the Fig. 1(a) (max value 425).

(or almost singular) resulting in large errors at all futtr@o prevent
this, we set a maximum value for the number of allowed additions:
we allowed at most1.25n/ log, m) largest magnitude coefficient
estimates larger than, to be added. Also, typically an addition
took 2-3 time instants to get detected. Thus weosgl, = 3072,
(02,4 is used instead chrfys the first time a new coefficient gets
added). We simulated the above system 100 times and compared the
MSE of KF-CS with that of GA-KF and of simple CS (followed by
thresholding and least squares estimation as in Gauss-Dantzig [2]).
In a second set of simulations, shown in Fig. 1(b), we started
with S; = 8 and for10 < ¢ < 50, we added 2 new elements every 5

Also, the LS-CS estimate converges to the Genie-Aided LS estimatig)e units. ThusS,, .. = 26 = S, V¢ > 50. Note26 > n/3 = 24,

in probability, ast — oo (this follows directly from Lemma 3).

The assumptiodzs,,, .. + 93s,... < 1S just stronger incoherency

requirement o than Assumption 1. The assumption of all addi-
tions occurring before a finite time is a valid one for problems wher
the system is initially in its transient state (nonstationary), but late

stabilizes to a stationary state. Alternatively, the above theorem cal
be applied to claim that the KF-CS (or LS-CS) estimate stabilize$,

to within a small error the GA-KF (or GA-LS) estimate, if additions
occur slowly enough, i.e. if the delay between two addition times i
long enough to allow it to stabilize [8].

5. SIMULATION RESULTS

Lemma 2 says that if the addition threshold was set high enoug
(aq = By whereB; is the CS error upper bound), then there would
be no false additions. But if we set the addition threshold very high
then for the initial time instants, the KF-CS estimation error would

be large and it will do worse than simple CS. Thus, in practice, we sd@]
a, lower, but we implement the false addition detection and removal

scheme described in Sec. 2.1.1. We evaluated its performance usi

the following set of simulations. We simulated a time sequence of

sparsen=256 length signals;; = z which follow (2) witho?2,, =
1 and nonzero setsy;—1 C Ny, Vt satisfyingN; = Ny, Vt < 10,
Ny Nip,V10 < t < 20, Ny = N2o,V20 < t < 30, N;
N3p,V30 < t < 100 and|N1| = 8, |N10| = 12, |N20| = 16,

|N3o| = 20. ThusSmae: = 20. The setlN: and all the additions

were generated uniformly at random from the remaining elements

out of [1 : m]. The measurement matrid, = H was simulated as
in [2] by generating: x m i.i.d. Gaussian entries (with = 72) and

normalizing each column of the resulting matrix. The observation

noise variance was2,, = ((1/3),/16/n)? (this is taken from [2])

and we simulated Gaussian noise (not truncated).

We implemented KF-CS with,,, = /2log,m = 4, aa =
9025, (pe = 2n, iz = 045, k = 5, k' = 3. Since the observation
noise was not truncated, occasionally the addition step resulted in
very large number of false additions, which madig, Az, singular

i.e.d3s,,.. cannot be smaller than 1.

6. DISCUSSION AND ONGOING WORK

én this work, we introduced Least Squares CS and analyzed why

CSon the LS error in the observation will have lower error than CS
the raw observations (simple CS), when sparsity patterns change
owly enough. We also showed that if all additions occur before a

inite time, if the addition threshold is set high enough, if UUP holds

Jor Smaz, and if the noise has bounded support, KF-CS (or LS-CS),

converge to the genie-aided KF (or LS) in probability. In ongoing
work, we are working on relaxing the first three assumptions used
in the above result. We are also working on developing KF-CS for
F]eal-time dynamic MR imaging [6].
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