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KF-CS: Compressive Sensing on Kalman Filtered Residual
Namrata Vaswani

Abstract— We consider the problem of recursively reconstructing time
sequences of sparse signals (with unknown and time-varyingsparsity
patterns) from a limited number of linear incoherent measurements with
additive noise. The idea of our proposed solution, KF CS-residual (KF-
CS) is to replace compressed sensing (CS) on the observationby CS
on the Kalman filtered (KF) observation residual computed using the
previous estimate of the support. KF-CS error stability over time is
studied. Simulation comparisons with CS and LS-CS are shown.

I. I NTRODUCTION

Consider the problem of recursively and causally reconstructing
time sequences of spatially sparse signals (with unknown and time-
varying sparsity patterns) from a limited number of linear incoherent
measurements with additive noise. The signals are sparse in some
transform domain referred to as the sparsity basis. Important applica-
tions include dynamic MRI reconstruction for real-time applications
such as MRI-guided surgery, single-pixel video imaging [3], or video
compression. Due to strong temporal dependencies in the signal
sequence, it is usually valid to assume that itssparsity pattern
(support of the sparsity transform vector) changes slowly over time.
This was verified in [4], [5].

The solution to the static version of the above problem is provided
by compressed sensing (CS) [6], [7]. CS for noisy observations,
e.g. Dantzig selector [8], Lasso [9], or Basis Pursuit Denoising
(BPDN) [10], [11], have been shown to have small error as long
as incoherence assumptions hold. Most existing solutions for the
dynamic problem, e.g. [3], [12], are non-causal and batch solutions.
Batch solutions process the entire time sequence in one go and thus
have much higher reconstruction complexity. An alternative would
be to apply CS at each time separately (simple CS), which is online
and low-complexity, but since it does not use past observations, its
reconstruction error is much larger when the number of available
observations is small.Our goal is to develop a recursive solution
that improves the accuracy of simple CS by using past observations,
but keeps the reconstruction complexity similar to that of simple CS.
By “recursive”, we mean a solution that uses only the previous signal
estimate and the current observation vector at the current time.

In this work, we propose a solution called KF-CS-residual (KF-
CS) which is motivated by reformulating the above problem as causal
minimum mean squared error (MMSE) estimation with a slow time-
varying set of dominant basis directions (or equivalently the support
of the sparsity basis coefficients’ vector). If the support is known, and
a linear Gaussian prior dynamic model is assumed for the nonzero
coefficients, the causal MMSE solution is given by the Kalman filter
(KF) [13] for this support. When the support is unknown and time-
varying, the initial support can be estimated using CS. Whenever
there is an addition to the support, it can be estimated by running
CS on the KF residual, followed by thresholding. This new support
estimate can be used to run the KF at the next time instant. If some
coefficients become and remain nearly zero, they can be removed
from the support set. Both the computational and storage complexity
of KF-CS is similar to that of simple CS -O(m3) at a given time
where m is the signal length [14, Table 1] andO(Nm3) for an
N length sequence. This is significantly lower thanO(N3m3) for
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batch CS. Note that a full KF, that does not use the knowledge
that the signal is sparse, is meaningless here, because the number
of observations available is smaller than the signal dimension, and
thus many elements of the state (sparsity basis coefficients vector)
will be unobservable. Unless all unobservable modes are stable, the
error will blow up [13], [1].

The most closely related work to KF-CS is our work on LS-CS [2],
[4] which uses an LS residual instead of a KF residual. Thus it only
uses the previous support estimate, not the previous signal estimates,
to improve the current reconstruction. KF-CS uses both and hence
it outperforms LS-CS when the available number of measurements
is small, e.g. see Fig. 2. The work of [15] gives an approximate
batch-CS approach for dynamic MRI. Bayesian approaches, but all
for reconstructing a single sparse signal, include [16], [17], [14].
Related work, which appeared after [1], and in parallel with [2],
includes [18] (addresses recursive sparse estimation but with time-
invariant support), and our own later work on modified-CS [19].

This paper is organized as follows.The signal model and the
algorithm are described in Sec. II. We analyze the CS-residual step
of KF-CS in Sec. III. In Sec. IV, we prove KF-CS error stability
and discuss why our result needs stronger assumptions than a similar
result for LS-CS [4]. Simulation results comparing KF-CS with LS-
CS and simple CS are given in Sec. V and conclusions in Sec. VI.

In this work, we do “CS”, whether in simple CS or in CS-
residual, using the Dantzig selector (DS) [8]. This choice was initially
motivated by the fact that its guarantees are stronger (depend only on
signal support size, not support elements) than those for BPDN [11]
and its results are simpler to apply and modify. In later work [5],
we have also used BPDN. Between DS and Lasso [9], either can be
used and everything will remain the same except for some constants.

A. Notation and Problem Definition

The set operations∪, ∩, and\ have the usual meanings.T c denotes
the complement ofT w.r.t. [1, m] := [1, 2, . . . m], i.e.T c := [1, m]\
T . |T | denotes the size (cardinality) ofT .

For a vector,v, and a set,T , vT denotes the|T | length sub-vector
containing the elements ofv corresponding to the indices in the setT .
‖v‖k denotes theℓk norm of a vectorv. If just ‖v‖ is used, it refers
to ‖v‖2. For a matrixM , ‖M‖k denotes its inducedk-norm, while
just ‖M‖ refers to‖M‖2. M ′ denotes the transpose ofM . For a tall
matrix, M , M† := (M ′M)−1M ′. For symmetric matrices,M1 ≤
M2 means thatM2−M1 is positive semidefinite. For a fat matrixA,
AT denotes the sub-matrix obtained by extracting the columns ofA
corresponding to the indices inT . TheS-restricted isometry property
(RIP) constant,δS , and theS, S′-restricted orthogonality constant,
θS,S′ , are as defined in equations 1.3 and 1.5 of [8] respectively.

For a square matrix,Q, we use(Q)T1,T2 to denote the sub-matrix
of Q containing rows and columns corresponding to the entries inT1

and T2 respectively.I denotes an appropriate sized identity matrix.
Them × m matrix IT is defined as

(IT )T,T = I, (IT )T c,[1,m] = 0, (IT )[1,m],T c = 0 (1)

We use0 to denote a vector or matrix of all zeros of appropriate
size. The notationz ∼ N (µ, Σ) means thatz is Gaussian distributed
with meanµ and covarianceΣ.



Let (zt)m×1 denote the spatial signal at timet and(yt)n×1, with
n < m, denote its noise-corrupted observation vector att, i.e. yt =
Hzt + wt. The signal,zt, is sparse in a given sparsity basis (e.g.
wavelet) with orthonormal basis matrix,Φm×m, i.e. xt , Φ′zt is a
sparse vector. We denote its support byNt and we useSt := |Nt|
to denote its size. Thus the observation model is

yt = Axt + wt, A , HΦ, E[wt] = 0, E[wtw
′
t] = σ2I (2)

where E[·] denotes expectation. We assume thatA has unit norm
columns. The observation noise,wt, is independent identically dis-
tributed (i.i.d.) over t and is independent ofxt. Our goal is to
recursively estimatext (or equivalently the signal,zt = Φxt) using
y1, . . . yt. By recursively, we mean, use onlyyt and the estimate
from t − 1, x̂t−1, to compute the estimate att.

Definition 1 (DefineS∗, S∗∗): For A := HΦ,

1) let S∗ denote the largestS for which δS < 1/2,
2) let S∗∗ denote the largestS for which δ2S + θS,2S < 1.

Definition 2 (Definêxt, N̂t): We usex̂t to denote the final esti-
mate ofxt at time t and N̂t to denote its support estimate.

Definition 3 (DefineT , ∆, ∆e): We useT ≡ Tt := N̂t−1 to
denote the support estimate from the previous time. This serves as
an initial estimate of the current support.We use∆ ≡ ∆t := Nt \Tt

to denote the unknown part of the support at the current time. We
use∆e ≡ ∆e,t := Tt \ Nt to denote the “erroneous” part ofTt. To
keep notation simple, we remove the subscriptt in most places.

II. K ALMAN FILTERED CS RESIDUAL (KF-CS)

The LS-CS-residual (LS-CS) algorithm [4] only used the previous
support estimate,T , to obtain the current reconstruction, but did not
use the previous nonzero coefficient estimates,(x̂t−1)T . Because of
temporal dependencies, these also change slowly and using this fact
should improve reconstruction accuracy further. To do this we can
replace LS by regularized LS. If training data is available to learn a
linear prior model for signal coefficients’ change, this can be done by
replacing the initial LS estimate of LS-CS by a Kalman filtered (KF)
estimate. The KF will give the optimal (in terms of minimizing the
Bayesian MSE) regularization parameters if the size of the unknown
support,|∆| = 0. These will be close-to-optimal if|∆| is nonzero
but small. We assume a simple linear model described below in Sec.
II-A. We develop the KF-CS algorithm for it in Sec. II-B and discuss
its pros and cons in Sec. II-C.

A. Signal Model

We assume an i.i.d. Gaussian random walk model with support
additions and removals occurring everyd time instants. Additions
occur at everytj = 1 + jd and removals at everytj+1 − 1 for all
j ≥ 0. The support sets,Nt, at all t, are deterministic unknowns,
while the sequence ofxt’s is a random process.

Signal Model 1:Assume the following model.

1) At t = 0, x0 is S0 sparse with supportN0 and (x0)N0 ∼
N (0, σ2

sys,0I).
2) At every addition time,tj = 1 + jd, for all j ≥ 0, there are

Sa new additions to the support. Denote the set of indices of
the coefficients added attj by A(j).

3) At every removal time,tj+1 − 1 = (j + 1)d, for all j ≥ 0,
there areSr removals from the support.

4) The maximum support size isSmax, i.e. |Nt| ≤ Smax at all t.
5) Every new coefficient that gets added to the support starts from

zero and follows an independent Gaussian random walk model
with zero drift and change varianceσ2

sys.
6) The value of every removed coefficient and the corresponding

change variance both get set to zero.

The above model can be summarized as follows.

|Nt \ Nt−1| =

{

Sa if t = tj

0 otherwise

|Nt−1 \ Nt| =

{

Sr if t = tj+1 − 1
0 otherwise

x0 ∼ N (0, Q0), whereQ0 = σ2
sys,0IN0

νt ∼ N (0, Qt), whereQt = σ2
sysINt

(xt)Nt = (xt−1)Nt + (νt)Nt

(xt)Nc
t

= (νt)Nc
t

= 0 (3)

Assumption 1:We assume that

1) The support changes slowly over time, i.e.Sa ≪ |Nt| and
Sr ≪ |Nt|. This is empirically verified in [4], [5].

2) The nonzero values also change slowly, i.e.σ2
sys is small.

B. KF CS-residual (KF-CS) algorithm

Recall thatT := N̂t−1 denotes the support estimate fromt − 1.
KF CS-residual (KF-CS) runs a KF for the system in (2), (3) but with
Qt replaced byQ̂t = σ2

sysIT and computes the KF residual, denoted
ỹt,res. The new additions, if any, toT , are detected by performing CS
on ỹt,res and thresholding the output. If the support set changes, an LS
estimate is computed using the new support estimate. If it does not
change, we just use the initial KF output as the estimate. We then use
this estimate to compute deletions from the support by thresholding
with a different (typically larger) threshold. Once again, if the support
set changes, a final LS estimate is computed using the new support
and if not, then we just use the initial KF output.

In this work, the CS-residual step in KF-CS uses the Dantzig
selector [8] (but this can be easily changed to BPDN or Lasso or
any greedy method such as OMP etc), i.e. it solves

min
ζ

‖ζ‖1 s.t. ‖A′(y − Aζ)‖∞ < λ (4)

with y replaced by the current KF residual,ỹt,res.
Let Pt|t−1, Pt and Kt denote the “assumed” prediction and

updated error covariance matrices and the Kalman gain used by the
KF in KF-CS. We say “assumed” since the KF does not always use
the correct value ofQt and soPt|t−1 or Pt are also not equal to the
actual error covariances.

We summarize the complete KF-CS algorithm below.
Initialization (t = 0): At t = 0, we run simple CS (Dantzig selector)
with a large enough number of measurements,n0 > n, i.e. we solve
(4) with y = y0 and A = A0 (A0 will be an n0 × m matrix).
This is followed by support estimation and then LS estimation as in
the Gauss-Dantzig selector. We denote the final output byx̂0 and its
estimated support bŷN0. For t > 0 do,

1) Initial KF. Let T = N̂t−1. Run Kalman prediction and update
usingQ̂t = σ2

sysIT and compute the KF residual,̃yt,res, using

Pt|t−1 = Pt−1 + Q̂t, whereQ̂t := σ2
sysIT

Kt = Pt|t−1A
′(APt|t−1A

′ + σ2I)−1

Pt = (I − KtA)Pt|t−1

x̂t,init = (I − KtA)x̂t−1 + Ktyt

ỹt,res = yt − Ax̂t,init (5)

2) CS-residual.Do CS (Dantzig selector) on the KF residual, i.e.
solve (4) withy = ỹt,res. Denote its output bŷβt. Compute

x̂t,CSres= x̂t,init + β̂t (6)

3) Detection and LS.Detect additions toT using

T̃det = T ∪ {i ∈ T c : |(x̂t,CSres)i| > α}
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If T̃det is equal toT , set x̂t,det = x̂t,init ,
else,
compute an LS estimate using̃Tdet, i.e. compute

(x̂t,det)T̃det
= AT̃det

†yt, (x̂t,det)T̃ c
det

= 0 (7)

4) Deletion and Final LS.Estimate deletions tõTdet using

N̂t = T̃det \ {i ∈ T̃det : |(x̂t,det)i| < αdel} (8)

If N̂t is equal toT , set x̂t = x̂t,init ,
else,
compute an LS estimate usinĝNt and updatePt, i.e.

(x̂t)N̂t
= AN̂t

†yt,

(x̂t)N̂c
t

= 0

(Pt)N̂t,N̂t
= (AN̂t

′AN̂t
)−1σ2,

(Pt)N̂c
t ,[1,m] = 0, (Pt)[1,m],N̂c

t
= 0 (9)

5) Outputx̂t and ẑt = Φx̂t. Feedback̂xt, Pt, N̂t.

Remark 1:Notice that the final LS step re-initializes the KF when-
ever the estimated support changes. This ensures less dependence of
the current error on the past, and makes the stability analysis easier.

Remark 2:For ease of notation, in (5), we write the KF equations
for the entirext. But the algorithm actually runs a reduced order
KF for only (xt)T at time t, i.e. we actually have(x̂t)T c = 0,
(Kt)T c,[1:n] = 0, (Pt|t−1)[1,m],T c = 0, (Pt−1)[1,m],T c = 0,
(Pt|t−1)T c,[1,m] = 0, and (Pt−1)T c,[1,m] = 0. For computational
speedup, the reduced order KF should be explicitly implemented.

Remark 3:The KF in KF-CS does not always run with correct
model parameters. Thus, even whenσ2

sys/σ2 is small, it is not clear
if KF-CS will always outperform LS-CS [4]. This will hold at times
when the support is accurately estimated and the KF has stabilized
[see Fig. 2(a)]. Also, this will hold when support changes occur
slowly enough, andn is small so that LS-CS error becomes instable,
but is just large enough to prevent KF-CS instability [see Fig. 2(c)].

C. Discussion of the Signal Model

A more accurate model than Signal Model 1 would be random
walk with nonzero and time-varying drift. If accurate knowledge of
the time-varying drift is available, the KF estimation error can be
reduced significantly. But, in practice, to estimate the time-varying
drift values, one would need a large number of identically distributed
training signal sequences, which is an impractical assumption in most
cases. On the other hand, in the above model the parameters are time-
invariant and their values can be estimated from a single training
sequence. This is done in [5], [20].

Now, a random walk model at all times is not a realistic signal
model since it implies that the signal power keeps increasing over
time. The following is what is more realistic. A new sparse basis
coefficient starts from zero and slowly increases to a certain roughly
constant value, i.e. it follows a random walk model for sometime
and then reaches steady state. Steady state can usually be accurately
modeled by a (statistically) stationary model with nonzero mean. To
design KF-CS for such a model one would either need to detect
when a coefficient becomes stationary or one would need to know it
ahead of time. The former will typically be very error prone while
the latter is an impractical assumption. To avoid having to do this,
we just assume a random walk model at all times.

In Sec. V, we show that the KF-CS algorithm of Sec. II-B works
both for data generated from Signal Model 1 and for data generated
from a more realistic bounded signal power model taken from [4],
which is a deterministic version of what is discussed above. In [5],
[20], we show that it works even for actual image sequences.

III. A NALYZING (KF)CS-RESIDUAL STEP

The KF residual,̃yt,res, can be rewritten as̃yt,res = Aβt+wt where

(βt)∆ = (xt − x̂t,init)∆ = (xt)∆

(βt)T = (xt − x̂t,init)T

= [I − KtAT ](xt − x̂t−1)T − KtA∆(xt)∆ − Ktwt

(βt)(T∪∆)c = 0 (10)

where T = N̂t−1 and Kt ≡ (Kt)T,[1,n]. Thus, βt is |T ∪ ∆| =
|Nt ∪ ∆e| sparse.

In Appendix A, we show that‖(βt)T ‖ is bounded as in (16). As
we argue there, if (a) the support changes slowly enough, (b) the
signal values change slowly enough, (c) the noise is small enough
and (d) the previous reconstruction is accurate enough, this bound
will be small, i.e.βt will be compressible alongT . In other words,
βt will be only |∆|-approximately-sparse. Because of (a) and (d),|∆|
will be small compared to|Nt|. Thus doing CS oñyt,res will incur
much less error than doing CS onyt (simple CS), which needs to
reconstruct a|Nt|-sparse signal,xt. This statement can be quantified
by using (16) to bound CS-residual error exactly like in [4, Theorem
1] and then doing the comparison with CS also as in [4].

The CS-residual error bound will be directly proportional to the
bound on‖(βt)T ‖ given in (16). This can be used to argue why
KF-CS outperforms LS-CS whenn is smaller and support changes
slowly enough. We do this in Appendix B.

IV. KF-CS ERRORSTABILITY

Analyzing the KF-CS algorithm of Sec. II-B, which includes the
deletion step, is difficult using the approach that we outline below.
Thus, in this section, we study KF-CS without the deletion step, i.e.
we setαdel = 0. KF-CS without deletion assumes that there are few
and bounded number of removals and false detects. For simplicity,
in this work, we just assumeSr = 0 in Signal Model 1 and we will
selectα so that there are zero false detects.Sr = 0 along with the
assumption that the maximum sparsity size isSmax implies that there
are only a finite number of addition times,K, i.e. for all t ≥ tK−1,
Nt = NtK−1 . We summarize this in the following signal model.

Signal Model 2:Assume Signal Model 1 withSr = 0. This
implies that there are only a finite number of addition times,tj ,
with j = 0, 1, . . . (K − 1) andK = ⌈Smax−S0

Sa
⌉. Let tK := ∞.

Consider the genie-aided KF, i.e. a KF which knows the true
supportNt at eacht. It is the MMSE estimator ofxt from y1, . . . yt

if the support sets,Nt, are assumed known and the noise is Gaussian,
and is the linear MMSE for any arbitrary noise. In this section, we
find sufficient conditions under which, with high probability (w.h.p.),
KF-CS for Signal Model 2 and observation model given by (2) gets
to within a small error of the genie-KF for the same system, within
a finite delay of the new addition time. Since the genie-KF error is
itself stable w.h.p., as long asδSmax < 1, this also means that the
KF-CS reconstruction error is stable w.h.p.

Our approach involves two steps. Considert ∈ [tj , tj+1). First,
we find the conditions under which w.h.p. all elements of the current
support,Nt = Ntj get detected before the next addition time,tj+1.
Denote the detection delay byτdet. If this happens, then during[tj +
τdet, tj+1), both KF-CS and genie-KF run the same fixed dimensional
and fixed parameter KF, but with different initial conditions. Next,
we show that if this interval is large enough, then, w.h.p, KF-CS will
stabilize to within a small error of the genie-KF within a finite delay
after tj + τdet. Combining these two results gives our stability result.

We are able to do the second step because, wheneverN̂t 6= N̂t−1,
the final LS step re-initializes the KF withPt, x̂t given by (9). This
ensures that the KF-CS estimate,x̂t, and the Kalman gain,Kt, at
t + 1 and future times depend on the past observations only through

3



T := N̂t. Thus, conditioned on the event{N̂t = Nt, ∀ t ∈ [tj +
τdet, tj+1)}, there will be no dependence of eitherx̂t or of Kt on
observations beforetj + τdet.

A. The Stability Result

We begin by stating Lemma 1 which shows two things. First, if
accurate initialization is assumed, the noise is bounded,Smax ≤ S∗∗,
αdel = 0 andα is high enough, there are no false detections. If the
delay between addition times also satisfiesd > τdet(ǫ, Sa), where
τdet is what we call the “high probability detection delay”, then the
following holds. If beforetj , the support was perfectly estimated,
then w.p.≥ 1 − ǫ, all the additions which occurred attj will get
detected bytj + τdet(ǫ, Sa) < tj+1.

Lemma 1:Assume thatxt follows Signal Model 2. If

1) (initialization (t = 0)) all elements ofx0 get correctly detected
and there are no false detects, i.e.N̂0 = N0,

2) (measurements)Smax ≤ S∗∗ and‖w‖∞ ≤ λ/‖A‖1,
3) (algorithm) we set αdel = 0 and α2 = B∗ :=

C1(Smax)Smaxλ
2, whereC1(S) is defined in [8, Theorem 1.1],

4) (signal model)delay between addition times,d > τdet(ǫ, Sa),

whereτdet(ǫ, S) :=

⌈

4B∗

σ2
sys[Q−1( (1−ǫ)1/S

2
)]2

⌉

− 1, (11)

⌈·⌉ denotes the greatest integer function andQ(z) :=
∫∞

z
(1/

√
2π)e−x2/2dx is the Gaussian Q-function,

then

1) at eacht, N̂t ⊆ Nt ⊆ Nt+1 and so|∆e,t+1| = 0
2) at eacht, ‖xt − x̂t,CSres‖2 ≤ B∗

3) Pr(Ej |Fj) ≥ 1 − ǫ whereFj := {N̂t = Nt for t = tj − 1}
andEj := {N̂t = Nt, ∀ t ∈ [tj + τdet(ǫ, S), tj+1 − 1]}.

The proof is given in Appendix C. The initialization assumption is
made only for simplicity. It can be easily satisfied by usingn0 > n to
be large enough. Next we give Lemma 2 which states that if the true
support set does not change after a certain time,tnc, and if it gets
correctly detected by a certain time,t∗ ≥ tnc, then KF-CS converges
to the genie-KF in mean-square and hence also in probability.

Lemma 2:Assume thatxt follows Signal Model 2;δSmax < 1;
andαdel = 0. Define the eventD := {N̂t = Nt = N∗, ∀ t ≥ t∗}.
Conditioned onD, the difference between the KF-CS estimate,x̂t

and the genie-aided KF estimate,x̂t,GAKF , difft := x̂t − x̂t,GAKF ,
converges to zero in mean square and hence also in probability.�

The proof is similar to what we think should be a standard result
for a KF with wrong initial conditions (here, KF-CS witht = t∗ as
the initial time) to converge to a KF with correct initial conditions
(here, genie-KF) in mean square. A similar (actually stronger) result
is proved for the continuous time KF in [22]. We could not find
an appropriate citation for the discrete time KF and hence we just
give our proof in Appendix E. After review, this can be significantly
shortened. The proof involves two parts. First, we use the results from
[13] and [21] to show that (a)Pt|t−1, Pt, Kt andJt := I −KtAN∗

converge to steady state values which are the same as those for the
corresponding genie-KF; and (b) the steady state value ofJt, denoted
J∗, has spectral radius less than 1 and because of this, there exists a
matrix norm, denoted‖.‖ρ, s.t. ‖J∗‖ρ < 1. Second, we use (a) and
(b) to show that the difference in the KF-CS and genie-KF estimates,
diff t, converges to zero in mean square, and hence also in probability
(by Markov’s inequality).

A direct corollary of the above lemma is the following.
Corollary 1: Assume thatxt follows Signal Model 2;δSmax < 1;

and αdel = 0. Define the eventDf := {N̂t = Nt = N∗, ∀ t ∈
[t∗, t∗∗]}. For a givenǫ, ǫerr, there exists aτKF (ǫ, ǫerr, N∗) s.t. for

all t ∈ [t∗ + τKF , t∗∗], Pr(‖diff t‖2 ≤ ǫerr | Df ) > 1 − ǫ. Clearly
if t∗∗ < t∗ + τKF , this is an empty interval.

The stability result then follows by applying Lemma 2 followed
by Corollary 1 for each addition time,tj .

Theorem 1 (KF-CS Stability):Assume that xt follows Signal
Model 2. Let difft := x̂t − x̂t,GAKF where x̂t,GAKF is the genie-
aided KF estimate and̂xt is the KF-CS estimate. For a givenǫ, ǫerr,
if the conditions of Lemma 1 hold, and if the delay between addition
times,d > τdet(ǫ, Sa) + τKF (ǫ, ǫerr, Ntj ), whereτdet(., .) is defined
in (11) in Lemma 1 andτKF (., ., .) in Corollary 1, then

1) Pr(‖diff t‖2 ≤ ǫerr) > (1−ǫ)j+2, for all t ∈ [tj +τdet(ǫ, Sa)+
τKF (ǫ, ǫerr, Ntj ), tj+1 − 1], for all j = 0, . . . (K − 1),

2) Pr(|∆| ≤ Sa and |∆e| = 0, ∀ t) ≥ (1 − ǫ)K

3) Pr(|∆| = 0 and |∆e| = 0, ∀ t ∈ [tj + τdet(ǫ, Sa), tj+1 −
1], ∀ j = 0, . . . K − 1) ≥ (1 − ǫ)K .

The proof is given in Appendix D. A direct corollary is that after
tK−1 KF-CS will converge to the genie-KF in probability. This is
because fort ≥ tK−1, Nt remains constant (tK = ∞).

B. Discussion

Consider at ∈ [tj , tj+1). Notice thatτKF depends on the current
support, Nt = Ntj while τdet depends only on the number of
additions attj , Sa. Theorem 1 says that ifn is large enough so
that Smax ≤ S∗∗; αdel = 0 (ensures no deletions);α =

√
B∗

(ensures no false detects); and if the time needed for the current
KF to stabilize,τKF (ǫ, ǫerr, Ntj ), plus the high probability detection
delay,τdet(ǫ, Sa), is smaller thand, then w.p.≥ (1 − ǫ)j+2, KF-CS
will stabilize to within a small error,ǫerr, of the genie-KF before the
next addition time,tj+1. If the currentτKF is too large, this cannot
be claimed. But as long asτdet(ǫ, Sa) < d, the unknown support size,
|∆| remains bounded bySa, w.p. ≥ (1 − ǫ)K .

We give our result for the case of zero removals and zero false
detects, but the same idea will extend even if|∆e| is just bounded.

As explained in Sec. II-C, most signals do not follow a random
walk model forever (such a model would imply unbounded signal
power). In practice, a new coefficient may start with following a
random walk model, but eventually reach steady state (stationary
model). In this case, it should be possible to modify our result to
claim that if, before reaching steady state, all coefficients become
large enough to exceed the threshold plus upper bound on error, and
if this happens before the next addition time, KF-CS remains stable.

Our result is weaker than that of LS-CS [4] - it needsSmax ≤ S∗∗

(the LS-CS result only needsSa ≤ S∗∗ and Smax ≤ S∗); it uses
a random walk model; it does not handle support removals; and the
computed high-probability detection delay is quite loose1. This is due
to two main reasons. One is that we assume a zero drift random walk
model as the signal model both for defining KF-CS and for analyzing
it, while LS-CS uses a model with nonzero drift for the analysis (the
algorithm does not assume any signal model). The reason for our
choosing this model is explained in Sec. II-C. The second and more
important reason is that bounding KF error is more difficult than
bounding LS error. This is because the KF error, and hence also the
(KF)CS-residual error, depends on the previous reconstruction error.
The (LS)CS-residual error only depends on|T |, |∆| and if we can
get a time-invariant bound on these, we can do the same for the error.

V. SIMULATION RESULTS

We discuss two sets of simulation results. The first simulates data
according to Signal Model 2 and verifies KF-CS stability. The second
set of simulations compares KF-CS with LS-CS [4] and simple CS
(Dantzig selector) [8]. This comparison uses the more realistic signal

1Our result may even go through if CS-residual was replaced by CS.
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Fig. 2. Comparing KF-CS with CS and LS-CS. CS-residual in LS-CS or in KF-CS usedλ = 0.17. Misses =E[|Nt \ N̂t|], Extras =E[|N̂t \ Nt|].
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Fig. 1. Verifying KF-CS stability for Signal Model 2.

model assumed in [4], which has a roughly constant signal power and
support size and allows regular additions and removals from support.

A. Signal Model 2: verify KF-CS Stability

We simulated Signal Model 2 withm = 256, S0 = 8, Sa =
2, d = 5, Smax = 26 and σsys = 1. Thus additions occurred at
t = 1, 6, 11, . . . , 46. The measurement model usedn = n0 = 72
and Gaussian noise withσ = 0.16. The normalized MSE (NMSE)
is plotted in Fig. 1(a). In a second simulation, we increasedSa, but
we also increasedd: we usedSa = 4, d = 10 andSmax = 20 and
everything else was the same. We show the error plot in Fig. 1(b).
Notice that in both cases, (i) KF-CS stabilizes to within a small error
of the genie-KF within a short delay of a new addition time; and (ii)
after the final set of new additions, KF-CS converges to the genie-
KF. The difference between the two is that the peak errors at the new
addition time are larger in the second case (sinceSa is larger).

We implemented the KF-CS algorithm of Sec. II-B but without
the deletion step, i.e. we setαdel = 0. Since the observation noise
is not truncated, occasionally the addition step can result in a very
large number of false additions. To prevent this, we restricted the
maximum number of allowed additions at a given time toγn/ log2 m
(γ between 0.7 and 1.25) largest magnitude coefficients.

B. Bounded signal power model from [4]

For this comparison we used the signal model of [4]. This is a
realistic signal model with roughly constant signal power and support
size. We usedm = 200, S0 = 20, Sa = 2 = Sr, ai = 0.2, M = 1,
d = 8 and r = 3. Thus new additions occurred att = 2, 10, 18.
Coefficient decrease began att = 7, 15 and these got removed at
t = 9, 17 respectively. The measurement noise wasuniform(−c, c).

In the first simulation, we usedn0 = 150, n = 59 andc = 0.1266.
LS-CS usedλ = 0.176, α = c/2 = 0.06 = αdel. Also, it restricted
maximum number of additions at a time toSa + 1. The KF-CS
algorithm of Sec. II-B was implemented. It used the above parameters
and it setσ2 = c2 andσ2

sys = 0.01. For the signal model of [4], there
are no correct choices of KF parameters. The average of(xt−xt−1)

2
i

over i andt was(0.04∗ (5/8)∗ (2/20)+0.11∗ (3/8)∗ (2/20)+0∗
1∗(16/20)) ≈ 0.01 and this motivated the choice ofσ2

sys. The noise
variance isc2/3, but we use a larger value to also model the effect of
extra observation error due to the unknown support∆. The NMSE
plot is shown in Fig. 2(a). The mean number of misses (E[|Nt \N̂t|])

and of extras (E[|N̂t \ Nt|]) are plotted in Fig. 2(b). We averaged
over 100 Monte Carlo runs. Notice that right after a new addition,
both LS-CS and KF-CS have similar MSE, but in the stable state
KF-CS stabilizes to a smaller value. The NMSEs for CS (Dantzig
selector) and Gauss-Dantzig selector even with different choices of
λ are much larger (40-60%).

In a second simulation, we usedn0 = 150, n = 45 andc = 0.15
and everything else was the same as above. The error plots are shown
in Fig. 2(c) and the number of extras and misses are plotted in Fig.
2(d). With such a smalln, LS-CS error becomes instable. Butn = 45
(along with delay between addition times,d = 8) is large enough to
prevent KF-CS instability.

VI. CONCLUSIONS ANDFUTURE WORK

We proposed KF CS-residual (KF-CS) which replaces CS on the
raw observation by CS on the KF residual, computed using the known
part of the support. We proved KF-CS stability, but the assumptions
used were somewhat strong (stronger than those used for LS-CS [4]).
We demonstrated via simulations that KF-CS error is stable and small
under much weaker assumptions. Also, it significantly outperformed
LS-CS when the available number of measurements was very small.

A key direction of future work is to prove KF-CS stability under
weaker assumptions. This will require assuming a signal model with
nonzero drift (to get a tighter detection delay bound) and bounded
signal power. It may also help to assume a statistical prior on support
change, e.g. by using a model similar to [17]. A useful extension of
KF-CS would be to replace CS-residual by modified-CS [19].

APPENDIX
A. Bounding‖(βt)T ‖

Recall thatTt = N̂t−1 and∆t = Nt \ N̂t−1. Let δt , δ|Tt| and
θt , θ|Tt|,|∆t|. Also, let Kt ≡ (Kt)T,[1,n],

Mt , AT
′AT + (Pt|t−1)

−1
T,T σ2 and

r , σ2
sys/σ2 (12)

We use the following simple facts in the discussion below [21]. For
symmetric positive definite matrices,M , M̃ , ‖M‖ = λmax(M) =
1/λmin(M−1), λmin(M + M̃) ≥ λmin(M) + λmin(M̃) while the
inequality holds in the opposite direction forλmax. Hereλmax(M),
λmin(M) denote the maximum, minimum eigenvalue ofM .

As is well known [13],Kt, [I − KtAT ], Pt can be rewritten as

Kt = M−1
t AT

′

Jt := I − KtAT = M−1
t (Pt|t−1)

−1
T,T σ2

(Pt|t−1)T,T = (Pt−1)T,T + (σ2
sysIT )T,T , where

(Pt−1)T,T =

{

M−1
t−1σ

2 if Tt = Tt−1

(ATt
′ATt)

−1σ2 if Tt 6= Tt−1
(13)

The third equation is repeated from (5). To bound‖(βt)T ‖, defined
in (10), we need to bound‖Jt‖ and ‖KtAT

′A∆‖, which in turn
requires bounding‖M−1

t ‖, ‖(Pt|t−1)
−1
T,T ‖ and‖AT

′A∆‖. Using the
definition of θS,S′ [8, eq 1.5], it is easy to see that‖AT

′A∆‖ ≤ θt.
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Using (13),‖(Pt|t−1)
−1
T,T ‖ ≤ (λmin(M−1

t−1)σ
2 + σ2

sys)
−1 if Tt =

Tt−1 and ‖(Pt|t−1)
−1
T,T ‖ ≤ ((1 + δt)

−1σ2 + σ2
sys)

−1 otherwise.
Also, ‖M−1

t ‖ = λmax(M
−1
t ). Thus bounding them requires upper

boundingλmax(M
−1
t ) and lower boundingλmin(M−1

t ). Using the
definition of the RIP constant [8, eq. 1.3],

‖M−1
t ‖ = λmax(M

−1
t ) =

1

λmin(AT
′AT + (Pt|t−1)

−1
T,T σ2)

≤ 1

1 − δt + σ2

λmax((Pt|t−1)T,T )

≤











1

1−δt+
1

‖M
−1
t−1

‖+r

if Tt = Tt−1

1

1−δt+
1

(1−δt)
−1+r

if Tt 6= Tt−1

, at (14)

Similarly, we can lower boundλmin(M−1
t−1) and use it to get

‖(Pt|t−1)
−1
T,T ‖σ2≤



























1
1

1+δt+
1

‖Mt−2‖−1+r

+r
if Tt = Tt−1 = Tt−2

1
1

1+δt+
1

(1+δt−1)−1+r

+r
if Tt = Tt−1 6= Tt−2

1
1

1+δt
+r

if Tt 6= Tt−1

,
1

bt
(15)

From (10), (13),‖(βt)T ‖ ≤ ‖M−1
t ‖ [‖(Pt|t−1)

−1
T,T ‖σ2‖(xt − x̂t−1)T ‖

+ θt‖(xt)∆‖+ ‖AT
′wt‖]. Using this and the above bounds, we get

‖(βt)T ‖ ≤ at

[

T1 + θt‖(xt)∆‖ + ‖AT
′wt‖

]

, where

T1 ,
‖(xt−1 − x̂t−1)T∩Nt‖ + ‖(x̂t−1)∆e‖ +

√

|T ∩ Nt|‖νt‖∞
bt

,(16)

andat is defined in (14) andbt in (15). Notice thatat is an increasing
function of δt andr, and also of‖M−1

t−1‖ ≤ at−1 if Tt = Tt−1.
Now, ∆ ⊆ (Nt−1 \ T ) ∪ (Nt \ Nt−1) and ∆e ⊆ (T \ Nt−1) ∪

(Nt−1 \ Nt). If the previous reconstruction is accurate enough,
the previous support estimate will also be accurate enough. This
combined with the slow support change assumption will imply that
|∆| and |∆e| are small enough.|∆e| small enough will imply that
|T | is small enough (since|T | ≤ |Nt|+ |∆e|) and henceδt is small
enough.δt andδt−1 small ensure smallerat and largerbt. |∆e| and
|∆| small enough will also imply thatθt is small enough. The noise
being small along with|∆e| small will imply that‖AT

′wt‖ is small.
Slow signal value change implies (i)r is small enough and (ii) at

all t, ‖νt‖∞ is small enough w.h.p.. Smallr implies thatat is small,
but it also implies thatbt is small. Small‖νt‖∞ at all t, along with
small noise, also results in the previous reconstruction being accurate
enough which, in turn means‖(xt−1 − x̂t−1)T∩Nt‖ is small. Using
this and the fact that only small coefficients get falsely deleted or
removed2, ‖(x̂t−1)∆e‖ is also small. All this ensures that T1 in (16)
is not very large even whenbt is small. This combined with the
discussion of the previous paras ensures that the bound on‖(βt)T ‖
is small. Thus, if (a), (b), (c), (d) given in Sec. III hold,‖(βt)T ‖ is
small, i.e.βt is only |∆|-approximately-sparse; and|∆| is small.

B. Comparing KF-CS and LS-CS using the bound on‖(βt)T ‖
We will mention that we are only comparing upper bounds here.
Considerat defined in (14). Supposer = 0.5 andn is such that

δt = 0.8 for all t. LS-CS can be interpreted as KF-CS withr = ∞.
Thus for LS-CSat = 1/(1 − δt) = 5 always. For KF-CS, even if,
at t, Tt 6= Tt−1, at = 1/(0.2 + (1/5.5)) = 2.62 (almost half). If

2The fact that only small coefficients get removed fromNt is not modeled
in Signal Model 1, but is true in practice. But it is modeled in our simulations.

Tt does not change for just one time instant, thenat+1 reduces to
1/(0.2 + 1/(at + 0.5)) = 1.92. If it does not change for two time
instants, thenat+2 reduces to 1.63. IfTt does change and the change
is a correct addition, the set∆t becomes smaller and so the second
term of (16),θt‖(xt)∆‖, reduces. In either case, the bound reduces.

Of course for LS-CS,bt = ∞ and so the first term of (16), T1=
0 while for KF-CS, T1 6= 0. But if σ2

sys and σ2 are small and
support changes slowly, T1 will also be small (argued earlier). When
n is small, the net effect is that the KF-CS bound on‖(βt)T ‖, and
hence the bound on CS-residual error, is small compared to that for
LS-CS. This is the main reason that, whenn is very small, KF-CS
error remains stable, while nothing can be said about LS-CS error.
In simulations, we notice that it often becomes unstable.

C. Proof of Lemma 1

With ‖w‖∞ ≤ λ/‖A‖1, all results of [8] hold w.p. 1 (because
eq 3.1 of [8] holds w.p. 1). From Theorem 1.1. of [8], if a signal is
S-sparse, and ifS ≤ S∗∗, then, the error after running the Dantzig
selector is bounded byB∗.

The first two claims follow by induction. Consider the base case,
t = 0. The first claim holds because condition 1 of the lemma holds
and becauseSr = 0 in Signal Model 2. Since|N0| ≤ Smax and
condition 2 holds, [8, Theorem 1.1] applies. Thus the second claim
holds att = 0. For the induction step, assume that the first two claims
hold for t − 1. Using the first claim fort − 1, |∆e,t| = 0. Thus,βt

is |Nt ∪ ∆e,t| = |Nt| sparse. Since|Nt| ≤ Smax and condition 2
holds, we can apply [8, Theorem 1.1] to get‖βt − β̂t‖2 ≤ B∗. But
xt − x̂t,CSres = βt − β̂t and so the second claim follows fort. By
settingα =

√
B∗ (condition 3), we ensure that for anyi with xi = 0,

(x̂CSres)
2
i = (xi − (x̂CSres)i)

2 ≤ ‖x − x̂CSres‖2 ≤ B∗ = α2 (no false
detects). Using this andSr = 0, the first claim follows fort.

For the third claim, it is easy to see that for anyi ∈ ∆, if, at
t, (xt)

2
i > 2α2 + 2B∗ = 4B∗, then i will definitely get detected

at t. Consider at ∈ [tj , tj+1 − 1]. SinceFj holds, so att = tj ,
∆ = A(j). Also, sinceαdel = 0, there cannot be false deletions and
thus for anyt ∈ [tj , tj+1−1], |∆| ≤ Sa. Consider the worst case: no
coefficient has got detected untilt, i.e.∆t = A(j) and so|∆t| = Sa.
All i ∈ A(j) will definitely get detected att if (xt)

2
i > 4B∗ for all

i ∈ A(j). From our model, the different coefficients are independent,
and for anyi ∈ A(j), (xt)

2
i ∼ N (0, (t − tj + 1)σ2

sys). Thus,

Pr((xt)
2
i > 4B∗, ∀i ∈ A(j) | Fj)=

(

2Q
(√

4B∗

(t − tj + 1)σ2
sys

))Sa

Using the first claim,Pr(N̂t = Nt | Fj) is equal to this. Thus for
t = tj + τdet(ǫ, Sa), Pr(N̂t = Nt | Fj) ≥ 1 − ǫ. Since there are no
false detects; no deletions and no new additions untiltj+1, N̂t = Nt

for t = tj + τdet implies thatEj occurs. This proves the third claim.

D. Proof of Theorem 1

The eventsEj andFj are defined in Lemma 1. At the first addition
time, t0 = 1, using the initialization condition,̂Nt0−1 = Nt0−1, i.e.
F0 holds. Thus, by Lemma 1,Pr(E0) ≥ 1−ǫ. Considertj for j > 0.
Clearly 3 Pr(Ej |E0, E1, . . . Ej−1) = Pr(Ej |Ej−1) = Pr(Ej |Fj).
By Lemma 1,Pr(Ej |Fj) ≥ 1 − ǫ. Combining this withPr(E0) ≥
1 − ǫ, we getPr(Ej) ≥ (1 − ǫ)j+1 for all j ≥ 0.

Assume thatEj occurs and apply Corollary 1 witht∗ = tj +
τdet(ǫ, Sa) andt∗∗ = tj+1−1. Combining the conclusion of Corollary
1 with Pr(Ej) ≥ (1 − ǫ)j+1, the first claim follows.

The second and third claims follow directly from arguments in the
proof of Lemma 1 andPr(E0 ∩ E1 ∩ . . . EK−1) ≥ (1 − ǫ)K .

3sinceEj = {(xtj+τdet)
2
i > 4B∗, ∀i ∈ ∆tj+τdet} and the sequence of

xt’s is a Markov process
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E. Proof of Lemma 2 and Corollary 1

Let x̂t,GAKF denote the genie-aided KF (GA-KF) estimate att.
Assume that the eventD occurs. Then, fort > t∗, N̂t = Nt = N∗,

i.e. ∆t := Nt \N̂t−1 = N∗ \N∗ = φ (empty set) and sôxt = x̂t,init .
Let et , xt − x̂t and ẽt , xt − x̂t,GAKF .

For simplicity of notation we assume in this proof that all variables
and parameters are only alongN∗, i.e. we let x̂t ≡ (x̂t)N∗ , et ≡
(et)N∗ , νt ≡ (νt)N∗ , Pt|t−1 ≡ (Pt|t−1)N∗,N∗ , Kt ≡ (Kt)N∗,[1:n].
Let Jt , I − KtAN∗ . Similarly for x̂t,GAKF , ẽt, P̃t|t−1, K̃t, J̃t.
Here P̃t|t−1, K̃t, J̃t are the corresponding matrices for GA-KF.

Let E[·] denote expectation w.r.t. all random quantities conditioned
on the eventD, and letE[·|y1, . . . yt] denote conditional expectation
given y1, . . . yt and the eventD.

From (5), fort > t∗, et, ẽt and difft = et − ẽt satisfy

et=Jtet−1 + Jtνt − Ktwt

ẽt=J̃tẽt−1 + J̃tνt − K̃twt

diff t=Jtdiff t−1 + (Jt − J̃t)(ẽt−1 + νt) + (K̃t − Kt)wt (17)

For t > t∗ both KF-CS and GA-KF run the same fixed dimensional
and fixed parameter KF for(xt)N∗ with parametersF ≡ I, Q ≡
(σ2

sysIN∗)N∗,N∗ , C ≡ AN∗ , R ≡ σ2I, but with different initial con-
ditions. KF-CS useŝxt∗ , Pt∗+1|t∗ 6= E[et∗+1e

′
t∗+1|y1 . . . yt∗ ] while

GA-KF uses the correct initial conditions,̂xt∗,GAKF , P̃t∗+1|t∗ =
E[ẽt∗+1ẽ

′
t∗+1|y1, . . . yt∗ ] = E[ẽt∗+1ẽ

′
t∗+1]. Since|N∗| ≤ Smax and

δSmax < 1, C ≡ AN∗ is full rank. Thus(I, C) is observable. Also,
sinceQ is full rank,(I, Q1/2) is controllable. Thus, starting from any
initial condition,Pt+1|t will converge to a positive semi-definite,P∗,
which is the unique solution of the discrete algebraic Riccati equation
with parametersF, Q, C, R [13, Theorem 8.7.1]. ConsequentlyKt

andJt will also converge toK∗ , P∗AN∗
′(AN∗P∗AN∗

′ + σ2I)−1

andJ∗ , I −K∗AN∗ respectively. Fort > t∗, the GA-KF also runs
the same KF. Thus,̃Pt|t−1, K̃t, J̃t will also converge toP∗, K∗, J∗

respectively [13, Theorem 8.7.1]. Next, we use this fact to show that
the estimation errors also converge in mean square.

Using [13, Theorem E.5.1],J∗ is stable, i.e. its spectral radiusρ =
ρ(J∗) < 1. Let ǫ0 = (1− ρ)/2. By [21, Lemma 5.6.10], there exists
a matrix norm, denoted‖.‖ρ, s.t.‖J∗‖ρ ≤ ρ + ǫ0 = (1 + ρ)/2 < 1.

Consider anyǫ < (1 − ρ)/4. The above results imply that there
exists atǫ > t∗ s.t. for all t ≥ tǫ, ‖Kt − K̃t‖ < ǫ, ‖Jt − J̃t‖ < ǫ
and‖Jt‖ρ < ‖J∗‖ρ + ǫ < (1 + ρ)/2 + (1− ρ)/4 = (3 + ρ)/4 < 1.
Now, the last set of undetected elements ofN∗ are detected att∗.
Thus att∗, KF-CS computes a final LS estimate, i.e.x̂t∗ = AN∗

†yt∗ ,
Pt∗|t∗−1 = ∞, Pt∗ = (A′

N∗
AN∗)−1σ2, Kt∗ = (A′

N∗
AN∗)−1A′

N∗

andJt∗ = 0. None of these depend ony1 . . . yt∗ and hence the future
values ofx̂t or of Pt, Jt, Kt etc also do not. Hencetǫ also does not.

SinceP̃t|t−1 → P∗, P̃t|t−1 is bounded. SincẽPt ≤ P̃t|t−1, P̃t is
also bounded, i.e. there exists aB < ∞ s.t. tr(P̃t) < B, ∀t. Since
E[ẽtẽ

′
t|y1 . . . yt∗ ] = P̃t = E[ẽtẽ

′
t], thusE[‖ẽ2

t‖] = tr(P̃t) < B.
Thus, using (17), the following holds for allt ≥ tǫ,

E[‖diff t‖2]1/2 ≤
‖Mt,tǫ‖ E[‖diff tǫ‖2]1/2 + ‖Lt,tǫ‖ sup

tǫ≤τ≤t
E[‖uτ‖2]1/2, where

uτ , (Jτ − J̃τ )(ẽτ−1 + ντ ) + (Kτ − K̃τ )wτ ,

Mt,tǫ ,

t
∏

k=tǫ+1

Jk, Lt,tǫ , I + Jt + JtJt−1 + ..

t
∏

k=tǫ+1

Jk (18)

Since neithertǫ, nor the matricesJt or Kt for t > t∗, depend on
y1, . . . yt∗ , we do not need to condition the expectation ony1, . . . yt∗ .

Notice that

1) suptǫ≤τ≤t E[‖uτ‖2]1/2 ≤ ǫ(
√

B +
√

|N∗|σ2
sys +

√
nσ2).

2) ‖Mt,tǫ‖ρ ≤ ∏t
τ=tǫ+1 ‖Jτ‖ρ < at−tǫ with a , (3 + ρ)/4 <

1. Thus ‖Mt,tǫ‖ ≤ cρ,2a
t−tǫ wherecρ,2 is the smallest real

number satisfying‖M‖ ≤ cρ,2‖M‖ρ, for all size |N∗| square
matricesM (holds because of equivalence of norms).

3) ‖Lt,tǫ‖ρ ≤ 1+a+ . . . at−tǫ < 1
(1−a)

. Thus‖Lt,tǫ‖ ≤ cρ,2

(1−a)
.

Combining the above facts, for allt ≥ tǫ, E[‖diff t‖2]1/2 ≤
cρ,2a

t−tǫE[‖diff tǫ‖2]1/2 + Cǫ where a := (3 + ρ)/4, C :=
cρ,2

1−a
(
√

B +
√

|N∗|σ2
sys +

√
nσ2). Notice thata < 1. Consider an

ǫ̃ < 2C(1 − ρ)/4 and setǫ = ǫ̃/2C. It is easy to see that for all

t ≥ tǫ̃/2C+
log(E[‖difftǫ̃/2C

‖2]1/2)+log(2cρ,2)−log ǫ̃

log(1/a)
, E[‖diff t‖2]1/2 ≤ ǫ̃.

Thus, conditioned onD, difft converges to zero in mean square.
By Markov’s inequality, this also implies convergence in probabil-

ity, i.e. for a givenǫ, ǫerr, there exists aτKF (ǫ, ǫerr, N∗) > 0 s.t. for
all t ≥ t∗ +τKF (ǫ, ǫerr, N∗), Pr(‖diff t‖2 < ǫerr | D) ≥ (1− ǫ). The
proof of Corollary 1 follows directly from this.
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