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Abstract—We consider the problem of recursively reconstructing time  batch CS. Note that a full KF, that does not use the knowledge
sequences of sparse signals (with unknown and time-varyingparsity  that the signal is sparse, is meaningless here, because the number

patterns) from a limited number of linear incoherent measurements with f ; ; ; ; ;
additive noise. The idea of our proposed solution, KF CS-resial (KF- of observations available is smaller than the signal dimension, and

CS) is to replace compressed sensing (CS) on the observatiby CS thus many elements of the state (sparsity basis coefficients vector)
on the Kalman filtered (KF) observation residual computed usig the ~ Will be unobservable. Unless all unobservable modes are stable, the
previous estimate of the support. KF-CS error stability over time is  error will blow up [13], [1].
studied. Simulation comparisons with CS and LS-CS are shown The most closely related work to KF-CS is our work on LS-CS [2],
[4] which uses an LS residual instead of a KF residual. Thus it only
|. INTRODUCTION uses the previous support estimate, not the previous signal estimates,

Consider the problem of recursively and causally reconstructing jmprove the current reconstruction. KF-CS uses both and hence
time sequences of spatially sparse signals (with unknown and timegperforms LS-CS when the available number of measurements
varying sparsity patterns) from a limited number of linear incoherep¢ small, e.g. see Fig. 2. The work of [15] gives an approximate
measurements with additive noise. The signals are sparse in Sg§g-h-cs approach for dynamic MRI. Bayesian approaches, but all
transform domain referred to as the sparsity basis. Important appliggr reconstructing a single sparse signal, include [16], [17], [14].
tions include dynamic MRI reconstruction for real-time applicationge|ated work, which appeared after [1], and in parallel with [2],
such as MRI-guided surgery, single-pixel video imaging [3], or videg,c|,des [18] (addresses recursive sparse estimation but with time-
compression. Due to strong temporal dependencies in the sigpahriant support), and our own later work on modified-CS [19].
sequence, it is usually valid to assume that sgarsity pattern g paper is organized as followghe signal model and the
(support of the sparsity transform vector) changes slowly over.timgqithm are described in Sec. Il. We analyze the CS-residual step
This was Ve_”f'ed in [4], [,5]' . ) _.of KF-CS in Sec. Ill. In Sec. IV, we prove KF-CS error stability

The solution to the static version of the above problem is provideg, giscyss why our result needs stronger assumptions than a similar
by compressed sensing (CS) [6], [7]. CS for noisy observationgst for LS-CS [4]. Simulation results comparing KF-CS with LS-
e.g. Dantzig selector [8], Lasso [9], or Basis Pursuit Denoisings ang simple CS are given in Sec. V and conclusions in Sec. V.
(BP_DN) [10], [11], have _been shown to hav_e _small error as long In this work, we do “CS’, whether in simple CS or in CS-
as |nceherence assumptions hold. Most existing solutions for_ treesidual, using the Dantzig selector (DS) [gJhis choice was initially
dynamic preblem, eg. 3], [12],.are.non-causal anq batch SoBitiony, iy ated by the fact that its guarantees are stronger (depend only on
Batch solutloqs process the eqtlre time sequence in one go and ldﬁal support size, not support elements) than those for BPDN [11]
have much higher reconstruction complexity. An alternative woulgl) i< results are simpler to apply and modify. In later work [5],

be to apply CS at each time separately (simple CS), which is onli% have also used BPDN. Between DS and Lasso [9], either can be
and low-complexity, but since it does not use past observations, i

. ; : Sed and everything will remain the same except for some constants.
reconstruction error is much larger when the number of available

observatlons is smallOur goal is to develop a recursive solutlo_nA Notation and Problem Definition

that improves the accuracy of simple CS by using past observations,

but keeps the reconstruction complexity similar to that of simple CS. The set operations, N, and\ have the usual meanings” denotes

By “recursive”, we mean a solution that uses only the previous signdte complement of" w.r.t. [1,m] := [1,2,...m], i.e. T := [1,m]\
estimate and the current observation vector at the current time. - |7’ denotes the size (cardinality) Gf.

In this work, we propose a solution called KF-CS-residual (KF- For a vectory, and a set]’, vr denotes th¢T'| length sub-vector
CS) which is motivated by reformulating the above problem as caug&ntaining the elements ofcorresponding to the indices in the get
minimum mean squared error (MMSE) estimation with a slow timelv|[x denotes the/;, norm of a vecton. If just ||v|| is used, it refers
varying set of dominant basis directions (or equivalently the suppd@ |[v|[2. For a matrix), || M|, denotes its induced-norm, while
of the sparsity basis coefficients’ vector). If the support is knowd, afust || M || refers to||M||>. M" denotes the transpose df. For a tall
a linear Gaussian prior dynamic model is assumed for the nonzé&R@trix, M, M' := (M’M)~'M’'. For symmetric matricesM; <
coefficients, the causal MMSE solution is given by the Kalman filte}/= means thaf\/> — M is positive semidefinite. For a fat matrik,
(KF) [13] for this support. When the support is unknown and timedr denotes the sub-matrix obtained by extracting the column4 of
varying, the initial support can be estimated using CS. Whenev&@rresponding to the indices . The S-restricted isometry property
there is an addition to the support, it can be estimated by runniffg!P) constantgs, and theS, S’-restricted orthogonality constant,
CS on the KF residual, followed by thresholding. This new suppofs,s’, are as defined in equations 1.3 and 1.5 of [8] respectively.
estimate can be used to run the KF at the next time instant. If somd-0r @ square matrixQ, we use(Q)r, 1, to denote the sub-matrix
coefficients become and remain nearly zero, they can be remowd? containing rows and columns corresponding to the entriés in
from the support set. Both the computational and storage complex@fyd 7> respectively.l denotes an appropriate sized identity matrix.
of KF-CS is similar to that of simple CS ©(m®) at a given time Them x m matrix I is defined as
where m is the signal length [14, Table 1] an@(Nm?) for an
N length sequence. This is significantly lower th@iN*m?) for Ur)rr =1, (Ir)reim =0, (IT)pm),re =0 @
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Let (z:)mx1 denote the spatial signal at timeand (y:)»x1, with  The above model can be summarized as follows.

n < m, denote its noise-corrupted observation vectot, ate. y; = S, ift =t

Hz, + we. The signal,z;, is sparse in a given sparsity basis (e.g. [Nt \ Ne—a| = { Oa othenNi;e
wavelet) with orthonormal basis matri®,, xm, i.e. 7, = &'z is a S ift—t, 1
sparse vector. We denote its support By and we useS; := | N¢| [Neo1 \ Ny = { OT ! ot_he]r\jvlise
to denote its size. Thus the observation model is

To ~ N(O, Q())7 wherer = Ugys,OINo

vy ~ N(0,Q:), whereQ; = o2,.In,

where E[-] denotes expectation. We assume thHahas unit norm (z)n, = (me—1) N, + (V)

columns. The observation noisey, is independent identically dis- (z)ne = (ve)ne =0 @)
tributed (i.i.d.) overt and is independent of;. Our goal is to ¢ ¢
recursively estimate:; (or equivalently the signak; = ®x) using Assumption 1:We assume that

y1,...Y:. By recursively we mean, use only, and the estimate 1) The support changes slowly over time, i%, < |N;| and

yr = Axy +wy, AS HO, Elwi] =0, Elwiwy] = oI 2

from ¢ — 1, #;-1, to compute the estimate &t S, < |N¢|. This is empirically verified in [4], [5].
Definition 1 (DefineS., S..): For A := H®, 2) The nonzero values also change slowly, &g, is small.
1) let S. denote the largest for which s < 1/2,

2) let S.. denote the larges$ for which das + 05,25 < 1. B. KF CS-residual (KF-CS) algorithm

Definition 2 (Defineé,, N;): We usei, to denote the final esti- Recall thatT’ := N, denotes the support estimate fram- 1.
mate ofz, at timet and N, to denote its support estimate. KF CS-residual (KF-CS) runs a KF for the system in (_2), (3) but with

Definition 3 (DefineT’, A, A.): We useT = T, := N,_; to Q. replaced byQ; = afysIT and computes the KF residual, denoted
denote the support estimate from the previous time. This servesYags The new additions, if any, t@', are detected by performing CS
an initial estimate of the current support.We use= A, := N, \ T, on g res and thresholding the output. If the support set changes, an LS

to denote the unknown part of the support at the current time. \@gtimate is computed using the new support estimate. If it does not
useA, = A., =T, \ N, to denote the “erroneous” part @. To change, we just use the initial KF output as the estimate. We then use

keep notation simple, we remove the subsctijit most places. this estimate to compute deletions from the support by thresholding
with a different (typically larger) threshold. Once again, if the support
Il. KALMAN FILTERED CSRESIDUAL (KF-CS) set changes, a final LS estimate is computed using the new support

The LS-CS-residual (LS-CS) algorithm [4] only used the previou@d if not, then we just use the initial KF output,
support estimateT’, to obtain the current reconstruction, but did not N this work, the CS-residual step in KF-CS uses the Dantzig
use the previous nonzero coefficient estimatés, ;). Because of Selector [8] (but this can be easily changed to BPDN or Lasso or
temporal dependencies, these also change slowly and using this fdt 9reedy method such as OMP etc), i.e. it solves
should improve reconstruction accuracy further. To do this we can min ||¢[l1 st A (y — Ao < A 4)
replace LS by regularized LS. If training data is available to learn a ¢
linear prior model for signal coefficients’ change, this can be done Qyth  replaced by the current KF residug, es
replacing the initial LS estimate of LS-CS by a Kalman filtered (KF) et p,, ,, P, and K, denote the “assumed” prediction and
estimate. The KF will give the optimal (in terms of minimizing theypdated error covariance matrices and the Kalman gain used by the
Bayesian MSE) regularization parameters if the size of the unknowr in KF-CS. We say “assumed” since the KF does not always use

support,|A| = 0. These will be close-to-optimal IfA[ is nonzero  the correct value of), and soP,_, or P, are also not equal to the
but small. We assume a simple linear model described below in Sggtyal error covariances.

II-A. We deVelOp the KF-CS algorithm for it in Sec. 11-B and discuss We summarize the Complete KF-CS a|gorithm below.

its pros and cons in Sec. II-C. Initialization (¢t = 0): At ¢ = 0, we run simple CS (Dantzig selector)
) with a large enough number of measurements;> n, i.e. we solve
A. Signal Model (4) with y = yo and A = Ay (Ao will be an ng x m matrix).

We assume an i.i.d. Gaussian random walk model with suppdis is followed by support estimation and then LS estimation as in
additions and removals occurring evedytime instants. Additions the Gauss-Dantzig selector. We denote the final outputcbgind its
occur at everyt; = 1 + jd and removals at every; ;1 — 1 for all  estimated support by,. Fort > 0 do,

j = 0. The support setsV:, at all ¢, are deterministic unknowns, 1y |njtial KF. Let 7' = N,_;. Run Kalman prediction and update
while the sequence of,’s is a random process. usingQ; = o2, Ir and compute the KF residual; res, using

Signal Model 1: Assume the following model. R R )

1) At ¢t = 0, zo is So sparse with supporiVo and (zo)n, ~ Bije—1 = Pi—1 + Qr, whereQy := oy It

N(0,02,5.01). K = Pt\t—lA/(APt\t—lA,+0'2])71
2) At every addition timef; = 1 + jd, for all 5 > 0, there are P, = (I — KtA)Py—y
S. new additions to the support. Denote the set of indices of . .
int = (I — Ky A)Zy— K
the coefficients added &t by A(j). Bein = ( tA)Be1 + Ky

3) At every removal timef; 1 — 1 = (5 + 1)d, for all j > 0, Gtres =y — At init ®)
there areS,. removals from the support. 2) CS-residual. Do CS (Dantzig selector) on the KF residual, i.e.
4) The maximum Support size Suax, i.e. | Ni| < Smax at allt, solve (4) withy = §. «es Denote its output bys,. Compute
5) Every new coefficient that gets added to the support starts from R
zero and follows an independent Gaussian random walk model Z¢,csres= Tt,init + Bt (6)

with zero drift and change varianeéys.
6) The value of every removed coefficient and the corresponding .
change variance both get set to zero. Toet=TU{i € T : |(&1,csregs| > a}

3) Detection and LS.Detect additions t@" using



If Teis equal toT", set@, det = &4 init, I1I. ANALYZING (KF)CS-RESIDUAL STEP

else, ~ The KF residualfj; res, can be rewritten ag; res = AS: +w: where
compute an LS estimate usif@e, i.e. compute )
(Be)a = (¢ — Tenit)a = (¢)a

~ _ _ ~ T N ~ o
(Iz&,det)Tdet - ATdet Yts (wt’dEI)Tzfez =0 (7) (Bt)T = (3375 - C%t,init)T
4) Deletion and Final LS. Estimate deletions t@ye; using = [I — K Ar)(2r — @4-1)1 — KiAa(x)a — Kpwy
Vi = Taet\ {i € Toer: |(2 e=0 10
Ny = Tget\ {i € Tuet: |(Z¢,det)i| < ger} (8) (Be)(rua) (10)
If N, is equal toT, seti; = d¢nt, whereT = N,y and Ky = (Ki)7,[1,n)- Thus, 8, is [T U A =
else [Nt U A.| sparse.

In Appendix A, we show thafi(5;)r| is bounded as in (16). As
we argue there, if (a) the support changes slowly enough, (b) the
()5, = ANtTyta signal values change slowly enough, (c) the noise is small enough

compute an LS estimate usifg; and updateP;, i.e.

(#0) e = 0 and (d) the previous reconstruction is accurate enough, this bound
t , s will be small, i.e.3: will be compressible alon@". In other words,
(Pt)m,zv,, = (ANt AN,,) ) B¢ will be only |A|-approximately-sparse. Because of (a) and |(d],
(Pt)zv;,[l,m] =0, (Pt)[lﬁm],Ng =0 (9) will be small compared tdN;|. Thus doing CS o res Will incur
' R much less error than doing CS @p (simple CS), which needs to
5) Outputi, and 2, = ®z,. Feedbacki, P, N;. reconstruct 4.V, |-sparse signal;. This statement can be quantified

Remark 1:Notice that the final LS step re-initializes the KF whenby using (16) to bound CS-residual error exactly like in [4, Theorem
ever the estimated support changes. This ensures less depentien¢é and then doing the comparison with CS also as in [4].
the current error on the past, and makes the stability analysis easieflhe CS-residual error bound will be directly proportional to the
Remark 2:For ease of notation, in (5), we write the KF equationound on||(3:)r| given in (16). This can be used to argue why
for the entirez,. But the algorithm actually runs a reduced ordeKF-CS outperforms LS-CS when is smaller and support changes
KF for only (z;)r at timet, i.e. we actually havgz;)r- = 0, slowly enough. We do this in Appendix B.
(Ki)renm) = 0, (Pe—1)pymlre = 0, (Pe—1)ji,m),re = 0,
(Pijt—1)7e,[1,m] = 0, a‘nd (I[Dt_l])Tc,[Lm] = 0. For[ co]mputational IV. KF-CS ERRORSTABILITY
speedup, the reduced order KF should be explicitly implemented. Analyzing the KF-CS algorithm of Sec. II-B, which includes the
Remark 3:The KF in KF-CS does not always run with correcideletion step, is difficult using the approach that we outline below.
model parameters. Thus, even Wf@j}},s/az) is small, it is not clear Thus, in this section, we study KF-CS without the deletion step, i.e.
if KF-CS will always outperform LS-CS [4]. This will hold at times We Setaade; = 0. KF-CS without deletion assumes that there are few
when the support is accurately estimated and the KF has stabiliZ&¥l bounded number of removals and false detects. For simplicity,
[see Fig. 2(a)]. Also, this will hold when support changes occdf this work, we just assums, = 0 in Signal Model 1 and we will
slowly enough, and is small so that LS-CS error becomes instabléS€lecta so that there are zero false detecis.= 0 along with the

but is just large enough to prevent KF-CS instability [see Fig. 2(c)ssumption that the maximum sparsity siz&is.. implies that there
are only a finite number of addition timek, i.e. for allt > tx_1,

C. Discussion of the Signal Model N: = Ni,._,. We summarize this in the following signal model.

A more accurate model than Signal Model 1 would be random Signal Model 2:Assume Signal Model 1 withS. = 0. This
walk with nonzero and time-varying drift. If accurate knowledge ofPlies that there are only a fmltesnumger of addition times,
the time-varying drift is available, the KF estimation error can b&ith 7 =0,1,... (K —1) and K = [Smeg==0]. Let tx := oo
reduced significantly. But, in practice, to estimate the time-varying Consider the genie-aided KF, i.e. a KF which knows the true
drift values, one would need a large number of identically distributetPPOTtV: at eacht. Itis the MMSE estimator of; fromy,,...y:
training signal sequences, which is an impractical assumption in mi4fe support sets\:, are assumed known and the noise is Gaussian,
cases. On the other hand, in the above model the parameters are tf#i- S the linear MMSE for any arbitrary noise. In this section, we
invariant and their values can be estimated from a single trainifigd sufficient conditions under which, with high probability (w.h.p.),
sequence. This is done in [5], [20]. CS for Signal Model 2 and ol?servatlon model given by (2) _ge_ts

Now, a random walk model at all times is not a realistic signdP Within & small error of the genie-KF for the same system, within
model since it implies that the signal power keeps increasing o\%ﬂ‘lnlte delay of the new addition time. Slr_1ce the genie-KF error is
time. The following is what is more realistic. A new sparse basfi€lf stable w.h.p., as long as;,.. < 1, this also means that the
coefficient starts from zero and slowly increases to a certain rouglfji-CS reconstruction error is stable w.h.p. _
constant value, i.e. it follows a random walk model for sometime OUr approach involves two steps. Conside€ [t;,¢;1). First,
and then reaches steady state. Steady state can usually be accurdfeijnd the conditions under which w.h.p. all elements of the current
modeled by a (statistically) stationary model with nonzero mean. F§PPOrtN: = N:; get detected before the next addition timg, ;.
design KF-CS for such a model one would either need to detdegnote the detection delay bye. If this happens, then during; +
when a coefficient becomes stationary or one would need to know/des ti-+1), both KF-CS and genie-KF run the same fixed dimensional
ahead of time. The former will typically be very error prone whiléd fixed parameter KF, but with different initial conditions. Next,
the latter is an impractical assumption. To avoid having to do thi¢/® Show that if this interval is large enough, then, w.h.p, KF-CS will
we just assume a random walk model at all times. stabilize to within a small error of the genie-KF within a finite delay

In Sec. V, we show that the KF-CS algorithm of Sec. I1-B work&ftert; + meer. Combining these two results gives our :s,tabili}y result.
both for data generated from Signal Model 1 and for data generatedVe are able to do the second step because, whenéver N;—_1,
from a more realistic bounded signal power model taken from [4f1€ final LS step re-initializes the KF with, 2. given by (9). This
which is a deterministic version of what is discussed above. In [jnSures that the KF-CS estimate, and the Kalman gaink’, at
[20], we show that it works even for actual image sequences. + 1 and future times depend on the past observations only through



T := N;. Thus, conditioned on the evefitV; = N;, V¢t € [t; + all t € [t. + Tk r, tw.], Pr(|diff;||> < eer | Df) > 1 — €. Clearly
Tdet, t5+1)}, there will be no dependence of eithey or of K; on if t.. < t. + Tk r, this is an empty interval.

observations beforé; + 7get. The stability result then follows by applying Lemma 2 followed
by Corollary 1 for each addition time,.
A. The Stability Result Theorem 1 (KF-CS Stability)Assume that z; follows Signal

We begin by stating Lemma 1 which shows two things. First, flodel 2. Let diff, := &; — &1 caxr Wherei; garr is the genie-
accurate initialization is assumed, the noise is bounfled, < S.., aided KF estimate and, is the KF-CS estimate. For a givencer,
ager = 0 and a is high enough, there are no false detections. If tnié the conditions of Lemma 1 hold, and if the delay between addition
delay between addition times also satisfies> Tuei(e, Sa), where 1iMeS,d > Tael(€, Sa) + Trr (€, €err, Nt ), WhereTaed., ) is defined
Taet iS What we call the “high probability detection delay”, then thd (11) in Lemma 1 andx (., .,.) in Corollary 1, then
following holds. If beforet;, the support was perfectly estimated, 1) Pr(||diff:||* < eer) > (1—€)?™2, for all ¢ € [t; +Taet(e, Sa) +

then w.p.> 1 — ¢, all the additions which occurred a will get T F (€, €em, Ny, ), tj+1 — 1], forall j =0,... (K — 1),
detected byt; + Taed(€, Sa) < tjt1. 2) Pr(|A| €S, and|Ac| =0, V1) > (1 —e)F
Lemma 1:Assume thatz; follows Signal Model 2. If 3) Pr(|A]l = 0and|A.| = 0, V t € [tj + Tded€, Sa), tjit1 —
1) (initialization (¢t = 0)) all elements ofr, get correctly detected 1, Vj=0...K-1)>(1-¢~
and there are no false detects, i, = No, The proof is given in Appendix D. A direct corollary is that after
2) (measurements¥max < Si. and |lw|le < A/ A1, tx—1 KF-CS will converge to the genie-KF in probability. This is
3) (algorithm) we set agey = 0 and o> = B, := because fot>tx_1, N; remains constantf = oco).

C1 (Smax)Smax A2, whereC, (S) is defined in [8, Theorem 1.1],
4) (signal model)delay between addition timed,> Tyet(€, Sa), B. Discussion

Consider & € [t;,t;4+1). Notice thatrx » depends on the current

— 175 —1, (11) support, N; = N while 14 depends only on the number of
02, [0 (1) additions at¢;, S,. Theorem 1 says that i is large enough so
that Smax < Six; ager = 0 (ensures no deletions)y = /B.
(ensures no false detects); and if the time needed for the current
KF to stabilize,7x r (¢, eerr, Nt ), plus the high probability detection

4B,
where7get(e, S) :=

[-] denotes th2e greatest integer function a@l(z) :=
[2°(1/v2m)e ™ 2dz is the Gaussian Q-function,

then X delay, 7der(€, Sa ), is smaller thani, then w.p.> (1 — €)?*2, KF-CS
1) at eacht, N; C Ny C N¢y1 and so|Ac¢+1| =0 will stabilize to within a small erroreer, of the genie-KF before the
2) at eacht, ||z; — &1 .csred|? < B. . next addition timez;41. If the currentrx r is too large, this cannot
3) Pr(E;|Fj) > 1—ewhereF; := {N, = Ny fort =t; — 1}  be claimed. But as long aget(¢, S.) < d, the unknown support size,
andE; := {N, = N, Vt € [t; + Tdel€, S), tj41 — 1]} |A| remains bounded b, w.p. > (1 — ¢)*.

The proof is given in Appendix C. The initialization assumption is We give our result for the case of zero removals and zero false
made only for simplicity. It can be easily satisfied by using> nto  detects, but the same idea will extend evefAt| is just bounded.
be large enough. Next we give Lemma 2 which states that if the trueAS explained in Sec. 1I-C, most signals do not follow a random
support set does not change after a certain titpg, and if it gets walk model forever (such a model would imply unbounded signal
correctly detected by a certain time, > ¢,.., then KF-CS converges Power). In practice, a new coefficient may start with following a
to the genie-KF in mean-square and hence also in probability. ~ random walk model, but eventually reach steady state (stationary

Lemma 2:Assume thatr; follows Signal Model 2;6s,... < 1; Mmodel). In this case, it should be possible to modify our result to
and o, = 0. Define the evenD := {N, = N, = N., V ¢t > t.}. claim that if, before reaching steady state, all coefficients become
Conditioned onD, the difference between the KF-CS estimate, large enough to exceed the threshold plus upper bound on error, and
and the genie-aided KF estimat®,cax r, diff; := &, — #,.caxr, if this happens before the next addition time, KF-CS remains stable.
converges to zero in mean square and hence also in proballility. ~Our result is weaker than that of LS-CS [4] - it neef}s.. < S..

The proof is similar to what we think should be a standard resufhe LS-CS result only needS, < S.. and Smax < S.); it uses
for a KF with wrong initial conditions (here, KF-CS with= ¢, as & random walk model; it does not handle support removals; and the
the initial time) to converge to a KF with correct initial conditionscomputed high-probability detection delay is quite Idogéis is due
(here, genie-KF) in mean square. A similar (actually stronger) restft two main reasons. One is that we assume a zero drift random walk
is proved for the continuous time KF in [22]. We could not findnodel as the signal model both for defining KF-CS and for analyzing
an appropriate citation for the discrete time KF and hence we jubtwhile LS-CS uses a model with nonzero drift for the analysis (the
give our proof in Appendix E. After review, this can be significanthylgorithm does not assume any signal model). The reason for our
shortened. The proof involves two parts. First, we use the results fréf0sing this model is explained in Sec. 1I-C. The second and more
[13] and [21] to show that (aP, 1, P, K, and J, := I — K, A, important reason is that bounding KF error is more difficult than
converge to steady state values which are the same as those foP@inding LS error. This is because the KF error, and hence also the
corresponding genie-KF; and (b) the steady state valuk,afenoted (KF)CS-residual error, depends on the previous reconstructiomn er
J., has spectral radius less than 1 and because of this, there exist§@ (LS)CS-residual error only depends [, |A| and if we can
matrix norm, denoted.||,, s.t. | J.||, < 1. Second, we use (a) and9et a time-invariant bound on these, we can do the same for the error.
(b) to show that the difference in the KF-CS and genie-KF estimates, V. SIMULATION RESULTS

diff,, converges to zero in mean square, and hence also in probabilityye giscuss two sets of simulation results. The first simulates data
(by Markov's inequality). _ _ according to Signal Model 2 and verifies KF-CS stability. The second
A direct corollary of the above lemma is the following. set of simulations compares KF-CS with LS-CS [4] and simple CS

Corollary 1: Assume that: follows Signal Model 2¢s,.... <1, (pantzig selector) [8]. This comparison uses the more realistic signal
and age; = 0. Define the eventDy := {Ny = N, = N,, Vt €

[t«, t.«x]}. FOr a givene, eer, there exists arx r (¢, €err, Ni) S.t. for 1our result may even go through if CS-residual was replaced 9y C
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Fig. 2. Comparing KF-CS with CS and LS-CS. CS-residual in LS-CS or inGSused\ = 0.17. Misses =E[|N; \ N¢|], Extras =E[|N; \ N¢|].

0015 o = and of extras I{[|N; \ N;|]) are plotted in Fig. 2(b). We averaged
—genie- KA et over 100 Monte Carlo runs. Notice that right after a new addition,
both LS-CS and KF-CS have similar MSE, but in the stable state
KF-CS stabilizes to a smaller value. The NMSEs for CS (Dantzig
selector) and Gauss-Dantzig selector even with different choices of
A are much larger (40-60%).
In a second simulation, we used = 150, n = 45 andc = 0.15
) ) ) _ and everything else was the same as above. The error plots are shown
gj‘) f'g”g‘ l\ﬂgdg' 2 Vi“g*go =8, g’) f‘i”g'l‘"‘l’gegz W'Tg% =8 in Fig. 2(c) and the number of extras and misses are plotted in Fig.
o o T T mmax o T o e 2(d). With such a smatt, LS-CS error becomes instable. But= 45
Fig. 1. Verifying KF-CS stability for Signal Model 2. (along with delay between addition times= 8) is large enough to

model assumed in [4], which has a roughly constant signal power agvent KF-CS instability.
support size and allows regular additions and removals from support.
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VI. CONCLUSIONS ANDFUTURE WORK
A. Signal Model 2: verify KF-CS Stability We propo;ed KF CS-residual (KF_-CS) which replacgs CS on the
We simulated Signal Model 2 withy = 256, So = 8, Sa = raw observation by CS on the KF residual, cg_mputed using the kn_own
9. d =5 Suu. — 26 and 0w — 1. Thus adélitions oc‘curred at part of the support. We proved KF-CS stability, but the assumptions
t’= 16 ’11 46, The meaysurement model used— ny — 72 used were somewh_at s_trong _(stronger than those u_sed for LS-CS [4]
and G7at’Jssi7an r’10ise with — 0.16. The normalized MSE (NMSE) We demonstrated via S|mulat|pns that KF.-C$ error is stable and small
is plotted in Fig. 1(a). In a second simulation, we increaSedbut under much weaker gssumptlons. Also, it significantly outperformed
we also increased: we usedsS, — 4, d — 10 and Sy, — 20 and LS-CS when the available number of measurements was very small.

everything else was the same. We show the error plot in Fig. 1(b) A key direction of future work is to prove KF-CS stability under

Notice that in both cases, (i) KF-CS stabilizes to within a small err(weaker assumptions. This will require assuming a signal model with

of the genie-KF within a short delay of a new addition time; and (iizOrlzero drift (to get a tighter detection delay bound) and bounded

aer the final set of new addltions, KF-CS converges 10 the gentdn POVEr 1 may also el o aseume a statisical prier on support
KF. The difference between the two is that the peak errors at the nE ge. €.g. by 9 '

addition time are larger in the second case (sifiges larger). F-CS would be to replace CS-residual by modified-CS [19]
We implemented the KF-CS algorithm of Sec. II-B but without

the deletion step, i.e. we set;; = 0. Since the observation noise ) APPENDIX
. . - . A. Bounding||(5:)r||
is not truncated, occasionally the addition step can result in a very N N A
large number of false additions. To prevent this, we restricted thel:‘iecall thatTi = Ne—s aniAt = Ni\ Ni-1. Letd; = 6z, and
maximum number of allowed additions at a given time/tg/ log, m 0t = OI7ul,1a.1- AlSO, 1€t Ky = (Ki)711,m),
(v between 0.7 and 1.25) largest magnitude coefficients. M, 2 Ap'Ap + (Pt\tq):?,l:pCfQ and

: 2s]0° (12)
B. Bounded signal power model from [4] = Osys/0

For this comparison we used the signal model of [4]. This is e use the following simple facts in the discussion below [21]. For
realistic signal model with roughly constant signal power and supp@mmetric positive definite matriceds, M, || M| = Amax(M) =
size. We usedn = 200, So = 20, Sa: 2=5r0a; =02 M=1, 1/)‘min(M71): )\min(M + M) > )\min(M) + Amin(M) while the
d = 8 andr = 3. Thus new additions occurred at= 2,10,18. inequality holds in the opposite direction faf,... Here Amax (M),
Coefficient decrease began iat= 7,15 and these got removed at)\,,in (M) denote the maximum, minimum eigenvalue of.

> 1>

t = 9,17 respectively. The measurement noise wasform(—c,c). As is well known [13], K, [I — K Ar], P, can be rewritten as
In the first simulation, we used, = 150, n = 59 andc = 0.1266. P

LS-CS used\ = 0.176, o = ¢/2 = 0.06 = e AlsO, it restricted Ky =M, Ar

maximum number of additions at a time %), + 1. The KF-CS Jo =1 — KiAp = M; " (Pyjy—1)7r0°

algorithm (:2>f Seg. II-B vgas implemented. It gsed the above parameters (Pye—1)rr = (Pit)rr + (ngSIT)T’% where
and it setr” = ¢~ andog,, = 0.01. For the signal model of [4], there 1 9 .

. 2 Mt_la if T, =T, 1
are no correct choices of KF parameters. The average;6fz:—1); (P—1)r,r = (Ar, An) Yo if T, £ 1T
overi andt was (0.04 % (5/8) % (2/20) +0.11  (3/8) x (2/20) + 0% Te AT) O t7 Sl
1%(16/20)) ~ 0.01 and this motivated the choice of, ;. The noise The third equation is repeated from (5). To bouf{@;)r||, defined
variance isc? /3, but we use a larger value to also model the effect df (10), we need to boundJ:|| and | K;Ar’ Aa||, which in turn
extra observation error due to the unknown suppbrtThe NMSE  requires bounding A, ||, H(Pt‘t,l);}TH and||Ar"Aa]||. Using the
plot is shown in Fig. 2(a). The mean number of miss&$/(; \ NV:|])  definition of 65 s/ [8, eq 1.5], it is easy to see thpAr Aa|| < 6;.

(13)



Using (13), [|(Pie—1) 77l < Qmin(M,4)0* + 02,,)" " if T, = T, does not change for just one time instant, then; reduces to
Tiy and [|(Pye—1)77ll < (14 60) ' + 02,5)"" otherwise. 1/(0.2+1/(a; 4 0.5)) = 1.92. If it does not change for two time
Also, | M| = Amax(M;'). Thus bounding them requires upperinstants, them,» reduces to 1.63. If; does change and the change
boundingAmax(M; ") and lower bounding\min (M, '). Using the is a correct addition, the seX; becomes smaller and so the second

definition of the RIP constant [8, eq. 1.3], term of (16),0:||(x+)al|, reduces. In either case, the bound reduces.
) ) 1 Of course for LS-CS)h; = oo and so the first term of (16), T
1Ml = Amase (M) = (Ar Az T (Por)obo?) 0 while for KF-CS, T1# 0. But if ¢2,, and o* are small and
min{ AT 4T t-vrr support changes slowly, T1 will also be small (argued earlier). When
< 1 - n is small, the net effect is that the KF-CS bound |t )r||, and
1—0: + m hence the bound on CS-residual error, is small compared to that for
L it T, = T,_, LS-CS. This is the main reason that, wheris very small, KF-CS
- 1*5t+m error remains stable, while nothing can be said about LS-CS error.
< ﬁ if T, # Ti_1 In simulations, we notice that it often becomes unstable.
(=)~ T4r
£ o (14) C. Proof of Lemma 1

With |Jw|lec < A/||A]l1, all results of [8] hold w.p. 1 (because

. 1 .
Similarly, we can lower boundumx (M,_;) and use it to get eqg 3.1 of [8] holds w.p. 1). From Theorem 1.1. of [8], if a signal is

L " if T, =Ty 1 =T)_o S-sparse, and iS5 < S.., then, the error after running the Dantzig
o T " selector is bounded bj..
||(Pt\t—1)j_‘lTHU2< . - if Ty =Tioq # Tis The first two claims follow by induction. Consider the base case,
' B R ARG ET ey = t = 0. The first claim holds because condition 1 of the lemma holds
1 if T, #Ty_q and because, = 0 in Signal Model 2. SincgNo| < Smax and

Tt condition 2 holds, [8, Theorem 1.1] applies. Thus the second claim
(15) holds att = 0. For the induction step, assume that the first two claims
hold for ¢t — 1. Using the first claim for — 1, |A¢¢| = 0. Thus, 3;
From (10), (13)J[(B:)z || < IM; || [1(Peje—1) 7 llo®([(@e — &e—1) || 1S [Ne U Ace| = [Ni| sparse. SincéN;| < Smax and condition 2
+0:||(z¢)al| + | Ar"w:]|]. Using this and the above bounds, we gefolds, we can apply [8, Theorem 1.1] to dgt: — 3> < B.. But
xr — Zt,csres = B¢ — P and so the second claim follows for By

L

Sl

I
1(B)Tll < ar [TL+ 0l[(we)all + [[Ax"we|] , where settinga. = /B, (condition 3), we ensure that for anyith z; = 0,
11 8 @1 = &ed)ron | + [@Eev)ac |+ VIT O Nef[[1e]] o0 (16)(f05res)z2 = (2 — (Fcsredi)? < ||z — Zesred|? < B = o (no false
B by ’ detects). Using this anfl,. = 0, the first claim follows fort.

anda, is defined in (14) and; in (15). Notice that is an increasing O the third claim, it is easy to see that for any A, if, at

function of 6, and, and also of| M, Y || < ar_1 if Tp = Tp1. t, (w47 > 2a° +2B. = 4B., then? will definitely get detected
Now, A C (Ny—1 \ T) U (N; \ Ni—1) and A, C (T'\ Ny_1) U at t. Copsnder at € [tj,tj+1 — 1]. Since F; holds, so att = tj,

(N:—1 \ N). If the previous reconstruction is accurate enough® = A()- Also, sinceaqe: = 0, there cannot be false deletions and

the previous support estimate will also be accurate enough. THS foranyt & [t;, ¢;1—1], |A| < Sa. Consider the worst case: no

combined with the slow support change assumption will imply th&Pefficient has got detected untjli.e. A = A(j) and S0l A¢| = Sa.

|A| and |A.| are small enoughlA.| small enough will imply that All # € A(J) will definitely get detected at if (x:); > 45, for all

T is small enough (Sinck’| < | N;| + |A.|) and hencey, is small ¢ € A(7). Frpm our modelz, the different coefﬁme;]ts are independent,

enough.d, andd,_; small ensure smaller, and larget,. |A.| and and for anyi € A(j), ()i ~ N0, (t = t; + 1)osy,). Thus,

|A| small enough will also imply thaf; is small enough. The noise Sa

being small along withA.| small will imply that || A7 w || is small.  Pr((x)? > 4B., Vi € A(j) | Fj)= (29 < %))
Slow signal value change implies (t)is small enough and (ii) at (t—t; +1)odys

all t, |v¢|| is small enough w.h.p.. Smallimplies thata. is small, Using the first claim,Pr (K, = N, | F;) is equal to this. Thus for

but it also implies thab, is small. Small||v¢|| at all ¢, along with t = t, + mele, Sa), Pr(Ne = Ny | F}) > 1 — . Since there are no

small noise, also results in the previous reconstruction being accurale " acts: no deletions and no new additions aptil, Ny = N,
’ 1 t — t

enough which, in turn mean§z:—1 — Z:—1)rnn, || is small. Using oo . X )
. . fort =t; implies thatE; occurs. This proves the third claim.
this and the fact that only small coefficients get falsely deleted or 3 7+ Taer IMP J P

removed, ||(Z:—1)a. || is also small. All this ensures that T1 in (16)p. Proof of Theorem 1
is not very large even wheb; is small. This combined with the
discussion of the previous paras ensures that the bourd &nr ||
is small. Thus, if (a), (b), (c), (d) given in Sec. Il hold(5:)r| is
small, i.e.3; is only |A|-approximately-sparse; anjd| is small.

The eventsZ; and F; are defined in Lemma 1. At the first addition
time, to = 1, using the initialization conditionNy,—1 = Ny,—1, i.€.
Fy holds. Thus, by Lemma r(Ey) > 1—e. Considett; for j > 0.
Clearly® Pr(E;|FEo, Er,... E;_1) = Pr(E;|E;—1) = Pr(E;|F)).

B. Comparing KF-CS and LS-CS using the bound] )z || By Lemma 1,Pr(E;|F;) > 1 — e. Combining this withPr(Ey) >

. . : 1 —¢, we getPr(E;) > (1 —¢)? forall j > 0.
We will mention that we are only comparing upper bounds here. Assume thatkz, occurs and apply Corollary 1 with, = ¢, +

Considera, defined in (14). Suppose = 0.5 andn is such that - .
_ - : Tdet(€, Sa) @andt... = t;41—1. Combining the conclusion of Corollary
0, = 0.8 for all t. LS-CS can be interpreted as KF-CS with= co. 1 with Pr(E,) > (1 — )+, the first claim follows.

ZP :SJO;L?CSG; :_15% 0_26;) (T /g ;‘)";VE’E’Z' 6F§ r(;ri-;:s?’hz\llg nl ;f’ The second and third claims follow directly from arguments in the
e A G ' R *" proof of Lemma 1 andPr(Eo N E1 N ... Ex_1) > (1 — €)X,

2The fact that only small coefficients get removed frovp is not modeled  3since E; = {(@t;4rge)? > 4Bx, Vi € At 1740} and the sequence of
in Signal Model 1, but is true in practice. But it is modeled i simulations. z:'s is a Markov process



E. Proof of Lemma 2 and Corollary 1 2) | M|, < Hi:tEH | T+, < a'™' with a & (34 p)/4 <

Let #;,cax r denote the genie-aided KF (GA-KF) estimatet at L Thus ||[Me.. || < cp2a~" wherec,,» is the smallest real
Assume that the everd occurs. Then, fot > t., N; = N; = N., number satisfyind|M|| < ¢, M]|,, for all size|N.| square
i.e. Ay = N\ Ni_; = N.\ N, = ¢ (empty set) and s6; = &¢.nit. matricesM (holds because of equivalence of norms)c.
Let e; éxt*i't and é; éxt — Tt,GAKF- 3) HLMEHP = l+a+...a7" < ﬁ'ThusHLt’tﬁH < (1’)*72)'
For simplicity of notation we assume in this proof that all variable€ombining the above facts, for al > ¢, ]E[Hdif‘ftHQ]l/2 <
and parameters are only aloig,, i.e. we leti; = (i¢)n., et =  cpo0a’ “E[|diff¢ ||?]*/2 + Ce where a = (3 + p)/4, C :=

(et)n., v = (We)ne, Prjie1 = (Pre—1)NaNey Ke = (Ko n, i) 22 (VB 4 /[Ni|02,, + v/no?). Notice thata < 1. Consider an
Let . = I — KtAN* Similarly for & GAKF,et,Pﬂt 1, K, Ji. € < 2C(1 — p)/4 and sete = €/2C. It is easy to see that for all
Here P,; 1, K, J; are the corresponding matrices for GA-KF. log(B[||diff; 5, “211/2>+10g(2% 2)-logé  E[||diff||2] /2 < .

> tz2c
Let E[-] denote expectation w.r.t. all random quantities condltloneﬁ1us conditioned oD, dlfft /converges to zero in mean square.
By Markov’s inequality, this also implies convergence in probabil-

on the eventD, and letE[-|y1, ... y:] denote conditional expectation
ity, i.e. for a givene, cerr, there exists ax r (€, €en, Ni) > 0 s.1. for

givenyi,...y: and the evenD.
From (3). fort > £, et & and difl. = e. — & satisfy all t > b +7cr (e, om, Na), Pr(|dify]|” < car | D) > (1—c). The
er=Jies 1 + i — Kows proof of Corollary 1 follows directly from this.

er=Jer—1 + Jivy — Kywy
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