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Abstract—We study the problem of recursively recovering
a time sequence of sparse vectors, St, from measurements
Mt := St + Lt that are corrupted by structured noise Lt which
is dense and can have large magnitude. The structure that we
require is that Lt should lie in a low dimensional subspace that is
either fixed or changes “slowly enough”; and the eigenvalues of
its covariance matrix are “clustered”. We do not assume any
model on the sequence of sparse vectors. Their support sets
and their nonzero element values may be either independent
or correlated over time (usually in many applications they are
correlated). The only thing required is that there be some support
change every so often. We introduce a novel solution approach
called Recursive Projected Compressive Sensing with cluster-
PCA (ReProCS-cPCA) that addresses some of the limitations of
earlier work. Under mild assumptions, we show that, with high
probability, ReProCS-cPCA can exactly recover the support set
of St at all times; and the reconstruction errors of both St and
Lt are upper bounded by a time-invariant and small value.

I. INTRODUCTION

We study the problem of recovering a time sequence of
sparse vectors, St, from measurements Mt := St + Lt that
are corrupted by (potentially) large magnitude but dense and
structured noise, Lt. The structure that we require is that Lt
should lie in a low dimensional subspace that is either fixed or
changes “slowly enough” in the sense defined in Sec II-A. As
a by-product, at certain times, we are also able to recover a
basis matrix for the subspace in which Lt lies. Thus, at these
times, we also solve the recursive robust principal components’
analysis (PCA) problem. For recursive robust PCA, Lt is the
signal of interest while St is the outlier (large but sparse
noise). A key application where this problem occurs is in
video analysis where the goal is to separate a slowly changing
background from moving foreground objects [1].

Related Work. Most existing works on sparse recovery in
large but structured noise study the case of sparse recovery
from large but sparse noise (outliers), e.g., [2], [3], [4]. How-
ever, here we focus on the case of large but low-dimensional
noise. On the other hand, most older works on robust PCA
cannot recover the outlier / sparse vector when its nonzero
entries have magnitude much smaller than that of the low
dimensional part. However, in this work the main goal is to
study sparse recovery and hence we do not discuss these older
works here. Some recent works on robust PCA such as [5], [6]
assume that an entire measurement vector Mt is either an an
inlier (St is a zero vector) or an outlier (all entries of St can
be nonzero), and a certain number of Mt’s are inliers. These
works cannot be used when all St’s are nonzero but sparse.

The works of [1], [7] pose batch robust PCA as a problem

of separating a low rank matrix, Lt := [L1, . . . , Lt] and
a sparse matrix, St := [S1, . . . , St], from the measurement
matrix, Mt := [M1, . . . ,Mt] = Lt + St. Thus, these works
can be interpreted as batch solutions to sparse recovery in
large but low dimensional noise. It was shown in [1] that
one can recover Lt and St exactly by solving min

L,S
‖L‖∗ +

λ‖S‖1 subject to L+S =Mt, provided that (a) Lt is dense,
(b) any element of the matrix St is nonzero w.p. %, and zero
w.p. 1− %, independent of all others (in particular, this means
that the support sets of the different St’s are independent over
time); Here ‖B‖∗ is the nuclear norm of B (sum of singular
values of B) while ‖B‖1 is the `1 norm of B seen as a long
vector. In most applications, it is fair to assume that the low-
dimensional part, Lt (background in case of video analysis) is
dense. However, the assumption that the support of the sparse
part (foreground in case of video) is independent over time
is often not valid. Foreground objects typically move in a
correlated fashion, and may even not move for a few frames.
This results in St being sparse and low rank.

The question then is, what can we do if Lt is low rank and
dense, but St is both sparse and low rank? Clearly in this case,
without any extra information, in general, it is not possible to
separate St and Lt. In [8], [9], [10], we introduced the Re-
cursive Projected Compressive Sensing (ReProCS) algorithm
that provided a solution by using the extra piece of information
that an initial short sequence of Lt’s is available (which can be
used to get an accurate estimate of the subspace in which the
initial Lt’s lie) and assuming slow subspace change. The key
idea of ReProCS is as follows. At time t, assume that a n× r
matrix with orthonormal columns, P̂(t−1), is available with
span(P̂(t−1)) ≈ span(Lt−1) (span(P ) refers to the span of the
columns of P ). We project Mt perpendicular to span(P̂(t−1)).
Because of slow subspace change, this cancels out most of
the contribution of Lt. Recovering St from these n − r
dimensional projected measurements then becomes a classical
sparse recovery / compressive sensing (CS) problem in small
noise [11]. Under a denseness assumption on span(Lt−1),
one can show that St can be accurately recovered via `1
minimization. Thus, Lt = Mt − St can also be recovered
accurately. Every α time instants, we use the estimates of Lt
in a projection-PCA algorithm to update P̂(t).

ReProCS is designed under the assumption that the subspace
in which the most recent several Lt’s lie can only grow over
time. It assumes a model in which at every subspace change
time, tj , some new directions get added to this subspace. After



every subspace change, it uses projection-PCA to estimate
the newly added subspace. As a result the rank of P̂(t)

keeps increasing with every subspace change. Therefore, the
number of effective measurements available for the CS step,
(n− rank(P̂(t−1))), keeps reducing. To keep this number large
enough at all times, ReProCS needs to assume a bound on the
total number of subspace changes, J .

Contributions. In practice, usually, the dimension of the
subspace in which the most recent several Lt’s lie typically
remains roughly constant. A simple way to model this is to
assume that at every change time, tj , some new directions can
get added and some existing directions can get deleted from
this subspace and to assume an upper bound on the difference
between the total number of added and deleted directions
(the earlier model in [10] is a special case of this). ReProCS
still applies for this more general model as discussed in the
extensions section of [10]. However, because it never deletes
directions, the rank of P̂(t) still keeps increasing with every
subspace change time and so it still requires a bound on J .

In this work, we address the above limitation by introducing
a novel approach called cluster-PCA that re-estimates the
current subspace after the newly added directions have been
accurately estimated. This re-estimation step ensures that the
deleted directions have been “removed” from the new P̂(t). We
refer to the resulting algorithm as ReProCS-cPCA. The design
and analysis of cluster-PCA and ReProCS-cPCA is the focus
of the current paper. Under the clustering assumption and some
other mild assumptions, we show that, w.h.p, at all times,
ReProCS-cPCA can exactly recover the support of St, and
the reconstruction errors of both St and Lt are upper bounded
by a time invariant and small value. Moreover, we show that
the subspace recovery error decays roughly exponentially with
every projection-PCA step. The proof techniques developed
in this work are very different from those used to obtain
performance guarantees in recent batch robust PCA works
such as [1], [7], [12], [5], [6], [13], [14], [15], [16], [17], [18],
[19]. Our proof utilizes sparse recovery results [11]; matrix
perturbation theory (sin θ theorem [20] and Weyl’s theorem
[21]) and the matrix Hoeffding inequality [22].

A key difference of our work compared with most existing
work analyzing finite sample PCA, e.g. [23], and references
therein, is that in these works, the noise/error in the observed
data is independent of the true (noise-free) data. However,
in our case, because of how L̂t is computed, the error et =
Lt−L̂t is correlated with Lt. As a result the tools developed in
these earlier works cannot be used for our problem. This is the
main reason we need to develop and analyze projection-PCA
based approaches for both subspace addition and deletion.

Notation. For scalars t1, t2, [t1, t2] := {t1, t1 +
1, . . . t2}. The notation [L̂t; [t1, t2]] denotes the matrix
[L̂t1 , L̂t1+1, · · · , L̂t2 ].

For a vector v, vT denotes a vector consisting of the
entries of v indexed by T . For a matrix B, B′ denotes its
transpose, and B† its Moore-Penroe pseudo-inverse. Also,
‖B‖2 := maxx 6=0 ‖Bx‖2/‖x‖2. For a Hermitian matrix, B,

B
EVD

= UΛU ′ to denotes the eigenvalue decomposition of B.
Here U is an orthonormal matrix and Λ is a diagonal matrix
with entries arranged in non-increasing order. We use I to
denote an identity matrix. For an index set T and a matrix B,
BT is the sub-matrix of B containing columns with indices in
the set T . Notice that BT = BIT . Also, B \BT denotes BT c

(here T c := {i ∈ [1, n] : i /∈ T}). Given matrices B and B2,
[B B2] constructs a new matrix by concatenating matrices B
and B2 in a horizontal direction. [.] denotes an empty matrix.

We refer to a matrix P as a “basis matrix” if P ′P = I .
The s-restricted isometry constant (RIC) [24], δs, for an

m × n matrix Ψ is the smallest real number satisfying (1 −
δs)‖x‖22 ≤ ‖ΨTx‖22 ≤ (1+δs)‖x‖22 for all sets T with |T | ≤ s
and all vectors x of length |T |.

II. PROBLEM FORMULATION

The measurement vector at time t, Mt, is an n dimensional
real vector which can be decomposed as Mt = Lt +St. Here
St is a sparse vector with support set size at most s and
minimum magnitude of nonzero values at least Smin. Lt is a
dense but low dimensional vector, i.e. Lt = P(t)at where P(t)

is an n×rt “basis matrix” with rt � n, that changes every so
often. P(t) and at change according to the model given below.
We are given an accurate estimate of the subspace in which
the initial ttrain Lt’s lie, i.e. we are given a “basis matrix” P̂0

so that ‖(I− P̂0P̂
′
0)P0‖2 is small. Here P0 is a “basis matrix”

for span(Lttrain), i.e. span(P0) = span(Lttrain). The goal is (1)
to estimate both St and Lt at each time t > ttrain, and (2)
to estimate span(P(t)) every-so-often, i.e., update P̂(t) so that
‖(I − P̂(t)P̂

′
(t))P(t)‖2 is small.

Notation for St. Let Tt := {i : (St)i 6= 0} denote the sup-
port of St, Smin := mint mini∈Tt

|(St)i|, and s := maxt |Tt|.
Assumption 2.1 (Model on Lt): We assume that
1) Lt = P(t)at with P(t) = Pj for all tj ≤ t < tj+1,

j = 0, 1, 2 · · · J , where Pj is an n × rj “basis ma-
trix” with rj � n and rj � (tj+1 − tj). At the
subspace change times, tj , Pj changes as Pj = [(Pj−1 \
Pj,old), Pj,new]. Here, Pj,new is an n × cj,new “basis
matrix” with P ′j,newPj−1 = 0 and Pj,old contains cj,old
columns of Pj−1. Thus rj = rj−1 + cj,new − cj,old. We
let tJ+1 equal the sequence length which can be infinite.

2) There exists a constant cmax such that 0 ≤ cj,new ≤ cmax

and
∑j
i=1(ci,new − ci,old) ≤ cmax for all j. Thus, rj =

r0 +
∑j
i=1(ci,new − ci,old) ≤ r0 + cmax, i.e., the rank of

Pj is upper bounded. Let rmax := r0 + cmax.
3) The coefficients’ vector, at = P(t)

′Lt, is a random vari-
able with the following properties. (a) at’s are mutually
independent over t. (b) It is a zero mean bounded r.v., i.e.
E(at) = 0 and there exists a constant γ∗ s.t. ‖at‖∞ ≤ γ∗
for all t. (c) Its covariance matrix Λt := Cov(at) =
E(ata

′
t) is diagonal with λ− := mint λmin(Λt) > 0

and λ+ := maxt λmax(Λt) < ∞. Thus the condition
number of Λt is bounded by f := λ+

λ− .

A. Slow subspace change
Slow subspace change means the following. First, the delay

between subspace change times, tj+1 − tj , is large enough.



Second, the projection of Lt along the newly added direc-
tions, at,new, is initially small, i.e. maxtj≤t<tj+α ‖at,new‖∞ ≤
γnew, with γnew � γ∗ and γnew � Smin, but can increase
gradually. We model this as follows. Split [tj , tj+1 − 1] into
α length periods. Then

max
j

max
t∈[tj+(k−1)α,tj+kα−1]

‖at,new‖∞ ≤ min(vk−1γnew, γ∗)

for a v > 1 but not too large. This assumption is verified for
real video data in [10, Sec X-B].

Third, the number of newly added directions is small, i.e.
cj,new ≤ cmax � r0. This is also verified in [10, Sec X-B].

B. Measuring denseness of a matrix and its relation with RIC
For a tall n × r matrix, B, or for a n × 1 vector, B, we

define the the denseness coefficient as follows [10]:

κs(B) := max
|T |≤s

‖IT ′B‖2
‖B‖2

.

where ‖.‖2 is the matrix or vector 2-norm respectively. κs
measures the denseness (non-compressibility) of a vector B
or of the columns of a matrix B. As explained in [10], [25],
κs(B) is related to the denseness assumptions required by PCP
[1].

The lemma below relates κs of a “basis matrix” P to the
RIC of I − PP ′. The proof is in [10, Appendix].

Lemma 2.2: For a “basis matrix” P , δs(I−PP ′) = κ2s(P ).

C. Clustering assumption
Let t̃j := tj +Kα. Consider the case where t̃j < tj+1. We

assume that (1) by t = t̃j , the variances along the newly added
directions as well as those along the existing directions (i.e.
all diagonal entries of Λt) have stabilized and do not change
much, so that we can cluster them into a few groups that
remain the same for all t ∈ [t̃j , tj+1 − 1]. Moreover, (2) the
distance between consecutive clusters is large; (3) the distance
between the smallest and largest element of each cluster is
small and (4) the number of clusters is small. Mathematically,

Assumption 2.3: we assume the following.
1) The index set {1, 2, . . . rj} can be partitioned

into ϑj groups Gj,(1),Gj,(2), · · · ,Gj,(ϑj) such
that mini∈Gj,(k)

mint∈[t̃j ,tj+1−1] λi(Λt) >
maxi∈Gj,(k+1)

maxt∈[t̃j ,tj+1−1] λi(Λt), i.e. each group is
a cluster, the first group contains the largest eigenvalues,
the second one the next smallest set and so on. Let

a) Gj,k := (Pj)Gj,(k)
,

b) c̃j,k := |Gj,(k)| be the number of elements in Gj,(k),
c) λj,k

− := mini∈Gj,(k)
mint∈[t̃j ,tj+1−1] λi(Λt),

λj,k
+ := maxi∈Gj,(k)

maxt∈[t̃j ,tj+1−1] λi(Λt) and
λj,ϑj+1

+ := 0,
d) g̃j,k := λj,k

+/λj,k
−,

e) h̃j,k := λj,k+1
+/λj,k

−,
f) ϑmax := maxj ϑj .

2) h̃max := maxj maxk=1,2,··· ,ϑj
h̃j,k is small enough,

3) g̃max := maxj maxk=1,2,··· ,ϑj
g̃j,k is small enough,

4) c̃min := minj mink=1,2,··· ,ϑj
c̃j,k is large enough.

III. REPROCS WITH CLUSTER-PCA (REPROCS-CPCA)

We first briefly explain the main idea of projection-PCA
(proj-PCA) [10]. The ReProCS with cluster-PCA (ReProCS-
cPCA) algorithm is then explained.

Definition 3.1: Let t̃j := tj +Kα. Define
1) Ij,k := [tj +(k−1)α, tj +kα−1] for k = 1, 2, · · · ,K.
2) Ĩj,k := [t̃j +(k−1)α̃, t̃j +kα̃−1] for k = 1, 2, · · · , ϑj .
3) Ĩj,ϑj+1 := [t̃j + ϑjα̃, tj+1 − 1].

A. The Projection-PCA algorithm

Given a data matrix D, a basis matrix P and an inte-
ger r, projection-PCA (proj-PCA) applies PCA on Dproj :=
(I − PP ′)D, i.e., it computes the top r eigenvectors (the
eigenvectors with the largest r eigenvalues) of 1

αD
DprojDproj

′.
Here αD is the number of column vectors in D. This is
summarized in Algorithm 1. If P = [.], then projection-
PCA reduces to standard PCA, i.e. it computes the top r
eigenvectors of 1

αD
DD′.

We should mention that the idea of projecting perpendicular
to a partly estimated subspace has been used in different
contexts in past work, e.g. see [5] and references therein.

Algorithm 1 projection-PCA: Q← proj-PCA(D, P, r)
1) Projection: compute Dproj ← (I − PP ′)D
2) PCA: compute 1

αD
DprojDproj

′ EVD
=[

QQ⊥
] [Λ 0

0 Λ⊥

] [
Q′

Q⊥
′

]
where Q is an n × r

basis matrix and αD is the number of columns in D.

B. The ReProCS-cPCA algorithm

ReProCS-cPCA is summarized in Algorithm 2. It proceeds
as follows. Steps 1, 2, 3a and 3b are explained in detail in
[10]. Step 1 projects Mt perpendicular to P̂(t−1), solves the
`1 minimization problem, followed by support recovery and
finally computes a least squares (LS) estimate of St on its
estimated support. This final estimate Ŝt is used to estimate
Lt as L̂t = Mt − Ŝt in step 2. The sparse recovery error,
et := Ŝt − St. Since L̂t = Mt − Ŝt, et also satisfies et =
Lt− L̂t. Thus, a small et (accurate recovery of St) means that
Lt is also recovered accurately. Step 3a is used at times when
no subspace update is done. In step 3b, the estimated L̂t’s
are used to obtain improved estimates of span(Pj,new) every α
frames for a total of Kα frames using the proj-PCA procedure
given in Algorithm 1. As explained in [10], within K proj-
PCA updates (K chosen as given in Theorem 4.1), it can be
shown that both ‖et‖2 and the subspace error, SE(t) := ‖(I −
P̂(t)P̂

′
(t))P(t)‖2, drop down to a constant times ζ. In particular,

if at t = tj−1, SE(t) ≤ rζ, then at t = t̃j := tj+Kα, we can
show that SE(t) ≤ (r+ cmax)ζ. Here r := rmax = r0 + cmax.

To bring SE(t) down to rζ before tj+1, we need a step so
that by t = tj+1 − 1 we have an estimate of only span(Pj),
i.e. we have “deleted” span(Pj,old). One simple way to do
this is by standard PCA: at t = t̃j + α̃ − 1, compute P̂j ←
proj-PCA([L̂t; Ĩj,1], [.], rj) and let P̂(t) ← P̂j . Using the sin θ



Algorithm 2 Recursive Projected CS with cluster-PCA
Parameters: algorithm parameters: ξ, ω, α, α̃, K, model
parameters: tj , r0, cj,new, ϑj and c̃j,i
Initialization: Let P̂(ttrain) ← P̂0. Let j ← 1, k ← 1. For
t > ttrain, do the following:

1) Estimate Tt and St via Projected CS:
a) Nullify most of Lt: compute Φ(t) ← I −

P̂(t−1)P̂
′
(t−1), yt ← Φ(t)Mt

b) Sparse Recovery: compute Ŝt,cs as the solution of
minx ‖x‖1 s.t. ‖yt − Φ(t)x‖2 ≤ ξ

c) Support Estimate: T̂t = {i : |(Ŝt,cs)i| > ω}
d) LS Estimate: (Ŝt)T̂t

= ((Φt)T̂t
)†yt, (Ŝt)T̂ c

t
= 0

2) Estimate Lt. L̂t = Mt − Ŝt.
3) Update P̂(t):

a) If t 6= tj + qα − 1 for any q = 1, 2, . . .K and
t 6= tj +Kα+ ϑjα̃− 1, set P̂(t) ← P̂(t−1)

b) Addition: Estimate span(Pj,new) iteratively us-
ing proj-PCA: If t = tj + kα− 1

i) P̂j,new,k ← proj-PCA([L̂t; Ij,k], P̂j−1, cj,new)
ii) set P̂(t) ← [P̂j−1 P̂j,new,k].

iii) If k = K, reset k ← 1; else increment k ←
k + 1.

c) Deletion: Estimate span(Pj) by cluster-PCA: If
t = tj +Kα+ ϑjα̃− 1,
i) For i = 1, 2, · · · , ϑj ,
Ĝj,i ← proj-PCA([L̂t; Ĩj,k], [Ĝj,1, Ĝj,2, . . . Ĝj,i−1], c̃j,i)
End for

ii) set P̂j ← [Ĝj,1, · · · , Ĝj,ϑj ] and set P̂(t) ← P̂j .
iii) increment j ← j + 1.

theorem and the Hoeffding corollaries, it can be shown that,
as long as f is small enough, doing this is guaranteed to give
an accurate estimate of span(Pj). However f being small is
not compatible with the slow subspace change assumption.
Notice from Sec II that λ− ≤ γnew and E[||Lt||22] ≤ rλ+.
Slow subspace change implies that γnew is small. Thus, λ−

is small. However, to allow Lt to have large magnitude, λ+

needs to be large. Thus, f = λ+/λ− cannot be small unless
we require that Lt has small magnitude for all times t.

In step 3c, we introduce a generalization of the above
strategy called cluster-PCA, that removes the bound on f ,
but instead only requires that the eigenvalues of Cov(Lt)
be sufficiently clustered as explained in Sec II-C. The main
idea is to recover one cluster of entries of Pj at a time.
In the kth iteration, we apply proj-PCA on [L̂t; Ĩj,k] with
P ← [Ĝj,1, Ĝj,2, . . . Ĝj,k−1]) to estimate span(Gj,k). The
first iteration uses P ← [.], i.e. it computes standard PCA
to estimate span(Gj,1). By modifying the idea of [10], we
can show that since g̃j,k and h̃j,k are small enough (by
Assumption 2.3), span(Gj,k) will be accurately recovered,
i.e. ‖(I −

∑k
i=1 Ĝj,iĜ

′
j,i)Gj,k‖2 ≤ c̃j,kζ. We do this ϑj

times and finally we set P̂j ← [Ĝj,1, Ĝj,2 . . . Ĝj,ϑj ] and

P̂(t) ← P̂j . All of this is done at t = t̃j + ϑjα̃ − 1. Thus,
at this time, SE(t) = ‖(I − P̂jP̂

′
j)Pj‖2 ≤

∑ϑj

k=1 ‖(I −∑k
i=1 Ĝj,iĜ

′
j,i)Gj,k‖2 ≤

∑ϑj

k=1 c̃j,kζ = rjζ ≤ rζ. Under the
assumption that tj+1 − tj ≥ Kα + ϑmaxα̃, this means that
before tj+1 SE(t) ≤ rζ.

IV. PERFORMANCE GUARANTEES

We state the main result here first and then discuss it in the
next section. For the proof outline and proof, see [25].

Theorem 4.1: Consider Algorithm 2. Let c := cmax and
r := rmax = r0 + c. Assume that Lt obeys Assumption 2.1.
Also, assume that ‖(I− P̂0P̂

′
0)P0‖ ≤ r0ζ, for a ζ that satisfies

ζ ≤ min(
10−4

(r + c)2
,

1.5× 10−4

(r + c)2f
,

1

(r + c)3γ2∗
) where f :=

λ+

λ−

Let ξ0(ζ), ρ, αadd(ζ), αdel(ζ), gj,k be as defined in Definition
5.2 of [25]. and let K(ζ) :=

⌈
log(0.6cζ)
log 0.6

⌉
. If

1) (algorithm parameters) ξ = ξ0(ζ), 7ρξ ≤ ω ≤ Smin −
7ρξ, K = K(ζ), α ≥ αadd(ζ), α̃ ≥ αdel(ζ),

2) (denseness)

max
j
κ2s(Pj−1) ≤ 0.3, max

j
κ2s(Pj,new) ≤ 0.15,

max
j

max
0≤k≤K

κ2s(Dj,new,k) ≤ 0.15,

max
j

max
0≤k≤K

κ2s((I − Pj,newPj,new
′)P̂j,new,k) ≤ 0.15,

max
j
κs(Rj) ≤ κ+s,e

where Rj := (I − P̂j−1P̂ ′j−1− P̂j,new,K P̂
′
j,new,K)Pj and

Dj,new,k := (I − P̂j−1P̂ ′j−1 − P̂j,new,kP̂
′
j,new,k)Pj,new,

3) (slow subspace change)

min
j

(tj+1 − tj) > Kα+ ϑmaxα̃,

max
j

max
t∈Ij,k

‖at,new‖∞ ≤ min(1.2k−1γnew, γ∗),

14ρξ0(ζ) ≤ Smin,

4) (small condition number of new directions) gj,k ≤
√

2
5) (clustered eigenvalues) Assumption 2.3 holds with

g̃max, h̃max small enough and c̃min large enough s.t.
F (g̃max, h̃max, c̃min) > 0 where F (.) is defined in [25,
Theorem 4.1],

then, with probability at least 1− 2n−10, at all times, t,
1) T̂t = Tt and ‖et‖2 = ‖Lt − L̂t‖2 = ‖Ŝt − St‖2 ≤

0.18
√
cγnew + 1.24

√
ζ.

2) the subspace error, SE(t) := ‖(I − P̂(t)P̂
′
(t))P(t)‖2 ≤

0.6k−1 + rζ + 0.4cζ if t ∈ [tj , t̃j − 1]
(r + c)ζ if t ∈ [t̃j , t̃j + ϑjα̃− 1]
rζ if t ∈ [t̃j + ϑjα̃, tj+1 − 1]

≤
{

0.6k−1 + 10−2
√
ζ if t ∈ [tj , t̃j − 1]

10−2
√
ζ if t ∈ [t̃j , tj+1 − 1]

3) et follows a trend similar to that of SE(t) at various
times (the bounds are available in [25, Theorem 4.1].

In words, the above result says the following. Assume
that the initial subspace error is small enough. If (a) the



algorithm parameters are set appropriately; (b) the matrices
whose columns span the previous subspace, the newly added
subspace, and the currently unestimated parts of the previous
and newly added subspaces are dense enough; (c) the subspace
change is slow enough; (d) the condition number of the
average covariance matrix of at,new is small enough, and (e)
the eigenvalues of Cov(Lt) are clustered enough, then, w.h.p.,
we will get exact support recovery at all times. Moreover, the
sparse recovery error (and the error in recovering Lt) will
always be bounded by 0.18

√
cγnew plus a constant times

√
ζ.

Since ζ is very small, and γnew � Smin, and c is also small,
the normalized reconstruction error for St will be small at all
times, thus making this a meaningful result.

V. DISCUSSION

From Definition 5.2 of [25],

αadd(ζ) := d(log 6KJ + 11 log n)
8 · 242

(ζλ−)2
be

where b = max(min(1.24Kγ4new, γ
4
∗),

16
c2 , 4(0.186γ2new +

0.0034γnew + 2.3)2) and αdel(ζ) has a similar form.
Let us compare the above result with that for ReProCS for

the current signal model [10, Corollary 43]. First, ReProCS
requires κ2s([P0, P1,new, . . . PJ,new]) ≤ 0.3 whereas ReProCS-
cPCA only requires maxj κ2s(Pj) ≤ 0.3 which is signifi-
cantly weaker. Moreover, ReProCS requires ζ to satisfy ζ ≤
min( 10−4

(r0+(J−1)c)2 ,
1.5×10−4

(r0+(J−1)c)2f ,
1

(r0+(J−1)c)3γ2
∗
) whereas in

case of ReProCS-cPCA the denominators in the bound on ζ
only contain r + c = r0 + 2c (instead of r0 + (J − 1)c).
Because of the above, in Theorem 4.1 for ReProCS-cPCA,
the only place where J (the number of subspace change
times) appears is in the definitions of αadd and αdel. These,
in turn, govern the delay between subspace change times,
tj+1− tj . Thus, with ReProCS-cPCA, J can keep increasing,
as long as αadd and αdel, and hence tj+1 − tj , also increase
accordingly. Moreover, the dependence of αadd and αdel on J
is only logarithmic and thus tj+1 − tj needs to only increase
in proportion to log J . On the other hand, for ReProCS, J
appears in the denseness assumption, in the bound on ζ and
in the definition of αadd. Because of this, ReProCS requires
a tight bound on J irrespective of how large tj+1 − tj is.
The main extra assumption that ReProCS-cPCA needs is the
clustering assumption. As explained in [25], this is practically
valid.

A quantitative comparison with the PCP result of [1] is not
possible since the proof techniques used are very different;
we solve a recursive version of the problem whereas PCP
solves a batch one; and the conclusions are different too.
PCP provides guarantees for exact recovery of St’s and Lt’s.
We obtain guarantees for exact support recovery of the St’s
and only bounded error recovery of their nonzero values and
of Lt’s. Also, ReProCS-cPCA requires knowledge of model
parameters for subspace change of Lt, but PCP does not. Of
course, in [25], we explain how to set the ReProCS-cPCA
parameters in practice when the model is not known.

We can compare the two results qualitatively. The PCP
result assumes independence of the support sets of St’s but

assumes nothing about Lt’s whereas our result assumes a
model on subspace change of the Lt’s but nothing about the
St’s. Denseness assumptions are required by both, with those
for PCP being stronger. These are compared in [25].

Simulation comparisons with PCP are given in [25].
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