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ABSTRACT basis dimensionk’, which is a piecewise constant parameter. Ap-

) o ) ) ~ plication to contour tracking and conclusions are given in Section
We study particle filtering algorithms for tracking on infinite (in g
practice, Iarge) dimensional state spaces. Particle fi_lterin_g (_Mor_1te The problem of tracking on large dim state spaces occurs in
parlo sampl[ng) from a Iarge dlmens!onal system noise dlStI:IbutIOhmany domains. It has been studied by many authors in the con-
is computationally expensive. BUt'“'n most large dim trackln? @Ptext of tracking outer contours of deforming objects from image se-
plications, it is fair to assume that “most of the state change” oc- qyences [6, 7, 4, 8]. Another large dim tracking problem is estimat-
curs in a small dimensional basis and the basis itself may be slowly,q the spectro-temporal receptive fields which are time-frequency
time varying (approximated as piecewise constant). We have prgsiots (short time Fourier transform at a set of time instants) that char-
posed a PF algorithm with basis change detection and re-estimatiocterize the time varying input-output transfer function of auditory
steps that uses this idea. The implicit assumptions in defining thigerons. An example STRF sizelis x 13 = 195, even though
algorithm are very strong. We study here the implications of weakefiomain knowledge tells us that only a small part of it undergoes sig-
assumptions and how to handle them. We propose to use a SimPgicant changes for a given time period. A third possible application
modification of the asymptotically stable Adaptive Particle Filter to jg tracking optical flow. Optical flow [9], denoted(z, y), v(z, y),

handle errors in estimating the basis dimension. for animage attime, I, (z, ) gives the motion of every point, y in
one frame interval, i.e. itis defined By, (z+u, y+v) = L(z,y).
1. INTRODUCTION Thus,Cy(z,y) = u(z,y),v(z,y) has a dimension which is twice

the size of the image, even though motion is highly correlated.

This paper is part-2 of a two part paper [1]. We propose particle ~ Note that the algorithms given in this work, are also applicable
filtering (PF) [2, 3] algorithms for tracking on infinite (in practice, 0 Problems of time varying but finite dimensional state tracking. PF
large) dimensional state spaces. Tracking is defined as the proff time varying state dimensions has been studied by many authors.
lem of causally estimating a hidden state sequefida,} (that is [10, 11] study algorithms for filtering clean speech from an observed
Markovian), from a sequence of observatiofis; } that satisfy the =~ NOiSy speech signal which is modeled using an oddeAR model
HMM assumption §; — Y; is a Markov chain at eact). The whose coefficients as well as order are slowly time varying. In [10] a
w time varying partial correlation model is proposed which mod-

state space may not be a vector space, we assume it to be a sé‘?— X . S h : -
arable metric space (Polish space). Particle filtering (PF) on largg s size blocks of any time series, its partial correlation coefficient

dimensional state spaces is expensive. But in most large dim trackector (PARCOR) and the order (length of PARCOR) as the state
ing applications, it is fair to assume that at any timémost of the ~ VECtor. It assumes the PARCOR vector is slow time varying and
state change” occurs in a small dimensional “effective basis”, andience estimates it sparsely (every few time instants) and interpolates
the basis dimension is either constant or slowly time varying (apthese samples to get the PARCOR vector at gahis idea is sim-
proximated as piecewise constant). In [1, 4], we have proposed 4lar to our propqsed interpolation of the velocity vector (se_e Section
efficient algorithm for the constark -dim effective basis case. It 2)- Many techniques based on MCMC [12, 11] or Reversible Jump
assumes that conditioned 86 . € RX and onX,_,, the posterior MCMCJ13] or treating model order as a discrete Markov chain [10]

of X, is unimodal. In [4], the algorithm was used to track deform- have been proposed for model order selection in PF algorithms. Our

ing object contours from image sequences (observation). We uséddorithm can also be used for tracking the shape of a time-varying

a 6-dim space of affine deformations as the effective basis for columber.k, of landmarks (objects)[14].

tour deformation. But in certain other applications, such as in med-

ical imaging, this assumption may not hold, and there may be two 2. STATE SPACE MODEL

(or more) contours of interest at roughly the same “affine location”

(have same affine parameters). In other domains, there may not evée use the subscrigtto denote the discrete time instants.de-

be a natural constant basis approximation that can be used. notes probability density functions (pdfs). We briefly describe the
To handle such applications, we consider a generalization of thetate space model detailed in [1]. Consider a state space model with

above assumption that allows the basis dimensionXor to be  stateX; = [Cy, v:] wherev, denotes the time “derivative” of;.

slowly time varying. The state space model is repeated in SectioAssume that’; = C.(p) wherep belongs to a compact subset of

2. In Section 3, we propose a modified PF algorithm that include®". Assume thaC; belongs to a Polish space (a complete sep-

a basis change detection and re-estimation step. Its application svable metric space)v, now denotes the time “derivative” af’,

contour tracking is shown in Figure 1. We analyze the implicit as-(defined in the corresponding tangent spac€'atdenotedZ Sc, ).

sumptions in defining this algorithm. In Section 4, we discuss howThuswv; belongs to a vector space. In implementing any algorithm

they can be relaxed and propose an easy-to-implement modificatidar infinite dim state spaces, the number of points at whihis

of the Adaptive Particle Filter [5] to handle errors in estimating thedefined is always large but finite (and can change at et)eryor



example, if the parameter € [0, 1], C; is defined atM; points

p = 0,1/M,,...1 attimet. Hence in the rest of this paper, we as-
sume thatS is a large but finite dim space with dimensidd; at
timet. We splitv; asv: = [vt,s,vs,,], Wherev, s € R¥ denotes
the coefficients along thE basis directions representing thedim
subspacedq;), in which “most of the state change” is assumed to

everyt and a basis dimension estimation step whenever a change is
detected. The new algorithm is summarized in Algorithm 1. Basis
dimension change detection and new dimension estimation has be
application dependent, e.g. [15]. It has been discussed in [1].

Algorithm 1 Particle Filter with Time Varying Basis

ce

occur, andv; - denotes the state change in the rest of the state space

(Sr) which is assumed “small”. The basis directions &rare de-
noted byB,(p) = [b1(p), ..-bx (p)] and the basis faf, are denoted

by B.(p). We assume the following general form of the discrete
time state dynamics (with time discretization interval denotet))as
Ci(p) = Ci(p) + 9(Ct, Br(p)vs,r) @
Ci(p) = Cim1(p) +79(Ci1, Bo(p)vr.s), Bs £ B(Ci1) (2)
Vs = fe(T,0e—1,5) + Vt,sy Vt,s ~ Duyt,s(.) (©)]
Vt,r = Vi, Vir Npu,t,r(-) (4)

g defines the mapping froff' S¢,_, (tangent space af’;_1) to
S. The dimension ofSs, K, can be fixed or slowly time varying

(modeled as piecewise constant). We have assumed a first order

Markov model onv;,s while v;» = vyt,r ~ pui,-(.) is indepen-
dent overt, and so can be excluded from the state spathus,

in this paper we assume the state to ¥e = [Cy, v:,s]. The pdf
Dou,t,r(.) IS unimodal.Assume an observation model where the ob
servations)Y; depend only orC;, i.e. the observation likelihood,
p(Yi|X:) = p(Yi|C:) and whereC; — Y, is a Markov chain for
eacht. The observation likelihoody(Y:|C:), obtained from above
model can, in general, be multimodal.

Example: Consider object contour tracking from image sequences

[15]: Ci(p), p € [0,1] denotes a parametrization of a 2D closed
contour, B(Ci—1)(p) = [bi(p),..bx(p)] denotes thek B-spline
basis functions defined on the contaty_, v s denotes the veloc-
ity of the K control points of the B-splineg(C, Bv) = Bv N(C)
where N(C') denotes the normal t¢’. We use a linear Gauss-
Markov model forv, s, i.e. f:(v) = Av, pu,.,s iS @ zero mean Gaus-
sian. Also,Y; is the image at andp(Y;|C;) ox e~ Fev (Y1:C0) where

E., denotes the Chan-Vese energy[4]. We show results for contour

tracking using Algorithm 1 in Figure 1.

3. PARTICLE FILTER WITH TIME VARYING BASIS
The basic idea of PF with time-varying basis was introduced in [1].

Fact 1 SinceS is a Polish spacey ¢ > 0, anyC; € S can be
approximated by &'y = Cy—1+9(Ci—1, Bkvs), s.t.d(Cy,Cy) < €
by choosingk’ = K (e, Ct, C:—1) large enough and choosing =
US(K7 Ct, thl) S RK.

Let us replace distance by average distance i.e. we look fo#one
and onev, (depending orC:_1) that works for allC; on average.

Also, we consider a piecewise constant effective basis dimension,

i.e. the samé{ works for allCy;_; € S and for allt € [T1, T3], i.e.

1. Att =0, fori = 1to N, setC{” = Co, samplev§) ~

N (v0,5;0, o). Setx{” = (¢, v{")]

2. At any ¢  assume that p(Xi—1|Y1.¢-1)
SN (1/N)§(X,-1 — X7, ) is available.

. Importance Sampling: Fori = 1to N,

(a) Samplev”) ~ py...s(.). Computev!”) using (3) and
¢ using (2).

(b) Computemﬁ“ = arg maxc,es p(Ye|Co)p(Ce|Cr—1,ve,s)
as explained in Section 3 of [1].

(c) Setc” ()

= mt y
setx(? = (¢

sinceX = 0 for large dim spaces [1].
(4)
Vg5

» Yt,s

4. Weighting : Fori =1to N,
- () ) p(vilofpef1olD b))
(a) Setw,” = w,~, /:f(mg”;tmi“,tz)l 2 Note de-
nominator is a constant (can be removed).
@ o)
Zj'vzl Wy
Now p(X:|Y1.e) & 2N (w!™)s( X, — X V), whered is the
Dirac delta function
5. Detect Basis ChangeDetect if basis change required. Ifyes,
then go to step 6, else go to step 7.
6. Change Basis:Compute the new basis dimensifii,c.,. For
i=1toN,
(a) Compute the new basiB,.c...; = Bix,..,(C"”) and
old basisB; ; = Bk (C").
(b) Projectvt(fz into new basis as:
UE? — (B;l;ew,iBnew’i)ilqugew,iBtyivt(,i.z'
(C) Seth — Knew, Bt,i — Bnew,i-
7. Resampling: Foralli =1to N:
(a) Sample the index (i) ~ {i, w” }¥,
(b) setx ! —— x5 1w — 1/N.
Now p(X¢| Vi) = YN (1/N)§(X, — X{V).
8. Sett «+——t+1,gotostep 3

Assumption 1 Given aA* and a time intervalT1,7:], 3 K =
K(A*,[T1,T3]) s.t. for everyCi—1 € S andVvt € [11,T3], 3
Vt,s = Ut’S(K, thl) SO thatAt E[d(Ct,Ct)|C’t,1,vt,s} S A*.

Implicit Assumptions: Algorithm 1 implicitly assumes the fol-
lowing: First, it assumes that there is no error in estimating the new
basis dimension. This is a very strong assumption. Another very

In addition, we also need the assumptions discussed in [1] that estrong assumption is that there is zero delay in detecting the basis

sure thaip(C|Ci—1, ve,s, Yi), with v belonging to the currenk’
dim basis, is “effectively” unimodal (it has only one mode with sig-

change and also that there is no error in projectiffg in the new
basis. Also, if at a basis change tinig,, the basis dimension is

nificantly nonzero pdf value). Based on these assumptions, we modeduced, it means that a certain part of the state space remains con-
ified Algorithm 1 in [1] to include a basis change detection step astant duringT, 7%]. For example if the dimension reduces frdth



Adaptive PF for K: Consider a weaker version of Assumption 2:

}g ‘é ﬁ Assumption 5 Assume

1. The error in estimating the change in the new basis dimension
. | o g < = from the previous dimension is bounded, A < oo s.t.

- = — S—_— —

‘Knew - Kold' < A.

2. The Adaptive PF forX' converges in finite time, denoted by
Fig. 1. Algorithm 1 for tracking through an occluding street light Teonv, t0 ONe or (in case of multiple targets) a finite number
of possible true values.

(ai Left part (b) FuI-I_ (_starting5 W(c) Full

3. The time interval between two basis change times, i.e. the

to K — 1, it means that posterior value of one component,qf (de- durationTs — Ty + 1, is larger thanTuoms.

noted(v:,s) k) is approximately zero with zero variance or it means
that (v s) x is deterministically known conditioned on some other 4. For any value ofK, the PF for the rest of the state space is
component ofv; s andYy.:. Both of these imply that the region uniformly convergent.

of C; which is affected by(v;,s)x (denote this region by'; (K))

remains constant durind’, 73], except for small deterministic de- e treatk as a piecewise static parameter and run a simple modifi-
formation introduced by mode finding. Summarizing, Algorithm 1 cation of the Adaptive PF for it (summarized in Algorithm 2). Given:
can be shown to converge, if in addition to the mixing assumptiongt 3 pasis change time, = 71, only M = 2 modes of K have

for the the state space model [16], the following hold: survived (corresponding to two observable targets), each Mith
Assumption 2 Assume that there is zero error in estimating the new/”? = 1, 2 particles (Vi + N2 = N). (i) For each mode, estimate the
basis dimension. P new values of{ (fore.g. K = Koia—1, Kota, Koig+1, P = 3).

(ii) “Split each PF intoP parts”, i.e. resampléj, wtm‘]}f;i N /P
Assumption 3 There is zero delay in detecting the need for basistimes (instead of the usua,,, times) and allocate new particles ac-

change and there is zero error in projectinf) in the new basis. cordingly. Thus, starting at= T, we runM’ = M « P PFs, each
with N/, = Nrm,p1/P particles. (iii) For each PF, run the impor-

Assumption 4 Att = Ty, if the basis dimension reduces frafh  tance sampling and weighting steps, evalygte and the posterior
to K — 1, then the posterior ofv:,s)x conditioned on the rest of weight of them " PF,1¥ ™, and then resample within each PF.
the components of;s, i.e. p((vi,s)x|Yi:t, (vt,s)1:6-1) has ei- If (t—T1) mod T-ons = 0 (APF convergence time), “eliminate
ther converged to a Dirac delta function at zed((v:,s)x) Or o zero modes” and “re-allocat® to non-zero modes”. “Zero modes”
6((ve,s) K = faet((ve,s)1:-1, Y1:1)) Where fae; is some determin- il be indicesm whose posterior weight’, ™ is negligibly small.
istic fu_nctlon of its arguments. Also, either of these imply that they this as follows: Sampl@/ times from{m, Wt(m)}%:l and set
posterior of the region o, af'f_ected by(vtzs)K (dgnotedCt(K)) . N,,=number of times index: gets sampled. Thus for all the “zero
has converged to a delta function too, i.e. it remains constant during,, ) yes” N will be zero. Now “re-allocateV to non-zero modes”
[Ty, T2]. i.e. allocateN;, particles to then'” PF: resampleV,, times from
{j, w7} (instead of the usuaV,, times) and allocate new par-
4. HANDLING WEAKER ASSUMPTIONS ticles accordingly. We give the stepwise algorithm in Algorithm 2.

Assume that assumption 2 does not hold ahd., is arandomvari-  Delay in Detecting Basis Change: Now Assumption 3 that there
able with a prior distribution (that depends é1,;4) att = Ti. If  js no delay in detecting basis change is also unrealistic. A more
one simply treateds’ as part of the state space, then the PF resampractical assumption is: There is a bounded delay in detecting the
pling step will introduce the usual problems of resampling for statichew basis change and there can be error in re-estimating the new
parameters (loss of a good particle due to resampling, new partickgelocity. Under this assumption, one cannot show convergence of
cannot be generated because no randomness) [5]. To avoid thes@ particle filter, since there is a finite duration of system model er-
problems, we use a modification of the adaptive PF [5]{or ror, whose effect can only go to zero asymptotically with time (if
Adaptive PF: In [5], the author defines ai/ particle Adaptive  at all). But one can modify the stability results of [14] (which are
Particle Filter (APF) (the standard particle filter without the resam-based on the results of [16]) to show stability (asymptotic stability
pling step) for the unknown static parameter. For each particle of th@nder strong assumptions) of the total filtering error (system model
unknown static parameter, they run a regular PF for the rest of therror plus particle filtering error), i.e. the total error at amgmains
state space. Since there is no resampling between different static pggounded by a function of the initial error.

rameter particle sets, the weight,*, of a static parameter particle

depends on severaf((M), whereq()M) is an increasing function  Non-Uniform Sampling:  Until now, we have used uniform sam-

of M) past observations, i.dV," = [[;_, ()41 Z;.V:/{” w, " pling of an element of the tangent space4f to generate & dim

The two main assumptions required are: (?) the static parameter baubspace. For example, for contour tracking, at the start of any ba-
longs to a compact set (its prior distribution has compact supportis change time, we allocaf€ B-spline knot locations, uniformly
and (ii) conditioned on the value of the parameter, the regular PF foon the contour and define velocity at tAé control points (in be-

the rest of the state space is uniformly convergent. Under these maiween these knots) as tf#€ dim subspace. These may become non-
assumptions, it has been proved [5] thatftarge enough, the pos- uniformly spaced as the contour defornis.is reduced when a set
terior for the static parameter converges to a delta function at its truef knots come very close to each other. In this case, Assumption 4
value (or at a set of true values). Consequently, the estimated pof«:,s)x converges to a deterministic function @f;,s)1.x—1 when
terior of the rest of the state space also converges to the true posteribasis dimension reduces) holds.



Algorithm 2 Adaptive PF forK, with fixed particle budgelvV
t = Ti, M PFs, each withV,,, particles,>"»_, N,, = N.
1. Basis Change:Form = 1to M do

(a) Detect need for basis change faf" PF
(b) If needed, evaluat® possibleK,,.., values

(c) “Split” m"" PF into P parts, i.e.: Foj = 1t0o N,,/P
do, Samplel(j) ~ {j,w;’}} and setz,™’ «—
7719 plso, W /P

(d) New value ofM is M’ = M « P and N, = ~m/PL

2. Regular PF with Wt(m) Calc: Form = 1to M do,

(a) Perform importance sampling and weighting (steps 3

and 4 of Algorithm 1) for allV,,, particles.
E;V:"i ,wzn-,j’ Wt(m)
- Wwom
anth( ) = ﬁ
k=1 Wi
(step 7 of Al-

(b) Compute py’,
) Pyt
Pyre—q(nr)

(c) ResampleV,, times from{j, w7/ }2\m

Jj=1
gorithm 1)

M
Now p(X,[Via) = Y W™
m=1
3.t —t+ 1. If (t —T1) mod Teonv # 0, go to Step 2, else
eliminate “zero modes”:

Nem _
Zmefs(Xt - Z")
j=1

(a) Sample M times from {m, W,fm)}ﬁ‘,f:l and set
N,,=number of times indexn gets sampled. For all
“zero modes”,N,, will be zero. Thus new value off
is M'=number of non-zero modes.

“Re-allocate N to non-zero modes™:
Form = 1to M’ do, _
Forj = 1to N}, do, Samplel(j) ~ {j, w7}

Jj=1
and assigrz)™? «—— z710).,

(c) Goto step 1.

(b)

cally implementable. We studied the implicit assumptions in defin-
ing this algorithm and how to relax them. We handle errors in the
basis dimensionK, by treating it as a piecewise static parameter
and using the Adaptive PF (APF) [5] fdt during each time inter-
val. We have modified the original APF algorithm by resampling it
everyT.on, time instants. By letting the duration between two basis
change times be larger th@n,..,, we ensure that we resample at
least once between two basis change times. This prevents the num-
ber of particles or the number of APF modes from blowing up. The
above algorithm was originally motivated by the problem of contour
tracking (explained in Section 2). We show an example of contour
tracking using Algorithm 1 in Figure 1.
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But to make the algorithm more efficient, one could assume a

non-uniform sampling, for e.g. use prior information to allocate
knots only in regions where deformation is known to occur. This

will introduce more static parameters (to decide where to sample the

state vector) into the system model. Also, with this sampling, As{12]

sumption 4 may not hold. In principle, both these situations can be
handled by using an Adaptive PF for the sampling locations and for
Ci(K). Cy(K) is also like a piecewise static parameter with prior [13] A. Doucet, N. Gordon, and V. Krishnamurthy, “Particle filters

given by its posterior at the beginning of the interval. We will ad-
dress this as part of future work.

5. CONCLUSIONS AND APPLICATIONS

This paper is part-2 of [1]. We have presented algorithms for track{15]
ing on infinite (or large) dimensional state spaces, whose effectiv
basis dimension is assumed to be piecewise constant with time a

(14]

small. The above assumption allowed us to define a particle filter
with a small dimensional effective basis at any time. It required
Monte Carlo sampling from only this small dim space and is practi-

(11]

6]

6. REFERENCES

N.Vaswani, A.Yezzi, Y.Rathi, and A.Tannenbaum, “Particle
filters for infinite (or large) dimensional state spaces-part 1,” in
IEEE ICASSP2006.

N.J. Gordon, D.J. Salmond, and A.F.M. Smith, “Novel
approach to nonlinear/nongaussian bayesian state estima-
tion,” IEE Proceedings-F (Radar and Signal Processjmy.
140(2):107-113, 1993.

S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A
tutorial on particle filters for on-line non-linear/non-gaussian
bayesian tracking,JEEE Transactions on Signal Processjng
vol. 50, no. 2, pp. 174-188, Feb. 2002.

Y. Rathi, N. Vaswani, A. Tannenbaum, and A. Yezzi, “Par-
ticle filtering for geometric active contours and application to
tracking deforming objects,” ifEEE CVPR 2005.

A. Papvasiliou, “A uniformly convergent adaptive particle fil-
ter,” Journal of Applied Probability (to appear)

R.W. Brockett and A. Blake, “Estimating the shape of a mov-
ing contour,” iNlIEEE CDG 1994.

J. Jackson, A. Yezzi, and S. Soatto, “Tracking deformable
moving objects under severe occlusions,lEEE CDC 2004.

M. Niethammer and A. Tannenbaum, “Dynamic level sets for
visual tracking,” inlEEE CDGC 2004.

A.M.Tekalp, Digital Video ProcessingPrentice Hall, 1995.

W. Fong and S. Godsill, “Sequential monte carlo simulation
of dynamical models with slowly varying parameters: Appli-
cation to audio,” iNEEE ICASSP2002.

A. Doucet, N. deFreitas, and Eds Gordon, NSequential
Monte Carlo Methods in PracticeSpringer, 2001.

C. Andrieu, J. de Freitas, and A. Doucet, “Sequential mcmc
for bayesian model selection,” IEEE Higher Order Statistics
Workshop, Ceasarea, Isradl999.

for state estimation of jump markov linear systemdEEE
Trans. Signal Processingp. 613—624, 2001.

N. Vaswani, “Change detection in partially observed nonlin-
ear dynamic systems with unknown change parameters,” in
American Control Conference (ACCG)004.

“Blind conference submission,” .

F. LeGland and N. Oudjane, “Stability and Uniform Approxi-
mation of Nonlinear Filters using the Hilbert Metric, and Ap-
plication to Particle Filters,” Technical report, RR-4215, IN-
RIA, 2002.



