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ABSTRACT that we address igan we do better than performing CS at each time

separately, if (a) the sparsity pattern (support set) of the transform
oefficients’ vector changes slowly, i.e. every time, none or only a
ew elements of the support change, and (b) a prior model on the

We consider the problem of reconstructing time sequences of sp
tially sparsesignals (with unknown and time-varying sparsity pat- ¢
terns) from dimited numberof linearincoherent” measurements, temporal dynamics of its current non-zero elements is available

in real-time The signals are sparse in some transform domain re- Our solution is motivated by reformulating the above problem

f_erre_d to as the sparsity basis. For a_single spatial signa_l, the so“é's causal minimum mean squared error (MMSE) estimation with a
tion is prc_)wded by Compressed Sensing (CS). The question that wg,, , time-varying set of dominant basis directions (or equivalently
address is, for a sequence of sparse signals, can we do better t

CS, if () the sparsity pattern_of the signal’'s tr_ansform_ coefficients 3%';lépsglﬁtgnt?se;@nnsgﬁhZe}fé?rgénlfﬁ:[: (Sl‘éﬁf ?gr]t ;cs)rliﬂ?)swsnljpt_he
vector changes S'OV.V'V over time, and (b) a simple prior modgl Ofhort. But what happens if the support is unknown and time-varying?
the temporal_ dynamics of its (_:urr(_ant non-zero elements is availabl he initial support can be estimated using CS [7]. If at a given time,
The overall |de_a_ Qf our so’lut|on Is to use CS to estlmat_e the su there is an addition to the support set, but we run the KF for the old
port set of the initial signal’s transform vector. At future times, run model, there will be a model mismatch and the innovation (and fil-
a reduced order Kalman filter with the currently estimated suppor. ering)’error will increase. Whenever it doéise change in support
andestimate new additiqns_to the support set by gpﬂplyingﬂCS 10 €an be estimated by running CS on the innovation or the filtering
Kalman innovations or fllter_lng error (whenever itis large) ) error, followed by thresholding. A Kalman update step is run using
. Index Terms/Keywo.rds. comprgssed sensing, Kglman filter- the new support set. If some coefficients become and remain nearly
ing, compressive sampling, sequential MMSE estimation zero (or nearly constant), they can be removed from the support set.
1. INTRODUCTION If, for a moment, we assume that CS [7] gives the correc_t es_ti-
mate of the support at all times, then the above approach will give
We consider the problem of reconstructing time sequences of spaae MMSE estimate of the signal at all times. The reason it is very
tially sparsesignals (with unknown and time-varying sparsity pat- likely that CS [7] gives the correct estimate is because we use it to
terns) from dimited numberof linear “incoherent” measurements, fit a very sparse “model change” signal to the filtering error. Also
in real-time The signals are sparse in some transform domain renote that a full Kalman filter [9], that does not use the fact that the
ferred to as the “sparsity basis” [1]. A common example of such &ignal is sparse, is meaningless here, because the number ofeabserv
problem is dynamic MRI or CT to image deforming human organstions available is smaller than the signal dimension, and thus many
or to image brain neural activation patterns (in response to stimuli®lements of the signal transform will be unobservable. Unless all
using fMRI. The ability to perform real-time MRI capture and recon- unobservable modes are stable, the error will blow up. Other re-
struction can make interventional MR practical [2]. Human organcent work that also attempts to use prior knowledge with CS, but to
images are usually piecewise smooth and thus the wavelet transforiconstruct only a single signal is [10, 11, 12].
is a valid sparsity basis [1, 3]. Due to strong temporal dependencies,
the sparsity pattern usually chang#swly over time. MRI captures 2. THE MODEL AND PROBLEM FORMULATION
a small (sub-Nyquist) number of Fourier transform coefficients of| g (2t)mx1 denote the spatial signal of interest at tiheand
the image, which are known to be “incoherent” With respect to the(yt)nxh with n < m, denote its observation vectortatThe signal,
wavelet transform [1, 3]. Other example problems include sequen:, ‘is sparse in a given sparsity basis (e.g. wavelet) with orthonor-
tially estimating optical flow of a single deforming object (sparse inya| pasis Matrix®, xm, i.6. z¢ 2 @'z is a sparse vector (only
Fourier domain) from a set of randomly spaced optical flow measures, - 1, elements oft; are non-zero). Heredenotes transpose.
ments (e.g. those at high intensity variation points [4]), or real-timerpe opservations are “incoherent” w.r.t. the sparsity basis of the
video reconstruction using the single-pixel camera [5]. signal, i.e. yy = Hz +w, = H®Pxy + wy, Where Hy,wp, IS
The solution to the static version of the above problem is proch that the correlation between the columngic: H® is small
vided by Compressed Sensing (CS) [1, 6, 7]. The noise-free-0bsegnough to ensure that, for asy< S;, any S-column sub-matrix of
vations case [1] is exact, with high probability (w.h.p.), while the 4 js “approximately orthonormal” (its nonzero singular values are
noisy case [7] has a small error w.h.p.. But existing solutions folpetween,/T— 6 to /T + 0 for § < 1) [7]. wy is i.i.d. Gaussian

the dynamic problem [5, 8] treat the entire time sequence as a Sifyeasurement noise. Thus the measurement model is:
gle spatiotemporal signal and perform CS to reconstruct it. This is a

batch solution (need to wait to get the entire observation sequence) g = Az +we, AL HD, w, ~ N(0,021) (1)
and has very high complexity. An alternative would be to apply CS ) . )
at each time separately, which is online and low-complexity, but willWe refer toz; as the state at Our goal is to get the “best” causal

require many more measurements to achieve low error. The questigstimate oft, (or equivalently of the signak; = ®z) at each.
Let T; denote the the support set of, i.e. the set of its non-

This research was partially supported by NSF grant ECCS842 zero coordinates and l&f; = size(7:). In other words,7; =




[i1,42,...is,] Wherei, are the non-zero coordinatesaf. Forany 3. KALMAN FILTERED COMPRESSED SENSING (KF-CS)
setT, let (v)r denote thesize(T') length sub-vector containing the
elements ob corresponding to the indices in the §&tFor another
set,y, we also use the notatidfi, which treatsI” as a vector and
selects the elements @f corresponding to the indices in the set
For a matrixA, Ay denotes the sub-matrix obtained by extracting
the columns ofA corresponding to the indices . We use the no-
tation (Q)r, 1, to denote the sub-matrix @ containing rows and
columns corresponding to the entrieslinandT; respectively. The
set operationsJ, N, and\ have the usual meanings (ndke \ 7>
denotes elements @ not inT:). We us€ to denote transposé.*
denotes the complement @fw.r.t. [1 : m],i.e. T° 2 [1 : m] \ 7.
Also ||v|, is thel, norm of the vectop, i.e. ||v]|, £ (32, [vi|?)/P. e = Te—1

We explain Kalman Filtered Compressed Sensing (KF-CS) below.

We misuse notation to also denote the estimated nonzero ggt by
Running the KFAssume, for now, that the support set at 1,

Ti, is known. Consider the situation where the first change in the

support occurs at & = t,, i.e. fort < t,, T: = Ti, and that

the change is an addition to the support. This means that for

tq, We need to just run a regular KF, which assumes the following

reduced order measurement and system models: Ar(x¢)r +

we, (x¢)r = (x—1)7 + (v¢)7, With T = T3. The KF prediction

and update steps for this model are [9): = 0, Py, = 0,

Assumption 1. We assume slow changes in sparsity patterns, P — (P 2 4
i.e. the maximum size of the change in the support set at any time (Poe—1)zir = (Pemt) 1.7 + 0sys “)
is smaller (usually much smaller) th&h at anyt, i.e. Sqiff,max e N )1 a , 9
max[size(Ty \ Ty—1) + size(Ti—1 \ Tt)] < min, S;. Kir = (Pre—1)1,rArY50 5 Siet = Ar(Prje—1)r,0 A + 0o0psl
Assumption 2. We also assume that satisfiesdss,,,, + (&)1 = (Bye—1)1 + Ker[ye — AZyjp—1)

5;5[%” 3,5‘1 Wh(ireés is;heltRlﬁ c%nztant de{i:e? in e(?u?rt]ion 1.3 (#)re = F4pp—1)7e = (F1—1)10

0 and Sy,q.» = max; S. It should be possible to apply the pro- .

posed algorithm even under a slightly weaker assumption that onlglpt)T’T =l = Ker Ar)(Pye-a)rr )

requiresdss,, ., < 1 (required to ensure any,,.. or less column Detecting If Addition to Support Set OccurredThe Kalman

sub-matrix ofA is full rank and hence the state is observable) andnnovation error igj; = y, — AZypq. FOrt < to, e = [A(ze —

02841t f.maw T 9354if pmax < 1. This is part of ongoing work. Eypeo1) + wie] ~ N(0,84e,t) [9]. At t = tq, @ new setA, gets
System Model far;. For the currently non-zero coefficients of added to the support af;, i.e. y¢ = Ar(z)r + Aa(ze)a + we,

¢, We assume a spatially i.i.d. Gaussian random walk model, witlwhere the sef\ is unknown. Since the old model is used for the KF

noise varianceﬁys. At the first time instant at whichz,); becomes  prediction,at = ¢, : will have non-zero meama (z+)a, i.e.

non-zero, it is assumed to be generated from a zero mean Gaussian

with variances?,;,. Thus, we have the modety = 0,

()i = (@e—1)i + ()i, ()i ~N(0,0%,,), ifi €Ty, i€ Tiy
()i = (@e—1)i + ()i, ()i ~ N(0,00,) i € Ty, i ¢ Ty y

Gt = Aa(xt)a + Wy = Age(x)Te 4 W1, where
W & [Ar(zy — Zyje—1)T + we] ~ N (0, Sie,t) (6)

where A C T¢ is the undetected nonzero set at the current time.
Thus, the problem of detecting if a new set has been added or not gets

(z1)i = (xe-1)i if 1 ¢ T} (2)  transformed into the problem of detecting if the Gaussian distributed
The above model can be compactly written as:= 0, g has non-zero or zero mean. Note tht (v¢)a = Are(zi)re
and thus the generalized Likelihood Ratio Test (G-LRT) for this
o = @1+, v~ N(0,Qr), problem simplifies to detecting if the weighted innovation error
(QO)Tinty (1T, = gfys[ norm,[EN = g{Ei‘e}tgt 2 threshold. Alternatively, one can apply
(@) 1Ty Ty = o2 T G-LRT to the filtering errorj, ; = y: — Ady. §:,5 can be written:
t t—1:14t t—1 mnv
(Qi)re.re =0 3) .5 = Aa(ze)a + Ar(ze — Te) 7 + we
wherethe setT, is unknownvt. If T, were known at each, i.e. =[I — Ar Ky r]Aa(xe)a + Wy 5, W5 = [ — Ar K]y

the system model was completely defined, the MMSE estimate ofs, ; ~ N (0, %), Sper = [[ — Ar Ky | Sie [l — Ar Ky r)(7)
x fromys, yo, . ..y would be given by a reduced order KF defined L i
for (z¢)r,. But, as explained in Sec. 1, in most practical problems,| € filtering error covariancese; < Xic.. Thus, on aver-
T, is in fact unknown and time-varying. Often, it may be possible@9®: iN¥e.s, the noise,w ¢, is smaller than that iy, (since
to get a rough prior estimate @ by thresholding the eigenvalues € change,(z¢ — z¢—1)r, has been estimated and subtracted
of the covariance of:; (possible to do if multiple realizations of ©Ut), but the new componentia(z¢)a, is also partially sup-
21 are available to estimate its covariance). But without multipleP"€SS€d.  The suppression is small becadsel; v Aa(z1)a =
i.i.d. realizations of the entiréx, }, which are impossible to obtain A7 (Fiji—10ebs + ArAr)™ A7 Aa(z:)a (follows by rewriting
in most cases, it is not possible to get a-priori estimateg dér all K7 using the matrix inversion lemma) antl: Aa () is small
t. But note that, it is possible to estimatg,., o7,,, for the model ~ (because of restricted orthogonality [7, eq. 1.5]). Assuming the
of (3) using just one “training” realization dfr;} (which is usually ~ suppression is small enough, usifig; will result in lower misses
easy to get) by setting the near-zero elements to zero in:eaahd ~ for a given false alarm rate. Thus we use G-LRTjop.
using the rest to obtain an ML estimate. Estimating the New Additions (using CSj.the filtering error
Assuming known values of2,,, o2,,;, our goal here is to get norm, FEN = §; (37! 4, ¢, is “high”, there is a need to estimate
the best estimates @ andz at eactt usingys, . . . y.. Specifically, ~ the new additions’ set). This can be done by applying the Dantzig
1. At each time¢, get the best estimate of the support gét, Se'ecmf (DS) [7] tog*.vf followed by thres_holdlng the output of the
i.e. get an estimaté, with smallest pOSSibl{Eize(Tt \T)) + DS (as is also done in the Gauss-Dantzig selector), i.e. we compute

size(T, \ T,)] usingys, y» ... . B = argmin |81, S| Are (Fe.s — AreB)|le < Amoons
2. Assuming the estimates @f, ... T; are perfect (have zero R . Ao o
error), get the MMSE estimate of usingyi, vz . . . y:. A = (T)nz, where nz = {i:fi; > aa}, 8



Algorithm 1 Kalman Filtered Compressive Sensing (KF-CS)
Initialization: Setzo = 0, Py = 0, To= empty (if unknown) or equal to the known/partially known support. #or0, do,

1. Setl' — T;_;.
2. KF prediction and update. Run (4) and (5) using the currefit Compute the filtering errof, ; = y: — Ad;.
3. Addition (using CS). ComputeFEN £ g};fE;el’tgt,f, and check if it is greater than its threshold. If it is,

(a) Run CS on the filtering error followed by thresholding, i.e. computeA using (8) [or use (9)].
(b) The new estimated supportige., = T U A.
(C) SetT’ — Thew. Set(Pyy—1)a A = 0inil. RUn the KF update given in (5) for the current”.
Performance can be improved by iterating the above four steps;t;wﬁ'(lA) = 0or FEN less than its threshold.
4. Deletion. Compute the sehp = {i € T': Zi:t_kﬂ(a}f)? < kagq}. The new estimated support seflis.., = 7"\ Ap.
(@) Setl' « Thew. Set(Ze)ap, =0, (Prye—1) A, (1im) = 05 (Prit—1)(1.m),4,, = 0- Run the KF update given in (5).

5. AssignT; < T. Output Ty, Z: and the signal estimateZ: = ®i:. Increment and go to step 1.

Am 2 +/2Tog m anday, is the zeroing threshqld for addition. Thus, (Py¢—1)s,1:m] = 0 @and(Pyi—1)[1:m),s = 0. As we explain in [13],
the new estimated support setlis.., = 7'U A. We initialize the  to prevent too many deletion errors, deletion should be done only
prediction covariance alomj as(Pyi—1)A o = o2..,1. Since it when the_KF has stabilized“,(_hgs not changed_fc_)r long enough).
typically takes a few time instants before a new addition gets de- Deleting Constant Coefficients. If a coefficient, i, becomes
tected, it is useful to set?,, to a higher value compared ¢q,. . constant (this may happen in certain applications), one can keep im-
Note that the above ignores the fact that the “noisej;ip, @, s, proving the estimate of its constant value by changing the prediction
is colored and that the “signal” to be estimated is partially suppressesfep for it to(#;;—1):,: = (Pi—1)i,;- Either one can keep doing this
(explained earlier). Since the suppression is small, the algorithm stiferever (the error in its estimate will go to zero withor one can
works in practice, but the error bound results for the DS cannot b@ssume that the estimation error has become negligibly small after a
applied. Alternatively, as we explain in ongoing work [13], one canfinite time and then remove the coefficient index fr@n It is not
rewrite §i,.; = AB; + w; whereBy £ [(z; — &)1, (v:)7c] IS @ clear what is the correct thing to do in this case.
“sparse-compressible” signal with a “large” nonzero pétt,)a, a Initialization. Initially, the support setT: may be roughly
“small” or “compressible” nonzero parz: — ;)7 and the zero known (estimated by thresholding the eigenvalues of the covariance
part, (z:)(rua)e. Then, DS can be applied to estimate the “large” of z1, which is computable if its multiple realizations are available)
nonzero part as follows (this will correctly detect elements whose@r unknown. We initialize KF-CS by setting, = 0, Py = 0 and7p

value is above the filtering error level): = roughly known support o, = empty (if support is completely
unknown). In the latter case, automaticallytat 1, the IEN (or
Br = argmin ||8]|1, s.t. [|A"(Ge.f — AB)||oo < AmOobs FEN) will be large, and thus CS will run to estimdig.
g : <
A={eT : B> ad} (9) The entire KF-CS algorithm is summarized in Algorithm 1.

As we discuss in [13], the above can be analyzed by adapting The- KF-CS Error Analysis. In ongoing work [13], we are work-
orem 1.2 and Theorem 1.3 of [7]. If the sparsity pattern changetg on finding sufficient conditions under which KF-CS error will
slowly enough and the filtering error is small enough (slow timeconverge to that of the genie-aided KF (KF with known nonzero set
varying system), it should be possible to show that perforn@8y at eacht). This can be used to show KF-CS error stability. The
on the filtering error,j: ¢, to only detect new additioris more ac-  key idea is to analyze the effect of missed and false additions (or
curate than performing regular CS at eathny: to detect the entire  false and missed deletions). The extra error due to a missed element,
vectorz, (without using knowledge of the previous support set).  (z,); , cannot be larger than a constant times the CS error at the cur-
KF Update. We run the KF update given in (5) with = T%.....  rent time (which itself is upper bounded by a small value w.h.p. [7])
This can be interpreted as a Bayesian version of Gauss-Dantzig [7plus«, (due to thresholding). Also, eventually, when the magnitude
Iterating CS and KF-update.Often, it may happen that not all of (x;); becomes large enough (exceeds CS error plus threshold), it
the elements of the tru& get estimated in one run of the CS step. will get detected by CS at that time w.h.p.. Thus, w.h.p., the detec-
To address this, CS and KF update can be iterated BN goes  tion delay will be finite.
below a threshold or untiA is empty. But there is also a risk of We can prevent too many extra coordinates from getting wrongly
adding too many wrong coefficients. estimated by having a rough idea of the maximum sparsity @ind
Deleting Near-Zero CoefficientsOver time, some coefficients using thresholding to only select that many, or a few more, high-
may become and remain zero. Alternatively, some coefficients magst magnitude non-zero elements. The deletion scheme is currently
wrongly get added in the addition step, due to CS error. In bottbeing improved. Note that if some true element gets missed by
cases, the coefficients need to be removed from the suppdfi.set CS (or gets wrongly deleted) because its value was too small, it
One possible way to do this would be to checKif)? < a4 or  will, w.h.p., get detected by CS at a future time. Also, as long as
to average its value over the last few time instants. When a coeffirank(Ar) > size(T') for the currently estimated (which may
cient, 4, is removed, we need to modif§;, set(2:); = 0 and set  contain some extra coordinates), the estimation error will increase



S =8 Spax = 16 Sax=25 MSE of Full KF

0.4 5 30, 300
L -6 CS—KF-T1-Unknowr] - Ful KF, 58 {

2 -+ Regylav cs 250 =B Full KF, S=16

L 4 — Genie-aided KF - Full KF, 525

- CS-KF-T1-Known

-©- CS-KF-T1-Unknown|
—¥-Regular CS

— Genie-aided KF 3|
= CS-KF-T1-Known

—©— CS-KF-T1-Unknown
—¥— Regular CS w
Genie-aided KF g 15
—— CS-KF-T1-Known

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
Time Time Time Time

Fig. 1. MSE plots of KF-CS (labeled CS-KF by mistake) with initial nonzero $gf,unknown and known cases, compared against regular
CS in the first 3 figures and against the Full 256-dim KF in the last figureVi8E is so large that we cannot plot it in the same scale as
the others). The benchmark (MMSE estimate with kna&nTs) is the genie-aided KF. The simulated signal’s energyiatE|||z;||3] =
SlUith + (23:2 ST)UzyS)'

beyond MMSE, but will not blow up. initial time instant, followed by running a KF for the reduced order
model, until the innovation or filtering error increases. When it does,
4. SIMULATION RESULTS we estimate the “change in support” by running CS on the filtering

error. This has much lower error since the “change” is much sparser
than the actual signal. Open questions to be addressed in future are
(a) the analysis of the stability of KF-CS, (b) comparison of KF-CS
error with that of regular CS, (c) studying how and when to delete
r<]:oefficients, (d) KF-CS for compressible signal sequences.

We simulated a time sequence of spaise256 length signalsy:,
with maximum sparsityS,.... Three sets of simulations were run
with S,...= 8, 16 and 25. Thel matrix was simulated as in [7] by
generating: x m i.i.d. Gaussian entries (with = 72) and normal-
izing each column of the resulting matrix. Such a matrix has bee
shown to satisfy the UUP at a levé€llogm [7]. The observation
noise variances?,, = ((1/3)\/Smaz/n)? (this is taken from [7]). 6. REFERENCES
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