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Recursive and Causal Reconstruction of Sparse
Sighal Sequences

Namrata Vaswani, ECE Dept, lowa State University, Ames, IA

This work involves the design and analysis of recursive dlgaors for causally reconstructing a time sequence
of (approximately) sparse signals from a greatly reducedber of linear projection measurements [1], [2], [3],
[4], [5], [6], [7]. By “recursive”, we mean use only the prewis estimate and the current measurements to get the
current estimate. The signals are sparse in some transfamaidaeferred to as the sparsity basis and their sparsity
patterns (support set of the sparsity basis coefficients)cbange with time. The most important example of the
above problem occurs in dynamic magnetic resonance imgyiiiR)) for real-time medical applications such as
interventional radiology, MR image guided surgery, or fiimgal MRI to track brain activation changes. MRI is
a technique for cross-sectional imaging that sequentilytures the 2D Fourier projections of the cross-section
to be reconstructed. Cross-sectional images of the braarthlarynx or other human organ images are usually
piecewise smooth, e.g. see the first row of Fig. 1(b) or 1(c),thod approximately sparse in the wavelet domain.
In a time sequence, the sparsity pattern changes with timneslbwly. Slow sparsity pattern change is empirically
verified for medical image sequences in Fig. 1(a) and in [2] amd/ideo in [7].

Since MR data acquisition is sequential, the ability to aately reconstruct with fewer measurements directly
translates to reduced scan times. Shorter scan times aldhgowline (causal) and fast (recursive) reconstruction
allow the possibility of real-time imaging of fast changipgysiological phenomena.

Since the recent introduction of compressive sensing (C$)98] the static sparse reconstruction problem has
been thoroughly studied. But most existing algorithms li@r dynamic problem just use CS to jointly reconstruct the
entire time sequence in one go [10], [11], [12]. This is a baclition with very high complexity. The alternative
- doing CS at each time separately (simple CS) - is online asidbiat requires many more measurements. To the
best of our knowledgeyur work [1] was the first to address the problem of causallg aecursively reconstructing
sparse signal sequences using fewer measurentarshose needed for simple CS. Tdwmmputational complexity
of our proposed algorithms is only as much as that of simpled@8 this is much lower than that of batch CS.

We summarize our contributions in the next subsection atet #iat we discuss the related work.
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Fig. 1. In Fig. 1(a), NV, refers to the 99% energy support of the 2D discrete wavedesform of the cardiac sequence of Fig.
1(b) and of the larynx sequence (as a person speaks a voweily.af(c). Its size|N;|, varied between 4121-4183:(0.07m)

for the larynx sequence and between 1108-1121.06m) for cardiac, i.e. both are wavelet sparse. Herés the image size
(number of pixels). We plot the number of additions (top) #mel number of removals (bottom) as a fraction| &% |. Notice

that all support change sizes are less than 2% of the suppretla Figs. 1(b) and 1(c), we compare the reconstruction qualit
from only 16% MRI measurements at> 0 (and 50% at = 0) using simple compressive sensing (CS) with that using our
proposed approach (modified-CS). Fig. 1(b) is for a spadsiderdiac sequence: modified-CS achieved exact recornistruct
while clearly CS did not. Fig. 1(c) is for an actual larynx segce: modified-CS error was less than 2%, CS error was 15-20%



A. Our Contributions

All of our work described below uses one or both of the follogvieasily verifiable observations.

1) The sparsity patterns of natural signal/image sequersgally change “slowly” over time [see Fig. 1(a)].
2) In most cases, the values of the nonzero coefficients alsogehgradually over time.

When using only fact 1 abovéhe recursive sparse reconstruction problem can be reftataed as one of sparse
reconstruction with partially “known” supportThe support estimate from the previous time serves as thawikh
part. We can further improve the proposed algorithm by alsagufact 2.

o The key idea ofbur first approach (LS-CS-residual or LS-CiS)to replace CS on the current observation by
CS on the least squares (LS) observation residual computad tls “known” part of the support [1], [2].
The LS residual measures a signal that has much fewer largeoc@mis compared to the original signal (it
is what can be called a “sparse-compressible” signal). Assalt, when fewer measurements are available,
the LS-CS reconstruction error is much lower than that of sin{ps.

— By also using fact 2, we can replace the LS residual bykthknan filtering residual (KF-CS)1]. This
improves the reconstruction particularly when the numidemeasurements is too few even for LS-CS.

o Even though LS-CS and KF-CS improve reconstruction accuracy siwgle CS, but they cannot be used
for “exact” reconstruction from fewer noise-free measueata. This led toour second and more powerful
approach - modified-C83], [4]. Denote the “known” part of the support By. Modified-CS tries to find the
signal that is sparsest outside Bfand that satisfies the data constraintT’lhas small error (few extras and
misses), modified-CS can achiesractreconstruction from very few measurements, e.g. see Fig3, 1(C).

— By also using fact 2 (gradual change of nonzero coefficientes)| one can desigagularized modified-CS
which also constrains the change of the nonzero coefficidnesaalongl’ [4].

o We have been able to shovery promising proof-of-concept applications of the aba@eas in high fidelity
real-time dynamic MR imaging of various human orgdnk [4]. See Fig. 1 for some examples, and also see
the PI's webpageht t p: / / ww. ece. i ast at e. edu/ ~nanr at a/ r esear ch/ Sequenti al CS. ht ml .

Under the practically valid assumption of slowly changingort (fact 1), we have also been able to prove all
of the following.

« Modified-CS achieves exact reconstruction under much weaker sufficienditions(i.e. using much fewer
noise-free measurements) than those needed to provideuthe guarantee for simple CS [4].

o For both LS-CS and modified-CS (noisy), under fairly mild asstiomg (bounded noise, high enough SNR,
and weaker requirements on the number of measurements tetnismneeded for bounding simple CS error),

— the error bounds are much smaller than those for simple C912], and
— the support change errors, and hence the reconstructioargrrare “stable”, i.e. they remain bounded
by small time-invariant values at all times [2], [5].

« Since the above analysis only compares sufficient conditiongoper bounds, all of the above conclusions
have been backed up by exhaustive simulation comparisgn§]2 We have also compared the above four
approaches with each other under different conditions asclidsed which is better when and why [6].

It is important to mention thathe proof of stability is one of the most challenging patsour work since (i) it
requires carefully bounding the “detection delay” (theagelvithin which a set of newly added coefficients to the
support get detected) and (i) it requires a deletion schraesuccessfully deletes the falsely added and removed
coefficients from the support estimate either at every timevery-so-often. To the best of our knowledge, this is
the first stability resultfor any recursive and causal sparse reconstruction appr&aoving stability of KF-CS or
reg-modified-CS is even more difficult (because of dependengeast reconstructed values) and is being studied
in ongoing work.Stability is critical for any recursive algorithm since ihsures that the error does not blow up
over time For example, for LS-CS, it ensures that the extras in the stugstimate get deleted either at each
time or every-so-often and the undetected support size doe&eep increasing over time. Without the former,
eventually the estimated support size will exceed the abbkilnumber of measurements, thus making LS estimation
impossible, while without the latter, the effective noiges by the LS estimator will keep increasing.

The work discussed above is being supported by a 2009 NSF grahetPl, CCF-0917015 (Recursive Re-
construction of Sparse Signal Sequences). The motivation femtbrk (particularly for KF-CS [1]) came from
trying to answer the question of how to detect and estimdfeci#ve dimension” and “effective subspace” change



on-the-fly while tracking signal sequences and this was stggdoy a 2007 NSF grant to the PIl, ECCS-0725849
(Change Detection in Nonlinear Systems and Applications iap8hAnalysis).

B. Related Work

Our first paper on the topic was [1]. There has been some receatkt avorecursive sparse reconstruction in
[14] but in it the authors mostly focus on the time-invariapiarsity pattern case. The related problem of sparse
reconstruction with partial knowledge of the support wasuianeously addressed in our work [3] and in [15].
Recently (in Feb 2010), we learnt about the older work of vomriBs et al [16] which also suggests an approach
similar to modified-CS.

We would like to point out that our goals are quite differemanii (although have sometimes been confused with)
(a) work that uses the previous estimate and homotopy tadspeehe current optimization, but not to reduce the
number of measurements required, e.g. [17], and also frgmv@iok that recursively improves the reconstruction
of a single signal from sequentially arriving measuremeetg. [18].
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