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Recursive Reconstruction of Sparse Signal Sequences (RecSparsRec)
The problem, motivation and applications, key ideas
Modified-CS: noise-free case and exact recovery result
Modified-CS: noisy case and time-invariant error bounds (stability)
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Background on Sparse Recovery
Recursive Reconstruction of Sparse Signal Sequences (RecSparsRec)
Rec Robust PCA ⇔ RecSparsRec in Large but Correlated Noise

Sparse Recovery: the question

I Can I recover a 256-length signal from only 80 samples?

(a) the unknown signal (b) its 80 time samples (red)
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Background on Sparse Recovery
Recursive Reconstruction of Sparse Signal Sequences (RecSparsRec)
Rec Robust PCA ⇔ RecSparsRec in Large but Correlated Noise

Sparse Recovery: the question

I Can I recover a 256-length signal from only 80 samples?

(c) the unknown signal (d) its 80 time samples (red)

I Under certain situations: YES!
I if it is bandlimited – use Nyquist
I or if it is a weighted sum of only a few sinusoids – use sparsity

Example taken from L1-Magic webpage of Candes,Romberg,Tao
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Background on Sparse Recovery
Recursive Reconstruction of Sparse Signal Sequences (RecSparsRec)
Rec Robust PCA ⇔ RecSparsRec in Large but Correlated Noise

Sparse Recovery: the answer

I This signal satisfies the latter – it is Fourier sparse

(e) DFT of original signal
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Background on Sparse Recovery
Recursive Reconstruction of Sparse Signal Sequences (RecSparsRec)
Rec Robust PCA ⇔ RecSparsRec in Large but Correlated Noise

Sparse Recovery: the answer

I This signal satisfies the latter – it is Fourier sparse

(g) DFT of original signal (h) recovered DFT: exact!

I We used its Fourier sparsity and `1 minimization to recover its DFT
exactly!

I one-to-one mapping between a signal and its DFT

Example taken from L1-Magic webpage of Candes,Romberg,Tao
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Background on Sparse Recovery
Recursive Reconstruction of Sparse Signal Sequences (RecSparsRec)
Rec Robust PCA ⇔ RecSparsRec in Large but Correlated Noise

Sparse (or Compressible) Signals

a brain image:

wavelet compressible

I Sparse vector: only a few nonzero elements

I Compressible vector: approx sparse vector
(most energy lies in only a few elements)

I Sparse (compressible) signal: either the signal
or a linear transform of it is sparse (compress.)
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Rec Robust PCA ⇔ RecSparsRec in Large but Correlated Noise

Sparse (or Compressible) Signals

a brain image:

wavelet compressible

I Sparse vector: only a few nonzero elements

I Compressible vector: approx sparse vector
(most energy lies in only a few elements)

I Sparse (compressible) signal: either the signal
or a linear transform of it is sparse (compress.)

I Support: set of indices of the nonzero
(non-negligible) elements of the vector,

I e.g. 99%-energy support: set containing
indices of the largest elements that make
up 99% of the total energy
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Background on Sparse Recovery
Recursive Reconstruction of Sparse Signal Sequences (RecSparsRec)
Rec Robust PCA ⇔ RecSparsRec in Large but Correlated Noise

Sparse recovery [Mallat et al’93],[Chen,Donoho’95],[Candes,Romberg,Tao’05],[Donoho’05]

I Reconstruct a sparse signal x , with support N, from y := Ax ,
I when A has more columns than rows (underdetermined sys)
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Sparse recovery [Mallat et al’93],[Chen,Donoho’95],[Candes,Romberg,Tao’05],[Donoho’05]

I Reconstruct a sparse signal x , with support N, from y := Ax ,
I when A has more columns than rows (underdetermined sys)

I Solved if we can find the sparsest vector satisfying y = Aβ, i.e.

min
β

‖β‖0
︸︷︷︸

# of nonzero elements

subject to y = Aβ
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Recursive Reconstruction of Sparse Signal Sequences (RecSparsRec)
Rec Robust PCA ⇔ RecSparsRec in Large but Correlated Noise

Sparse recovery [Mallat et al’93],[Chen,Donoho’95],[Candes,Romberg,Tao’05],[Donoho’05]

I Reconstruct a sparse signal x , with support N, from y := Ax ,
I when A has more columns than rows (underdetermined sys)

I Solved if we can find the sparsest vector satisfying y = Aβ, i.e.

min
β

‖β‖0
︸︷︷︸

# of nonzero elements

subject to y = Aβ

I and any S = 2|N | columns of A are linearly independent
I but combinatorial search – O(m|N|) complexity

I Practical approaches (polynomial complexity in m)
I convex relaxation approaches [Chen,Donoho’95], ..., [Candes,Tao’06],...: `1

minimization
I replace `0 norm by `1 norm – convex problem

I greedy methods [Mallat,Zhang’93], [Pati et al’93], [Dai,Milenkovic’09], [Needell,Tropp’09]
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Background on Sparse Recovery
Recursive Reconstruction of Sparse Signal Sequences (RecSparsRec)
Rec Robust PCA ⇔ RecSparsRec in Large but Correlated Noise

Sparse recovery and Compressive Sensing

I Compressed Sensing (CS) literature [Candes,Romberg,Tao’05], [Donoho’05]

I provides exact reconstruction conditions and error bounds for
the practical approaches – much stronger results than earlier
ones based on mutual coherence
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ones based on mutual coherence

I Restricted Isometry Constant (RIC), δs(A) [Candes,Romberg,Tao,T-IT’05]

I quantifies approx orthogonality of any s-column sub-matrix of
an n ×m matrix A

I δs(A) is the smallest real number s.t. singular values of any
s-column sub-matrix of A lie in [

√
1− δs ,

√
1 + δs ]
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I Compressed Sensing (CS) literature [Candes,Romberg,Tao’05], [Donoho’05]

I provides exact reconstruction conditions and error bounds for
the practical approaches – much stronger results than earlier
ones based on mutual coherence

I Restricted Isometry Constant (RIC), δs(A) [Candes,Romberg,Tao,T-IT’05]

I quantifies approx orthogonality of any s-column sub-matrix of
an n ×m matrix A

I δs(A) is the smallest real number s.t. singular values of any
s-column sub-matrix of A lie in [

√
1− δs ,

√
1 + δs ]

I non-increasing function of n (# of measurements)

I random Gaussian matrices: if n = O(S logm) , δS(A) < b < 1
holds w.h.p. (prob → 0 as m → ∞)

I similar results for Rademacher and partial Fourier matrices
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Sparse recovery and Compressive Sensing

I Compressed Sensing (CS) literature [Candes,Romberg,Tao’05], [Donoho’05]

I provides exact reconstruction conditions and error bounds for
the practical approaches – much stronger results than earlier
ones based on mutual coherence

I Restricted Isometry Constant (RIC), δs(A) [Candes,Romberg,Tao,T-IT’05]

I quantifies approx orthogonality of any s-column sub-matrix of
an n ×m matrix A

I δs(A) is the smallest real number s.t. singular values of any
s-column sub-matrix of A lie in [

√
1− δs ,

√
1 + δs ]

I non-increasing function of n (# of measurements)

I random Gaussian matrices: if n = O(S logm) , δS(A) < b < 1
holds w.h.p. (prob → 0 as m → ∞)

I similar results for Rademacher and partial Fourier matrices

I this talk: sparse recovery ⇔ CS ⇔ `1 minimization
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Background on Sparse Recovery
Recursive Reconstruction of Sparse Signal Sequences (RecSparsRec)
Rec Robust PCA ⇔ RecSparsRec in Large but Correlated Noise

The problem, motivation and applications, key ideas
Modified-CS: noise-free case and exact recovery result
Modified-CS: noisy case and time-invariant error bounds (stability)

Recursive Sparse Recovery [Vaswani,ICIP’08]1

I Recursive approaches for causally reconstructing a time
sequence of sparse signals

I from a greatly reduced number of measurements at each time.

I “recursive”: use only current measurement vector and the previous

reconstructed signal to reconstruct the current signal

1
N. Vaswani, Kalman Filtered Compressed Sensing, ICIP, 2008
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Recursive Sparse Recovery [Vaswani,ICIP’08]1

I Recursive approaches for causally reconstructing a time
sequence of sparse signals

I from a greatly reduced number of measurements at each time.

I “recursive”: use only current measurement vector and the previous

reconstructed signal to reconstruct the current signal

I Sparsity patterns can change with time, but the changes are
gradual

I Existing work: mostly batch CS approaches – expensive

1
N. Vaswani, Kalman Filtered Compressed Sensing, ICIP, 2008

Namrata Vaswani Recursive Sparse Recovery (RecSparsRec) 6/ 47



Background on Sparse Recovery
Recursive Reconstruction of Sparse Signal Sequences (RecSparsRec)
Rec Robust PCA ⇔ RecSparsRec in Large but Correlated Noise

The problem, motivation and applications, key ideas
Modified-CS: noise-free case and exact recovery result
Modified-CS: noisy case and time-invariant error bounds (stability)

Potential Applications

I Dynamic medical imaging for real-time apps, e.g.
I MRI-guided interventional radiology, MRI-guided surgery,
I real-time functional MRI

I Video surveillance or denoising or fMRI based active region
detection

I track one or more moving objects/regions when the
background scene itself is changing – foreground is sparse
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Why “reduced” measurements?

I Projection Imaging, e.g. MRI or CT or single-pixel camera
I Fourier transform or Radon transform or random-projections of

the region-of-interest acquired sequentially
I Fewer measurements ⇒ faster scanning – needed for real-time

imaging for fast changing phenomena
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Why “reduced” measurements?

I Projection Imaging, e.g. MRI or CT or single-pixel camera
I Fourier transform or Radon transform or random-projections of

the region-of-interest acquired sequentially
I Fewer measurements ⇒ faster scanning – needed for real-time

imaging for fast changing phenomena

I Computer Vision
I The full image is acquired in one go, but it can have more

than one layers, e.g. foreground and background
I both change, how can I estimate both?
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Why “causal” and “recursive”

I Why causal?
I reconstruct as soon as get data for current frame – desirable

for real-time (or at most allow small buffering)
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Why “causal” and “recursive”

I Why causal?
I reconstruct as soon as get data for current frame – desirable

for real-time (or at most allow small buffering)

I Why recursive?
I one way to ensure computational and storage complexity is

comparable to CS for one image (simple CS)
I much faster and lower on memory than both causal and offline

implementations of batch CS

I recursive CS at time t v/s causal batch CS at time t
I time: O(1) v/s O(t3)
I memory: O(1) v/s O(t)
I O(1): time taken or memory reqd for CS for one image
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Background on Sparse Recovery
Recursive Reconstruction of Sparse Signal Sequences (RecSparsRec)
Rec Robust PCA ⇔ RecSparsRec in Large but Correlated Noise

The problem, motivation and applications, key ideas
Modified-CS: noise-free case and exact recovery result
Modified-CS: noisy case and time-invariant error bounds (stability)

Problem Formulation [Vaswani,ICIP’08] (KF-CS)

I Measure
yt := Axt + wt

I A = HΦ (given): n ×m, n < m
I H: measurement matrix, Φ: sparsity basis matrix
I e.g. in MRI: H = partial Fourier, Φ = inverse wavelet

I yt : measurements (given)

I xt : sparsity basis vector

I Nt : support set of xt (set of indices of nonzero elements of xt)

I Goal: recursively reconstruct xt from y0, y1, . . . yt ,
I i.e. use only x̂t−1 and yt for reconstructing xt

I Assumptions:
I support set of xt , Nt , changes slowly over time
I also use slow signal value change where valid

Namrata Vaswani Recursive Sparse Recovery (RecSparsRec) 10/ 47



Background on Sparse Recovery
Recursive Reconstruction of Sparse Signal Sequences (RecSparsRec)
Rec Robust PCA ⇔ RecSparsRec in Large but Correlated Noise

The problem, motivation and applications, key ideas
Modified-CS: noise-free case and exact recovery result
Modified-CS: noisy case and time-invariant error bounds (stability)

Slow sparsity pattern change in medical image sequences [Qiu, Lu, Vaswani,ICASSP’09]

image sequences: http://www.ece.iastate.edu/~luwei/modcs
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(a) slow support changes (adds)
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(b) slow support changes (removals)

I Nt : 99%-energy support set of xt , where

I xt : wavelet transform of cardiac or larynx image at time t

I Notice: all support changes are less than 2% of support size
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Background on Sparse Recovery
Recursive Reconstruction of Sparse Signal Sequences (RecSparsRec)
Rec Robust PCA ⇔ RecSparsRec in Large but Correlated Noise

The problem, motivation and applications, key ideas
Modified-CS: noise-free case and exact recovery result
Modified-CS: noisy case and time-invariant error bounds (stability)

Slow signal value change in medical seq’s (common tracking assumption) [Lu,Vaswani,ArXiv]

image sequences: http://www.ece.iastate.edu/~luwei/modcs

5 10 15 20
0

0.02

0.04

0.06

0.08

Time →

Cardiac 99%
Larynx 99%

I Plot of ‖(xt−xt−1)‖2

‖(xt)‖2
against time, t

I xt : wavelet transform of cardiac or larynx image at time t

I Notice: almost all changes are less than 4%
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Recursive Reconstruction of Sparse Signal Sequences (RecSparsRec)
Rec Robust PCA ⇔ RecSparsRec in Large but Correlated Noise

The problem, motivation and applications, key ideas
Modified-CS: noise-free case and exact recovery result
Modified-CS: noisy case and time-invariant error bounds (stability)

Questions we answer

1. How to solve RecSparsRec while not increasing reconstruction
algorithm speed or memory requirement w.r.t. simple CS?
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I (critical question for a recursive approach)
I are the conditions required weaker than those for simple CS?

4. How much better do our algorithms do compared to existing
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Namrata Vaswani Recursive Sparse Recovery (RecSparsRec) 13/ 47



Background on Sparse Recovery
Recursive Reconstruction of Sparse Signal Sequences (RecSparsRec)
Rec Robust PCA ⇔ RecSparsRec in Large but Correlated Noise

The problem, motivation and applications, key ideas
Modified-CS: noise-free case and exact recovery result
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Questions we answer

1. How to solve RecSparsRec while not increasing reconstruction
algorithm speed or memory requirement w.r.t. simple CS?

2. When does it achieve exact recovery?

3. Is it provably stable over time and under what conditions?
I (critical question for a recursive approach)
I are the conditions required weaker than those for simple CS?

4. How much better do our algorithms do compared to existing
work for real experimental data?

5. RecSparsRec in large but correlated noise
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Background on Sparse Recovery
Recursive Reconstruction of Sparse Signal Sequences (RecSparsRec)
Rec Robust PCA ⇔ RecSparsRec in Large but Correlated Noise

The problem, motivation and applications, key ideas
Modified-CS: noise-free case and exact recovery result
Modified-CS: noisy case and time-invariant error bounds (stability)

Related Work

I Simple CS (CS done at each time separately)

I CS-diff (CS on difference meas’s) [Cevher et al,ECCV’08]: works only if
I first frame reconstructed very accurately, and
I difference signal sparser or signal values change very slowly

I Kalman Filtered CS (KF-CS) & LS-CS [Vaswani,ICIP’08,T-SP’10]

I defined RecSparsRec problem; proposed an efficient solution

I Modified-CS [Vaswani,Lu, ISIT’09]: this talk
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The problem, motivation and applications, key ideas
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Related Work

I Simple CS (CS done at each time separately)

I CS-diff (CS on difference meas’s) [Cevher et al,ECCV’08]: works only if
I first frame reconstructed very accurately, and
I difference signal sparser or signal values change very slowly

I Kalman Filtered CS (KF-CS) & LS-CS [Vaswani,ICIP’08,T-SP’10]

I defined RecSparsRec problem; proposed an efficient solution

I Modified-CS [Vaswani,Lu, ISIT’09]: this talk

I Work with different goals than ours
I homotopy methods: speed up optimization but not reduce n

[Asif,Romberg’08,09]

I recover one signal recursively as more meas’s come in
[Sanghavi et al,’08], [Angelosante et al’09], [Asif,Romberg’09], [Ghaoui et al’09]

I batch methods: much slower, need a lot more memory
[Wakin et al’06(video)],[Gamper et al’08 (MRI)], [Angelosante et al’09 (dyn Lasso)]
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Background on Sparse Recovery
Recursive Reconstruction of Sparse Signal Sequences (RecSparsRec)
Rec Robust PCA ⇔ RecSparsRec in Large but Correlated Noise

The problem, motivation and applications, key ideas
Modified-CS: noise-free case and exact recovery result
Modified-CS: noisy case and time-invariant error bounds (stability)

Least Squares CS and Kalman Filtered CS [Vaswani,ICIP’08]2 , [Vaswani,IEEE Trans. SP,Aug’10]3

At each time t,

I Let T = N̂t−1 be previous support estimate

I Compute LS (or KF) estimate assuming T is current support

I LS estimate: (µ)T = AT
†yt , (µ)T c = 0

I CS on Residual

I CS-residual: β̂ = argmin ‖β‖1 s.t. ‖(yt − Aµ)− Aβ‖2 ≤ ε

I Compute x̂t = β̂ + µ

I Estimate support N̂t = {i : |(x̂t )i | > α}

I Final LS (or KF) using N̂t

2
N. Vaswani, Kalman Filtered Compressed Sensing, ICIP, 2008

3
N. Vaswani, ”LS-CS-residual (LS-CS): Compressive Sensing on the Least Squares Residual”, IEEE Trans.

Sig. Proc., Aug. 2010.
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The problem, motivation and applications, key ideas
Modified-CS: noise-free case and exact recovery result
Modified-CS: noisy case and time-invariant error bounds (stability)

Least Squares CS and Kalman Filtered CS [Vaswani,ICIP’08]4 , [Vaswani,IEEE Trans. SP,Aug’10]5

I Have same complexity and memory requirement as simple-CS
I but accurate recovery with much fewer noisy measurements

I Proved LS-CS error “stability” (time-invariant error bound) under
mild assumptions [Vaswani,TSP,Aug’10]:

I BUT: could not achieve exact recovery with fewer measurements
4
N. Vaswani, Kalman Filtered Compressed Sensing, ICIP, 2008

5
N. Vaswani, ”LS-CS-residual (LS-CS): Compressive Sensing on the Least Squares Residual”, IEEE Trans.

Sig. Proc., Aug. 2010.
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Least Squares CS and Kalman Filtered CS [Vaswani,ICIP’08]4 , [Vaswani,IEEE Trans. SP,Aug’10]5

I Have same complexity and memory requirement as simple-CS
I but accurate recovery with much fewer noisy measurements

I Proved LS-CS error “stability” (time-invariant error bound) under
mild assumptions [Vaswani,TSP,Aug’10]:

1. support changes every-so-often and delay b/w support change
times is large enough;

2. support change size, Sa, and support size, S0, small enough
(for a given A);

3. newly added elements’ either added at a large-enough value or
their value increases at least at a certain rate, r

I BUT: could not achieve exact recovery with fewer measurements
4
N. Vaswani, Kalman Filtered Compressed Sensing, ICIP, 2008

5
N. Vaswani, ”LS-CS-residual (LS-CS): Compressive Sensing on the Least Squares Residual”, IEEE Trans.

Sig. Proc., Aug. 2010.
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CS with partially known support [Vaswani,Lu, ISIT’09, T-SP, Sept’10]6

I Reconstruct a sparse signal, x , with support, N, from y := Ax
I given partial and possibly erroneous support knowledge: T

6
N. Vaswani and W. Lu, “Modified-CS: Modifying Compressive Sensing for Problems with Partially Known

Support”, IEEE Trans. Sig. Proc., Sept. 2010. (shorter version in ISIT’09)
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CS with partially known support [Vaswani,Lu, ISIT’09, T-SP, Sept’10]6

I Reconstruct a sparse signal, x , with support, N, from y := Ax
I given partial and possibly erroneous support knowledge: T

I Rewrite the true support, N, as

N = T ∪∆ \∆e

I T : erroneous support estimate (use T = N̂t−1 at time t)

I ∆ := N \ T : errors (misses) in T – unknown

I ∆e := T \ N : errors (extras) in T – unknown

6
N. Vaswani and W. Lu, “Modified-CS: Modifying Compressive Sensing for Problems with Partially Known

Support”, IEEE Trans. Sig. Proc., Sept. 2010. (shorter version in ISIT’09)
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Modified-CS idea

I If ∆e empty: above ⇔ find signal that is sparsest outside T

min
β

‖(β)T c‖0 s.t. y = Aβ

I the unknowns are ∆, (β)∆ and (β)T
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Modified-CS idea

I If ∆e empty: above ⇔ find signal that is sparsest outside T

min
β

‖(β)T c‖0 s.t. y = Aβ

I the unknowns are ∆, (β)∆ and (β)T

I Same solution also works if ∆e is not empty but small
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Modified-CS idea

I If ∆e empty: above ⇔ find signal that is sparsest outside T

min
β

‖(β)T c‖0 s.t. y = Aβ

I the unknowns are ∆, (β)∆ and (β)T

I Same solution also works if ∆e is not empty but small

I Exact recovery: if every set of (|T |+ 2|∆|) = (|N |+ |∆e |+ |∆|)
columns of A are linearly independent

I Compare: `0-CS needs this to hold for every set of 2|N | columns

I Under slow support change, |∆| � |N | and |∆e | � |N |

Namrata Vaswani Recursive Sparse Recovery (RecSparsRec) 18/ 47



Background on Sparse Recovery
Recursive Reconstruction of Sparse Signal Sequences (RecSparsRec)
Rec Robust PCA ⇔ RecSparsRec in Large but Correlated Noise

The problem, motivation and applications, key ideas
Modified-CS: noise-free case and exact recovery result
Modified-CS: noisy case and time-invariant error bounds (stability)

Modified-CS [Vaswani,Lu, ISIT’09, T-SP,Sept’10]7

I Modified-CS
min
β

‖(β)T c‖1 s.t. y = Aβ

I we obtained exact recon cond’s for Modified-CS; argued they
are weaker than CS

I Other related parallel/later work:
I [vonBorries et al, TSP’09]: no exact recon conditions or expts
I [Khajenejad et al, ISIT’09]: probab. prior on support, studies exact recon
I Later: [Jacques, Elsev.Sig.Proc’10]: error bounds for noisy mod-CS

7
N. Vaswani and W. Lu, “Modified-CS: Modifying Compressive Sensing for Problems with Partially Known

Support”, IEEE Trans. Sig. Proc., Sept. 2010. (shorter version in ISIT’09)
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Exact reconstruction result [Vaswani,Lu, ISIT’09, T-SP,Sept.’10]

min
β

‖βT c‖1 s.t. y = Aβ (modified-CS)

Theorem (simplified condition)

x is the unique minimizer of (modified-CS) if

2δ2|∆| + δ3|∆| + δ|N|+|∆e |−|∆| + δ2|N|+|∆e |
+ 2δ2|N|+|∆e |+|∆| < 1
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Exact reconstruction result [Vaswani,Lu, ISIT’09, T-SP,Sept.’10]

min
β

‖βT c‖1 s.t. y = Aβ (modified-CS)

Theorem (simplified condition)

x is the unique minimizer of (modified-CS) if

2δ2|∆| + δ3|∆| + δ|N|+|∆e |−|∆| + δ2|N|+|∆e |
+ 2δ2|N|+|∆e |+|∆| < 1

I δS : RIP constant – smallest real number s.t. singular values of any
S-column sub-matrix of A lie in [

√
1− δS ,

√
1 + δS ] [Candes,Tao,T-IT’05]

I non-increasing function of n (# of measurements)

recall: ∆ := N \ T : misses in T , ∆e := T \ N: extras in T
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Proof Outline [Vaswani,Lu, ISIT’09, T-SP,Sept.’10]8

Use overall approach of [Candes,Tao,Decoding by LP,T-IT,Dec’05]

I Obtain conditions on the Lagrange multiplier, w , to ensure
that x is a unique minimizer

I Find sufficient conditions under which such a w can be found

I key lemma: create a w that satisfies most reqd conditions

I apply this lemma recursively to get a final w that satisfies all
reqd conditions.

8
N. Vaswani and W. Lu, “Modified-CS: Modifying Compressive Sensing for Problems with Partially Known

Support”, IEEE Trans. Sig. Proc., Sept. 2010. (shorter version in ISIT’09)
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Comparison with best sufficient cond’s for CS

I CS gives exact reconstruction if [Candes’08, Candes-Tao’06]

δ2|N| <
√
2− 1 or δ2|N| + δ3|N| < 1

I Modified-CS gives exact reconstruction if

2δ2|∆| + δ3|∆| + δ|N|+|∆e |−|∆| + δ2|N|+|∆e|
+ 2δ2|N|+|∆e|+|∆| < 1

I If |∆| = |∆e | = 0.02|N | (typical in medical sequences),

I sufficient condition for CS to achieve exact recovery:

δ0.04|N| < 0.004

I sufficient condition for Mod-CS to achieve exact recovery:

δ0.04|N| < 0.008

I Mod-CS sufficient condition is weaker (needs fewer meas’s)

recall: ∆ := N \ T , ∆e := T \ N
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Simulations: exact reconstruction probability

Simulation setup:

I signal length, m = 256, supp size, |N | = 0.1m

I supp error sizes, |∆| = |∆e | = 0.08|N |
I used random-Gaussian A, varied n

I we say “works” (gives exact recon) if ‖x − x̂‖2 < 10−5‖x‖2

Conclusions:
I With 19% measurements:

I mod-CS “works” w.p. 99.8%, CS “works” w.p. 0

I With 25% measurements:
I mod-CS “works” w.p. 100%, CS “works” w.p. 0.2%

I CS needs 40% measurements to “work” w.p. 98%

recall: ∆: errors (misses) in T , ∆e : errors (extras) in T
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Modified-CS for time sequences

Support Estimation: use thresholding

N̂t := {i : |(x̂t,modCS)i | > α}

Initial time (t = 0):

I use T0 from prior knowledge, e.g. wavelet approximation coeff’s

I may need more measurements at t = 0
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Simulated MRI of an actual larynx (vocal tract) sequence: noise-free case

(c) n0 = 20%, n = 19% (d) n0 = 19%, n = 19%

I A real image sequence: only compressible (approx sparse)

I With only n = 19% MRI meas’s, Mod-CS error is small and stable
at 2-3%, CS-diff error is unstable or large, simple-CS error is large
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Simulated MRI of an actual larynx (vocal tract) sequence: noise-free case

(e) n0 = 20%, n = 19% (f) n0 = 19%, n = 19%

I A real image sequence: only compressible (approx sparse)

I With only n = 19% MRI meas’s, Mod-CS error is small and stable
at 2-3%, CS-diff error is unstable or large, simple-CS error is large

I simple CS needs n = 30% to achieve small error
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ModCS Reconstruction

CS−diff Reconstruction

CS Reconstruction

A larynx sequence (not
sparsified)

I 99%-support size ∼ 7%,

I supp change ∼ 2%

I using only 19% MRI
measurements at all
times

I simple CS needs
n = 30% for same error

I

http://www.ece.iastate.ed
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Modified-CS for noisy measurements

I Difficulty:
I along T c : solution is biased towards zero
I along T : no cost and only data constraint – solution can be

biased away from zero
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Modified-CS for noisy measurements

I Difficulty:
I along T c : solution is biased towards zero
I along T : no cost and only data constraint – solution can be

biased away from zero

I the misses’ set ∆t ⊂ T c , while the extras’ set, ∆e,t ⊂ T
I need α small to add ∆t , need α large to delete ∆e,t

(recall: ∆t := Nt \ T = Nt \ N̂t−1 , ∆e,t := T \ Nt = N̂t−1 \ Nt )
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Possible Solutions

I Solution 1: improved support estimation (Add-LS-Del)

I Solution 2: use “slow signal value change” to constrain (β)T
[Lu, Vaswani, Trans.SP, Jan’12], [Raisali, Vaswani, CISS’11]

arg min
β

‖(β)T c‖1 s.t. ‖yt − Aβ‖2 ≤ ε, ‖βT − µT‖2 ≤ γ

I with µ := x̂t−1, T := N̂t−1 (Reg-Mod-CS – ongoing work)

I useful if signal value change is “slow enough”
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Modified-CS with Add-LS-Del (improved support support estimation)9

I Modified-CS: set T = N̂t−1 and compute x̂t as the solution of

min
β

‖βT c‖1 s.t. ‖yt − Aβ‖2 ≤ ε

I Support Add using a small threshold

I use αadd just large enough s.t. well-conditioned (A)Tadd

I Compute LS estimate on Tadd, call it x̂t,add

I reduces bias and error if Tadd ≈ Nt [Candes,Tao’06]

I Support Delete by thresholding on x̂t,add w/ a larger threshold

I x̂t,add more accurate ⇒ αdel can be larger

9
introduced in [Vaswani,ICIP’08,T-SP’10] & also in [Dai,Milenkovic’09], [Needell,Tropp’09] for static case
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Modified-CS with Add-LS-Del (improved support support estimation)9

I Modified-CS: set T = N̂t−1 and compute x̂t as the solution of

min
β

‖βT c‖1 s.t. ‖yt − Aβ‖2 ≤ ε

I Support Add using a small threshold

I use αadd just large enough s.t. well-conditioned (A)Tadd

I Tadd = T ∪ {i : |(x̂t)i | > αadd}
I Compute LS estimate on Tadd, call it x̂t,add

I reduces bias and error if Tadd ≈ Nt [Candes,Tao’06]

I Support Delete by thresholding on x̂t,add w/ a larger threshold

I x̂t,add more accurate ⇒ αdel can be larger

I N̂t = Tadd \ {i : |(x̂t,add)i | ≤ αdel}
9
introduced in [Vaswani,ICIP’08,T-SP’10] & also in [Dai,Milenkovic’09], [Needell,Tropp’09] for static case
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Stability over time [Vaswani,T-SP, Aug’10] 10, [Vaswani,Allerton’10]11

I Easy to bound the reconstruction error at a given time, t
I the result depends on the support errors |∆t |, |∆e,t |

(recall: ∆t := Nt \ N̂t−1 , ∆e,t := N̂t−1 \ Nt )

I Key question for a recursive algorithm: when can we get
a time-invariant and small bound on the error?

10
N. Vaswani, ”LS-CS-residual (LS-CS): Compressive Sensing on the Least Squares Residual”, IEEE Trans.

Sig. Proc., Aug. 2010
11

N. Vaswani, Stability (over time) of Modified-CS for Recursive Causal Sparse Reconstruction, Allerton 2010
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Stability over time [Vaswani,T-SP, Aug’10] 10, [Vaswani,Allerton’10]11

I Easy to bound the reconstruction error at a given time, t
I the result depends on the support errors |∆t |, |∆e,t |

(recall: ∆t := Nt \ N̂t−1 , ∆e,t := N̂t−1 \ Nt )

I Key question for a recursive algorithm: when can we get
a time-invariant and small bound on the error?

I Solution approach: first obtain conditions under which
time-invariant bounds on |∆t |, |∆e,t | hold

I direct corollary: time-invariant bound on the recon error

10
N. Vaswani, ”LS-CS-residual (LS-CS): Compressive Sensing on the Least Squares Residual”, IEEE Trans.

Sig. Proc., Aug. 2010
11

N. Vaswani, Stability (over time) of Modified-CS for Recursive Causal Sparse Reconstruction, Allerton 2010
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Signal change model, measurement model and our result

Signal change model:
I Sa additions and removals from the support at each time

I support size constant at S0

I new elements added at a small value, r ; magnitude increases at rate
r per unit time, until it reaches a maximum magnitude dr

I similarly for decrease before removal

Measurement model:

yt = Axt + wt , ‖wt‖2 ≤ ε
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Signal change model, measurement model and our result

Signal change model:
I Sa additions and removals from the support at each time

I support size constant at S0

I new elements added at a small value, r ; magnitude increases at rate
r per unit time, until it reaches a maximum magnitude dr

I similarly for decrease before removal

Measurement model:

yt = Axt + wt , ‖wt‖2 ≤ ε

Our result: “stability” holds if

1. Sa and S0 are small enough (for a given A),
I ensures the error bound holds at all times

2. r is large enough
I ensures newly added elements detected within a finite delay
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Theorem (Modified-CS stability [Vaswani, Allerton’10])

If

1. support estimation threshold, α = 8.79ε

2. support size, support change size S0, Sa satisfy
I δS0+3Sa

< (
√
2− 1)/2 (for a given A)

,3. new element initial value and increase rate, r ≥ 8.79ε,

4. at initial time, t = 0, n0 large enough s.t. δ2S0 < (
√
2− 1)/2

then, at all times, t,

I final support errors, |∆̃t | ≤ 2Sa and |∆̃e,t | = 0

I initial support errors, |∆t | ≤ 2Sa and |∆e,t | ≤ Sa

I and so recon error satisfies ‖xt − x̂t,modcs‖2 ≤ 8.79ε

recall: ∆t := Nt \ N̂t−1, ∆e,t := N̂t−1 \ Nt , ∆̃t := Nt \ N̂t , ∆̃e,t := N̂t \ Nt
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Proof Outline: use induction

Here, “bounded” ⇔ bounded by a time-invariant value

I Induction assumption:

I final support errors (misses and extras) at t − 1 bounded

I + signal model ⇒ predicted support errors at t bounded

I + n large enough (or S0 small enough) ⇒ Mod-CS error bounded

I + α large enough ⇒ no extras

I + r large enough ⇒ all elements with mag > 2r detected (bounded
misses)

I ⇒ final support errors (misses and extras) at t bounded

Namrata Vaswani Recursive Sparse Recovery (RecSparsRec) 33/ 47



Background on Sparse Recovery
Recursive Reconstruction of Sparse Signal Sequences (RecSparsRec)
Rec Robust PCA ⇔ RecSparsRec in Large but Correlated Noise

The problem, motivation and applications, key ideas
Modified-CS: noise-free case and exact recovery result
Modified-CS: noisy case and time-invariant error bounds (stability)

Theorem (Modified-CS-with-Add-LS-Del stability [Vaswani,Allerton’10])
Let e := (x − x̂add)Tadd

. If

‖e‖∞ ≤ (1/
√

Sa) ‖e‖2,

1. (addition and deletion thresholds)

I αadd is large enough s.t. at most Sa false adds per unit time,

I αdel =
√

2
Sa
ε+ 2θS0+2Sa,Sa

r ,

2. (support size, support change size) S0, Sa satisfy

I δS0+3Sa
< (

√
2− 1)/2 and θS0+2Sa,Sa

< 1
4 (for a given A),

3. (new coeff. increase rate) r ≥ max(G1,G2), where

G1 :=
αadd + 8.79ε

2
, G2 :=

√
2ε√

Sa(1− 2θS0+2Sa,Sa
)

then, all the same conclusions hold.
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Proof Outline – 1 [Vaswani,Allerton’10] 12

I Goal: ensure that within a finite delay d0, all newly added elements
get detected and all zeroed (removed) elements get deleted

I simpler case: fix d0 = 2

I Starting point
I conditions and bound for Modified-CS error at t

I simple modification of Candes’ approach for CS

I conditions and bound for LS step error at t – also easy

I Key lemmas: sufficient conditions to ensure that, at a given t,

1. an undetected large-enough element gets added
2. an existing large-enough element does not get falsely deleted
3. a falsely detected zero element does get deleted

12
N. Vaswani, “Stability (over time) of Modified-CS for Recursive Causal Sparse Reconstruction”, Allerton

2010, submitted to IEEE Trans. Info. Th.
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Proof Outline – 2: Induction step idea

I Assume |∆̃t−1| ≤ 2Sa, |∆̃e,t−1| = 0 (induction assumption)

I Above + signal model ⇒ |∆t |, |∆e,t | bounded
(recall: ∆t := Nt \ N̂t−1 , ∆e,t := N̂t−1 \ Nt , ∆̃t := Nt \ N̂t , ∆̃e,t := N̂t \ Nt )

I Above + S0, Sa small enough ⇒ Mod-CS error bounded at t

I Add step
I above + signal model + r large enough ⇒ elements with

mag. ≥ 2r definitely get detected,
I need αadd large enough s.t. few and bounded false adds
I above two ensure support errors bounded after the add step

I LS and Delete step
I above + S0, Sa small enough ⇒ LS step error bounded
I above + signal model + r large enough ⇒ only elements < 2r

may get falsely deleted (|∆̃t | ≤ 2Sa)
I above + αdel large enough ⇒ all extras deleted (|∆̃e,t | = 0)
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Discussion

I Slow supp change ⇒ Sa � S0 ⇒ supp error bound, 2Sa, is small
compared to the supp size, S0 (meaningful result)

I Modified-CS stability result – only needs δS0+2Sa
< (

√
2− 1)/2

I needs weaker conditions on A than simple CS
I Simple CS needs δ2S0 < (

√
2− 1)/2 (for same error bound)

I Modified-CS-Add-LS-del stability result – needs

I weaker conditions on A than CS (for same error bound)

I weaker conditions on r than modified-CS
I it needs r ≥ (αadd +8.79ε)/2 but modified-CS needs r ≥ 8.79ε

I weaker conditions on both A and r compared to LS-CS result
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Normalized mean squared error (NMSE) v/s time

5 10 15 20 25 30
10

−3

10
−2

10
−1

time

N
M

S
E

r = 0.66667

mod−CS
mod−CS−add−LS−del
LS−CS

I A: random-Gaussian, n ×m, n = 29.5%; noise: unif(-0.13,0.13);
I new elem’s added at mag. r = 0.67; incr. at rate r , until reach

M = 2
I m = 200, support size, S0 = 0.1m, support change size, Sa = 0.1S0
I ModCS-Add-LS-del stable, others are not
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Normalized mean squared error (NMSE) v/s time

5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

time

N
M

S
E

r = 1

mod−CS

mod−CS−add−LS−del

LS−CS

simple CS

simple Gauss−CS

5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

time

N
M

S
E

r = 1

mod−CS
mod−CS−add−LS−del
LS−CS
simple CS
simple Gauss−CS

r = 1, n = 29.5% r = 1, n = 32.5%

I m = 200, S0 = 0.1m, Sa = 0.1S0, d = 3.
I ModCS needs larger r , LS-CS needs larger r and larger n
I Simple-CS has large error even with n = 32.5%
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Video Surveillance – Background subtraction application

Video: Background subtraction

image sequence, Mt = Lt + St

background sequence, Lt : low rank, changing subspace

foreground sequence, Ft : sparse w/ correlated support changes

Nt = support(Ft), (St)Nt
= (Ft − Lt)Nt

, (St)Nc
t
= 0
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Video Surveillance – Background subtraction application

The Problem

I Measurement: Mt := Lt + St

I St : sparse vector, with correlated support change over time

I Lt : low dimensional vector (matrix L := [Lt−τ , . . .Lt ] is low
rank)

I subspace in which Lt lies changes gradually over time

I matrix Pt : its columns span the subspace in which Lt lies

I Given P0, recursively recover St , Lt and the matrix Pt
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The Problem

I Measurement: Mt := Lt + St

I St : sparse vector, with correlated support change over time

I Lt : low dimensional vector (matrix L := [Lt−τ , . . .Lt ] is low
rank)

I subspace in which Lt lies changes gradually over time

I matrix Pt : its columns span the subspace in which Lt lies

I Given P0, recursively recover St , Lt and the matrix Pt

I Recursive Robust PCA:
I St : corruption (outlier), Lt : signal, Pt : its PC matrix

I RecSparsRec in Large but Low-dimensional Noise:
I St : sparse signal, Lt : corruption (low dimensional noise)

I our solutions apply even if Mt = ΨSt + Lt , Ψ: fat matrix
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Motivation and Applications

I Existing work [Candes,Wright,Ma,Li], [DeLaTorre,Black], ...

I simple thresholding (recovers only St)
I detect outliers and either downweight them, e.g. RSL, or fill in

using heuristics
I PCP - recover L, S from M = L+ S (S : sparse but not low

rank, L: low rank but not sparse)

I Need an approach that can
I handle correlated St ’s (PCP cannot)
I can handle fairly large support-sized St ’s (RSL, PCP cannot)
I recover small magnitude St ’s (RSL, thresh cannot)
I work in real-time

I Applications: recover sparse signals (most natural signals) in large
but spatially correlated noise (most natural noise sources)

I video/audio denoising, fMRI based active region detection,
sensor nets, ...
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ReProCS: Recursive Projected CS [Qiu,Vaswani,Allerton’10, Allerton’11]13

Mt = St + Lt , Lt = Ptat

I Update P̂t every-so-often: recursive PCA

I Project Mt into space perp to P̂t : get yt

I Recover St from yt : noisy sparse recovery

I Compute L̂t := Mt − Ŝt
13

C. Qiu and N. Vaswani, Real-time Robust Principal Components’ Pursuit, Allerton, 2010
C. Qiu and N. Vaswani, Recursive Sparse Recovery in Large but Correlated Noise, Allerton 2011
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ReProCS: Recursive Projected CS [Qiu,Vaswani,Allerton’10, Allerton’11]13

Mt = St + Lt , Lt = Ptat

I Update P̂t every-so-often: recursive PCA

I P̂t = recursive-PCA(P̂t−1, [L̂t−τ , . . . L̂t−1])

I Project Mt into space perp to P̂t : get yt

I yt := (P̂t,⊥)
′Mt = (P̂t,⊥)

′St + βt , βt : small noise

I Recover St from yt : noisy sparse recovery

I Ŝt = argminb ‖b‖1 s.t. ‖yt − (P̂t,⊥)
′b‖2 ≤ ε

I Compute L̂t := Mt − Ŝt
13

C. Qiu and N. Vaswani, Real-time Robust Principal Components’ Pursuit, Allerton, 2010
C. Qiu and N. Vaswani, Recursive Sparse Recovery in Large but Correlated Noise, Allerton 2011
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Support-predicted Modified-CS in ReProCS [Qiu,Vaswani,ISIT’11]14

I If r := rank(P̂t) small enough for a given s := |support(St)|
I

s

n−r
large enough for CS to work

14
C. Qiu and N. Vaswani, Support-Predicted Modified-CS for Recursive Robust Principal Components’ Pursuit,

ISIT, 2011
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Support-predicted Modified-CS in ReProCS [Qiu,Vaswani,ISIT’11]14

I If r := rank(P̂t) small enough for a given s := |support(St)|
I

s

n−r
large enough for CS to work

I If s too large or r too large: need Modified-CS

14
C. Qiu and N. Vaswani, Support-Predicted Modified-CS for Recursive Robust Principal Components’ Pursuit,

ISIT, 2011
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Support-predicted Modified-CS in ReProCS [Qiu,Vaswani,ISIT’11]14

I If r := rank(P̂t) small enough for a given s := |support(St)|
I

s

n−r
large enough for CS to work

I If s too large or r too large: need Modified-CS

I Video: support changes over time much more

I e.g. 10x10 block: one pixel motion – supp change of 10

I T = N̂t−1 is not a good approx to Nt

I Support-predicted Modified-CS idea:

I use T = model-predict(N̂t−1) in Mod-CS

I use N̂t to update correlation model parameters
14

C. Qiu and N. Vaswani, Support-Predicted Modified-CS for Recursive Robust Principal Components’ Pursuit,
ISIT, 2011
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Experiments

I Chenlu Qiu’s webpage

I ReProCS magic (St invisible in video, its support large, is
correlated)

I ReProCS overlay (real bgnd, foregnd somewhat visible but overlay)

I ReProCS (modCS) overlay (very large support of St : ReProCS fails)
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Ongoing and Future Work

I RecSparsRec in Large but Correlated Noise – Rec Robust PCA

I Regularized ModCS and Kalman filtered ModCS (KalMoCS)

I open q – when is KalMoCS stable w.r.t. a genie-aided KF?
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Ongoing and Future Work

I RecSparsRec in Large but Correlated Noise – Rec Robust PCA

I Regularized ModCS and Kalman filtered ModCS (KalMoCS)

I open q – when is KalMoCS stable w.r.t. a genie-aided KF?

I Functional MRI (fMRI) applications [Lu, Li, Atkinson, Vaswani, ICIP’11]

I Computer Vision

I ReProCS and applications in video [Qiu, Vaswani, Allerton’10, ISIT’11]

I Large dimensional visual tracking – use ideas from
RecSparsRec
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