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Our Goal

◮ Causally & recursively reconstruct a time seq. of sparse signals

◮ with slowly changing sparsity patterns

◮ from a small number of linear projections at each time

◮ “recursive”: use only current measurements vector and previous

reconstruction to get current reconstruction
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◮ Causally & recursively reconstruct a time seq. of sparse signals

◮ with slowly changing sparsity patterns

◮ from a small number of linear projections at each time

◮ “recursive”: use only current measurements vector and previous

reconstruction to get current reconstruction

◮ Applications

◮ real-time dynamic MRI reconstruction
◮ interventional radiology apps, e.g. MRI-guided surgery
◮ fMRI-based study of neural activation patterns

◮ single-pixel video imaging with a real-time video display, . . .
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◮ Why causal?
◮ needed for real-time applications

◮ Why causal & recursive?
◮ much faster than causal & batch

◮ O(m3) v/s O(t3 m3) at time t (m: signal length)

◮ also much faster than offline & batch

◮ Why reduce the number of measurements needed?
◮ data acquisition in MRI or single-pixel camera is sequential:

fewer meas ⇒ faster acquisition (needed for real-time)
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◮ Most existing work is either
◮ for static sparse reconstruction or
◮ or is offline & batch [Wakin et al’06(video)],[Gamper et al’08, Jung et al’09 (MRI)]

◮ Fails if applied to online problem with few measurements
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Example: dynamic MRI recon. of a cardiac sequence

Original sequence

CS−reconstructed sequence

Modified−CS reconstructed sequence

using only 16% Fourier measurements at t > 0 (50% at t = 0),
existing work (CS) gives large reconstruction error (10-12%),

proposed approach (modified-CS) is very accurate
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Example: dynamic MRI recon of a vocal tract sequence

videos: http://www.ece.iastate.edu/∼luwei/modcs/
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using only 19% Fourier measurements at all times,

existing work (CS, CS-diff) has large error
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What is sparse reconstruction?

◮ Reconstruct a sparse signal x from y := Ax (noiseless) or
y := Ax + w (noisy),

◮ when A is a fat matrix

◮ Solved if one can find the sparsest vector satisfying y = Ax
◮ and spark(A) > 2|support(x)|

◮ But, this has exponential complexity
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y := Ax + w (noisy),

◮ when A is a fat matrix

◮ Solved if one can find the sparsest vector satisfying y = Ax
◮ and spark(A) > 2|support(x)|

◮ But, this has exponential complexity

◮ Practical approaches (have polynomial complexity in m):
◮ convex relaxation approaches, e.g. BP, BPDN, DS, ...
◮ greedy methods, e.g. MP, OMP, CoSaMP, ...
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What is sparse reconstruction?

◮ Reconstruct a sparse signal x from y := Ax (noiseless) or
y := Ax + w (noisy),

◮ when A is a fat matrix

◮ Solved if one can find the sparsest vector satisfying y = Ax
◮ and spark(A) > 2|support(x)|

◮ But, this has exponential complexity

◮ Practical approaches (have polynomial complexity in m):
◮ convex relaxation approaches, e.g. BP, BPDN, DS, ...
◮ greedy methods, e.g. MP, OMP, CoSaMP, ...

◮ Compressed Sensing (CS) literature provides the missing
theoretical guarantees for the practical approaches
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Notation [Candes,Romberg,Tao’05]

◮ Notation:
◮ |T |: cardinality of set T
◮ T c = [1, 2, . . . m] \ T : complement of set T
◮ ‖β‖k : ℓk norm of vector β, ‖β‖: ℓ2 norm
◮ ‖A‖: spectral matrix norm (induced 2-norm) of matrix A
◮ βT : sub-vector containing elements of β with indices in set T
◮ AT : sub-matrix containing columns of A with indices in set T
◮ A′: denotes the transpose of matrix A
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◮ βT : sub-vector containing elements of β with indices in set T
◮ AT : sub-matrix containing columns of A with indices in set T
◮ A′: denotes the transpose of matrix A

◮ RIP constant, δS : smallest real number s.t. all eigenvalues of
AT

′AT lie b/w 1 ± δS whenever |T | ≤ S [Candes,Romberg,Tao’05]
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◮ RIP constant, δS : smallest real number s.t. all eigenvalues of
AT

′AT lie b/w 1 ± δS whenever |T | ≤ S [Candes,Romberg,Tao’05]

◮ δS < 1 ⇔ A satisfies the S-RIP

◮ ROP constant, θS1,S2
: smallest real number s.t. for disjoint sets,

T1,T2 with |T1| ≤ S1, |T2| ≤ S2,

|c ′1AT1
′AT2c2| ≤ θS1,S2‖c1‖2 ‖c2‖2 [Candes,Romberg,Tao’05]
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′AT lie b/w 1 ± δS whenever |T | ≤ S [Candes,Romberg,Tao’05]

◮ δS < 1 ⇔ A satisfies the S-RIP

◮ ROP constant, θS1,S2
: smallest real number s.t. for disjoint sets,

T1,T2 with |T1| ≤ S1, |T2| ≤ S2,

|c ′1AT1
′AT2c2| ≤ θS1,S2‖c1‖2 ‖c2‖2 [Candes,Romberg,Tao’05]

◮ easy to see: ‖AT1

′AT2
‖ ≤ θ|T1|,|T2|

Namrata Vaswani Recursive Causal Sparse Reconstruction 8/ 53



Motivation and Problem Formulation
Sparse recon. with partially known support

Details
Summary, Ongoing Work and Open Questions

Motivation
Background
Problem definition & Key ideas

Compressive sensing [Candes,Romberg,Tao’05][Donoho’05]

◮ ℓ1 min approaches
◮ Basis pursuit (BP) [Chen,Donoho,Saunders’97]: minβ ‖β‖1 s.t. y = Aβ

◮ BP denoising (BPDN): minβ ‖β‖1 s.t. ‖y − Aβ‖2 ≤ ǫ

◮ BPDN - unconst.: γ minβ ‖β‖1 + ‖y − Aβ‖2
2

◮ Dantzig selector (DS): minβ ‖β‖1 s.t. ‖A′(y − Aβ)‖∞ < λ
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◮ ℓ1 min approaches
◮ Basis pursuit (BP) [Chen,Donoho,Saunders’97]: minβ ‖β‖1 s.t. y = Aβ

◮ BP denoising (BPDN): minβ ‖β‖1 s.t. ‖y − Aβ‖2 ≤ ǫ

◮ BPDN - unconst.: γ minβ ‖β‖1 + ‖y − Aβ‖2
2

◮ Dantzig selector (DS): minβ ‖β‖1 s.t. ‖A′(y − Aβ)‖∞ < λ

◮ If x is S-sparse and δ2S + θS ,2S < 1,

◮ noiseless measurements: BP gives exact reconstruction

◮ noisy meas.: DS or BPDN error can be bounded
[Candes,Tao’06][Tropp’05]
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Problem definition

◮ Measure

yt = Axt (noise-free) or yt = Axt + wt (noisy)

◮ A = HΦ, H: measurement matrix, Φ: sparsity basis matrix

◮ yt : measurements (n × 1)

◮ xt : sparsity basis coefficients (m × 1), m > n

◮ Nt : support of xt (set of indices of nonzero elements of xt)

◮ Goal: recursively reconstruct xt from y0, y1, . . . yt ,

◮ i.e. use only x̂t−1 and yt for reconstructing xt
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Assumptions

◮ Measurement basis is “incoherent” w.r.t. sparsity basis
◮ A satisfies S-RIP for S > |Nt |+?

◮ xt is sparse at each time with support denoted Nt
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◮ Support changes slowly over time:

|Nt \ Nt−1| ≈ |Nt−1 \ Nt | ≪ |Nt |
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Assumptions

◮ Measurement basis is “incoherent” w.r.t. sparsity basis
◮ A satisfies S-RIP for S > |Nt |+?

◮ xt is sparse at each time with support denoted Nt

◮ Support changes slowly over time:

|Nt \ Nt−1| ≈ |Nt−1 \ Nt | ≪ |Nt |

◮ Usually nonzero elements of xt also change slowly over time
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Slow support change in medical image sequences

5 10 15 20
0

0.01

0.02

0.03

Time →

|N
t
\N

t
−

1
|

|N
t
|

 

 

Cardiac, 99%
Larynx, 99%

(a) additions

5 10 15 20
0

0.01

0.02

0.03

Time →

|N
t
−

1
\N

t
|

|N
t
|

 

 

Cardiac, 99%
Larynx, 99%

(b) deletions

◮ Nt : 99%-energy support of the 2D-DWT of the image

◮ additions: Nt \ Nt−1, deletions: Nt−1 \ Nt

◮ maximum size of additions/deletions is less than 0.02|Nt |
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Two Formulations

1. Only use “slow support change” assumption
◮ ⇔ sparse reconstruction with partially known support
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Two Formulations

1. Only use “slow support change” assumption
◮ ⇔ sparse reconstruction with partially known support
◮ two types of approaches

◮ LS-CS-residual (LS-CS) [Vaswani, ICIP’08, IEEE Trans. SP (to appear)]

◮ Modified-CS (mod-CS) [Vaswani, Lu, ISIT’09, IEEE Trans. SP (to appear)]
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Two Formulations

1. Only use “slow support change” assumption
◮ ⇔ sparse reconstruction with partially known support
◮ two types of approaches

◮ LS-CS-residual (LS-CS) [Vaswani, ICIP’08, IEEE Trans. SP (to appear)]

◮ Modified-CS (mod-CS) [Vaswani, Lu, ISIT’09, IEEE Trans. SP (to appear)]

2. Also use “slow signal value change”
◮ regularize both of the above approaches

◮ KF-CS-residual (KF-CS) [Vaswani, ICIP’08, ICASSP’09]

◮ KF-modCS (regularized mod-CS)

◮ significant performance improvement with fewer measurements
◮ but difficult to analyze
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Key Contributions [Vaswani, ICIP’08, Trans. SP (to appear)] [Vaswani, Lu, ISIT’09,Trans. SP (to appear)]

Assume: “slow support change”

Under weaker sufficient conditions (fewer measurements) than CS,

1. Mod-CS achieves exact recon (noise-free case)
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Assume: “slow support change”

Under weaker sufficient conditions (fewer measurements) than CS,
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2. Noisy case: error bound is significantly smaller than CS
◮ if previous recon accurate enough
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Key Contributions [Vaswani, ICIP’08, Trans. SP (to appear)] [Vaswani, Lu, ISIT’09,Trans. SP (to appear)]

Assume: “slow support change”

Under weaker sufficient conditions (fewer measurements) than CS,

1. Mod-CS achieves exact recon (noise-free case)

2. Noisy case: error bound is significantly smaller than CS
◮ if previous recon accurate enough
◮ holds for both Mod-CS & LS-CS
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2. Noisy case: error bound is significantly smaller than CS
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◮ holds for both Mod-CS & LS-CS

3. Noisy case: error is “stable” over time
◮ time-invariant bound on support errors (misses/extras) &

hence on recon errors; support error bound ≪ support size
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Key Contributions [Vaswani, ICIP’08, Trans. SP (to appear)] [Vaswani, Lu, ISIT’09,Trans. SP (to appear)]

Assume: “slow support change”

Under weaker sufficient conditions (fewer measurements) than CS,

1. Mod-CS achieves exact recon (noise-free case)

2. Noisy case: error bound is significantly smaller than CS
◮ if previous recon accurate enough
◮ holds for both Mod-CS & LS-CS

3. Noisy case: error is “stable” over time
◮ time-invariant bound on support errors (misses/extras) &

hence on recon errors; support error bound ≪ support size
◮ holds for both Mod-CS & LS-CS

4. Demonstrated all the above for recon’ing real image sequences
(approx. sparse) from both partial Fourier (MRI) & Gaussian meas’s

Namrata Vaswani Recursive Causal Sparse Reconstruction 14/ 53



Motivation and Problem Formulation
Sparse recon. with partially known support

Details
Summary, Ongoing Work and Open Questions

Motivation
Background
Problem definition & Key ideas

Related Work

◮ Batch CS [Wakin et al (video)],[Gamper et al,Jan’08 (MRI)],[Jung et al’09 (MRI)]

◮ non-causal, very high reconstruction complexity
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Related Work

◮ Batch CS [Wakin et al (video)],[Gamper et al,Jan’08 (MRI)],[Jung et al’09 (MRI)]

◮ non-causal, very high reconstruction complexity

◮ [Cevher et al, ECCV’08]: CS for background subtracted images (CS-diff)

◮ CS(yt − yt−1): designed to only recon xt − xt−1

◮ unstable if try to recon xt from few measurements
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Related Work

◮ Batch CS [Wakin et al (video)],[Gamper et al,Jan’08 (MRI)],[Jung et al’09 (MRI)]

◮ non-causal, very high reconstruction complexity

◮ [Cevher et al, ECCV’08]: CS for background subtracted images (CS-diff)

◮ CS(yt − yt−1): designed to only recon xt − xt−1

◮ unstable if try to recon xt from few measurements

◮ [von Borries et al,CAMSAP’07]: static CS with prior support knowledge
◮ did not give any exact reconstruction guarantees or error

bounds or experimental results
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Parallel, later and not-so-related work

◮ Parallel work related to modified-CS [Vaswani,Lu, ISIT’09]

◮ [Khajenejad et al, ISIT’09]: static CS with probabilistic prior on support
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Parallel, later and not-so-related work

◮ Parallel work related to modified-CS [Vaswani,Lu, ISIT’09]

◮ [Khajenejad et al, ISIT’09]: static CS with probabilistic prior on support

◮ Work related to KF-CS, LS-CS [Vaswani, ICIP’08]

◮ [Angelosante,Giannakis, DSP’09]

◮ focusses only on time-invariant support: restrictive
◮ [Carmi et al, pseudo-measurement KF, IBM tech report’09]

◮ modifies KF-CS [Vaswani, ICIP’08]
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Parallel, later and not-so-related work

◮ Parallel work related to modified-CS [Vaswani,Lu, ISIT’09]

◮ [Khajenejad et al, ISIT’09]: static CS with probabilistic prior on support

◮ Work related to KF-CS, LS-CS [Vaswani, ICIP’08]

◮ [Angelosante,Giannakis, DSP’09]

◮ focusses only on time-invariant support: restrictive
◮ [Carmi et al, pseudo-measurement KF, IBM tech report’09]

◮ modifies KF-CS [Vaswani, ICIP’08]

◮ Our goals are very different from:
◮ homotopy methods e.g. [Asif,Romberg’09], [Rozell et al’07]

◮ speed up optimization, do not reduce no. of meas’s reqd.

◮ reconstruct one signal recursively from seq. arriving meas’s,
◮ e.g. [Sequential CS,Maliotov et al,ICASSP’08], [Garrigues et al’08], [Asif,Romberg’08],

[Angelosante,Giannakis,RLS-Lasso,ICASSP’09]

◮ multiple measurements vector (MMV) problem
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Motivation
Background
Problem definition & Key ideas

Outline

◮ Sparse reconstruction with partially known support
◮ problem definition
◮ LS-CS-residual and error bound
◮ Modified-CS and exact reconstruction conditions
◮ Stability over time

◮ Summary

◮ Ongoing work: KF-CS-residual, KF-mod-CS
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Sparse reconstruction with partly known support

◮ Rewrite the support, Nt , as

Nt = T ∪ ∆ \ ∆e

◮ T : “known” part of the support at t, may have error

◮ ∆e := T \ Nt : error in T , unknown

◮ ∆ := Nt \ T : unknown part of support
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◮ T : “known” part of the support at t, may have error

◮ ∆e := T \ Nt : error in T , unknown

◮ ∆ := Nt \ T : unknown part of support

◮ In our problem:
◮ at t > 0, use T = N̂t−1
◮ if previous recon accurate enough and “slow support change”,

◮ |∆e |, |∆| ≪ |Nt |
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Sparse reconstruction with partly known support

◮ Rewrite the support, Nt , as

Nt = T ∪ ∆ \ ∆e

◮ T : “known” part of the support at t, may have error

◮ ∆e := T \ Nt : error in T , unknown

◮ ∆ := Nt \ T : unknown part of support

◮ In our problem:
◮ at t > 0, use T = N̂t−1
◮ if previous recon accurate enough and “slow support change”,

◮ |∆e |, |∆| ≪ |Nt |

◮ at t = 0, T = empty or use prior knowledge
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◮ The problem is also of independent interest

◮ T may be available from prior knowledge

◮ Examples:
1. piecewise smooth images with small black background

◮ most approximation coefficients of its DWT are nonzero
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Summary, Ongoing Work and Open Questions

◮ The problem is also of independent interest

◮ T may be available from prior knowledge

◮ Examples:
1. piecewise smooth images with small black background

◮ most approximation coefficients of its DWT are nonzero

2. Fourier sparse signals/images: usually most low frequencies
present

3. fMRI brain activation tracking: use initial frame support as
“known part”
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Details
Summary, Ongoing Work and Open Questions

LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

LS-CS-residual (LS-CS) [Vaswani, ICIP’08, ICASSP’09, Trans. SP (to appear)]

◮ Our problem: reconstruct x with support N = T ∪ ∆ \ ∆e

from y := Ax or from y := Ax + w , when T is known

◮ CS-residual idea:
◮ compute an initial LS estimate assuming T is correct support

(x̂init)T = AT
†y

(x̂init)T c = 0
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from y := Ax or from y := Ax + w , when T is known

◮ CS-residual idea:
◮ compute an initial LS estimate assuming T is correct support

(x̂init)T = AT
†y

(x̂init)T c = 0

◮ compute the observation residual

ỹres = y − Ax̂init

◮ CS on observation residual, add back x̂init

x̂CSres = CS(ỹres) + x̂init

Namrata Vaswani Recursive Causal Sparse Reconstruction 20/ 53



Motivation and Problem Formulation
Sparse recon. with partially known support

Details
Summary, Ongoing Work and Open Questions

LS-CS-residual (LS-CS) & error bound
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LS-CS-residual (LS-CS) [Vaswani, ICIP’08, ICASSP’09, Trans. SP (to appear)]

◮ Our problem: reconstruct x with support N = T ∪ ∆ \ ∆e

from y := Ax or from y := Ax + w , when T is known

◮ CS-residual idea:
◮ compute an initial LS estimate assuming T is correct support

(x̂init)T = AT
†y

(x̂init)T c = 0

◮ compute the observation residual

ỹres = y − Ax̂init

◮ CS on observation residual, add back x̂init

x̂CSres = CS(ỹres) + x̂init

◮ Notice that ỹres = Aβ + w , β = x − x̂init
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Details
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LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Why CS-residual works better?

◮ Notice that ỹres = Aβ + w , where β = x − x̂init with

(β)(T∪∆)c = 0

(β)T = (AT
′AT )−1AT

′(A∆x∆ + w),

(β)∆ = x∆

◮ |∆|, |∆e | small ⇒ ‖AT
′A∆‖ ≤ θ|T |,|∆| small
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◮ if noise also small ⇒ second term in (β)T equation is small
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◮ |∆e | small ⇒ ‖(AT
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◮ all the above ⇒ ‖(β)T‖ small ⇒ β is approx |∆|-sparse
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◮ all the above ⇒ ‖(β)T‖ small ⇒ β is approx |∆|-sparse
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◮ Notice that ỹres = Aβ + w , where β = x − x̂init with

(β)(T∪∆)c = 0

(β)T = (AT
′AT )−1AT

′(A∆x∆ + w),

(β)∆ = x∆

◮ |∆|, |∆e | small ⇒ ‖AT
′A∆‖ ≤ θ|T |,|∆| small

◮ if noise also small ⇒ second term in (β)T equation is small

◮ |∆e | small ⇒ ‖(AT
′AT )−1‖ ≤ (1 − δ|T |)

−1 not large

◮ all the above ⇒ ‖(β)T‖ small ⇒ β is approx |∆|-sparse

◮ β is “sparse-compressible”

◮ ⇒ CS-residual error much smaller than CS error, with fewer
measurements,
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LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Why CS-residual works better?

◮ Notice that ỹres = Aβ + w , where β = x − x̂init with

(β)(T∪∆)c = 0

(β)T = (AT
′AT )−1AT

′(A∆x∆ + w),

(β)∆ = x∆

◮ |∆|, |∆e | small ⇒ ‖AT
′A∆‖ ≤ θ|T |,|∆| small

◮ if noise also small ⇒ second term in (β)T equation is small

◮ |∆e | small ⇒ ‖(AT
′AT )−1‖ ≤ (1 − δ|T |)

−1 not large

◮ all the above ⇒ ‖(β)T‖ small ⇒ β is approx |∆|-sparse

◮ β is “sparse-compressible”

◮ ⇒ CS-residual error much smaller than CS error, with fewer
measurements, when support errors are small

recall: T : “known” support, ∆: unknown part of support, ∆e : error in known partNamrata Vaswani Recursive Causal Sparse Reconstruction 21/ 53
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LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Reconstruction error bound [Vaswani, Trans. SP (to appear)]

◮ Bound reconstruction error as a function of |T |, |∆|
◮ L1: obtain error bound for CS on sparse-compressible vectors
◮ (β)T is “compressible” part of β := x − x̂init

◮ bound ‖(β)T‖1 and apply L1
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◮ Bound reconstruction error as a function of |T |, |∆|
◮ L1: obtain error bound for CS on sparse-compressible vectors
◮ (β)T is “compressible” part of β := x − x̂init

◮ bound ‖(β)T‖1 and apply L1

◮ Comparison with CS: if |∆|, |∆e | ≪ |N|
◮ our bound holds under weaker sufficient cond’s (fewer meas.)
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LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Reconstruction error bound [Vaswani, Trans. SP (to appear)]

◮ Bound reconstruction error as a function of |T |, |∆|
◮ L1: obtain error bound for CS on sparse-compressible vectors
◮ (β)T is “compressible” part of β := x − x̂init

◮ bound ‖(β)T‖1 and apply L1

◮ Comparison with CS: if |∆|, |∆e | ≪ |N|
◮ our bound holds under weaker sufficient cond’s (fewer meas.)

◮ under these sufficient conditions,
◮ possible to obtain another CS error bound
◮ can argue: our bound is smaller

recall: T : “known” support, ∆: unknown part of support, ∆e : error in known part

Namrata Vaswani Recursive Causal Sparse Reconstruction 22/ 53



Motivation and Problem Formulation
Sparse recon. with partially known support

Details
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LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Simulations: normalized MSE [Vaswani, Trans. SP (to appear)]

So far: only upper bound comparison, need simulations
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Simulations: normalized MSE [Vaswani, Trans. SP (to appear)]

So far: only upper bound comparison, need simulations

◮ Simulation setup

◮ signal length m = 200, |N| = 20, |∆| = |∆e | = 2
◮ (xN)i i.i.d ±1 w.p 1/2
◮ noise: zero mean Gaussian, vary σ2 and n (no. of meas’s)
◮ compare with Dantzig selector (DS) with various choices of λ
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LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Simulations: normalized MSE [Vaswani, Trans. SP (to appear)]

So far: only upper bound comparison, need simulations

◮ Simulation setup

◮ signal length m = 200, |N| = 20, |∆| = |∆e | = 2
◮ (xN)i i.i.d ±1 w.p 1/2
◮ noise: zero mean Gaussian, vary σ2 and n (no. of meas’s)
◮ compare with Dantzig selector (DS) with various choices of λ

n = 59 n = 59 n = 59 n = 100
σ = 0.04 σ = 0.09 σ = 0.44 σ = 0.04

DS, λ = 4σ 0.6545 0.6759 0.9607 0.2622
DS, λ = 0.4σ 0.5375 0.5479 1.0525 0.0209

CS-residual, λ = 4σ 0.0866 0.1069 0.1800 0.0402
CS-residual w/ add-then-del 0.0044 0.0205 0.1793 0.0032

n = 59: CS-residual error much smaller than CS error
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Details
Summary, Ongoing Work and Open Questions

LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Support estimation [Vaswani, ICIP’08, Trans. SP (to appear)]

◮ Option 1: N̂ = {i : |(x̂CSres)i | > αa}
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Support estimation [Vaswani, ICIP’08, Trans. SP (to appear)]

◮ Option 1: N̂ = {i : |(x̂CSres)i | > αa}
◮ difficulty: CS output biased towards zero [Candes,Tao’06]

◮ ⇒ x̂CSres biased towards zero along ∆, away from zero along T
◮ ⇒ need small threshold for addition, large for deletion

Namrata Vaswani Recursive Causal Sparse Reconstruction 24/ 53



Motivation and Problem Formulation
Sparse recon. with partially known support

Details
Summary, Ongoing Work and Open Questions

LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Support estimation [Vaswani, ICIP’08, Trans. SP (to appear)]

◮ Option 1: N̂ = {i : |(x̂CSres)i | > αa}
◮ difficulty: CS output biased towards zero [Candes,Tao’06]

◮ ⇒ x̂CSres biased towards zero along ∆, away from zero along T
◮ ⇒ need small threshold for addition, large for deletion

◮ Option 2: Add-then-Delete

Tadd = T ∪ {i : |(x̂CSres)i | > αadd}
x̂add = LS(Tadd, yt)

N̂ = Tadd \ {i : |(x̂add)i | ≤ αdel}
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LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Support estimation [Vaswani, ICIP’08, Trans. SP (to appear)]

◮ Option 1: N̂ = {i : |(x̂CSres)i | > αa}
◮ difficulty: CS output biased towards zero [Candes,Tao’06]

◮ ⇒ x̂CSres biased towards zero along ∆, away from zero along T
◮ ⇒ need small threshold for addition, large for deletion

◮ Option 2: Add-then-Delete

Tadd = T ∪ {i : |(x̂CSres)i | > αadd}
x̂add = LS(Tadd, yt)

N̂ = Tadd \ {i : |(x̂add)i | ≤ αdel}
◮ Advantage:

◮ use αadd as small as possible: ensure LS step error small
◮ if LS estimate accurate ⇒ (a) deletion better, (b) αdel can be

larger ⇒ huge improvement in recon error
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LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Support estimation [Vaswani, ICIP’08, Trans. SP (to appear)]

◮ Option 1: N̂ = {i : |(x̂CSres)i | > αa}
◮ difficulty: CS output biased towards zero [Candes,Tao’06]

◮ ⇒ x̂CSres biased towards zero along ∆, away from zero along T
◮ ⇒ need small threshold for addition, large for deletion

◮ Option 2: Add-then-Delete

Tadd = T ∪ {i : |(x̂CSres)i | > αadd}
x̂add = LS(Tadd, yt)

N̂ = Tadd \ {i : |(x̂add)i | ≤ αdel}
◮ Advantage:

◮ use αadd as small as possible: ensure LS step error small
◮ if LS estimate accurate ⇒ (a) deletion better, (b) αdel can be

larger ⇒ huge improvement in recon error

◮ Similar idea also introduced in [Needell-Tropp,CoSaMP’08]
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LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

LS-CS-residual (LS-CS) algo [Vaswani, Trans. SP (to appear)]

At each time t,

◮ Initial LS.
◮ compute x̂t,init = LS(T , yt)
◮ compute residual, ỹt,res = yt − Ax̂t,init

◮ CS-residual.
◮ compute x̂t,CSres = CS(ỹt,res) + x̂t,init

◮ Support Additions and LS.
◮ compute T̃add = T ∪ threshold(x̂t,CSres, αadd)
◮ compute x̂t,add = LS(T̃add, yt)

◮ Support Deletions and LS.
◮ compute N̂t = T̃add \ threshold(x̂t,add, αdel)
◮ compute x̂t = LS(N̂t , yt)
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Details
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LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Exact reconstruction from fewer noiseless measurements?

◮ Consider noise-free measurements, i.e. y := Ax .

◮ Can CS-residual achieve exact reconstruction using fewer
measurements?
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LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Exact reconstruction from fewer noiseless measurements?

◮ Consider noise-free measurements, i.e. y := Ax .

◮ Can CS-residual achieve exact reconstruction using fewer
measurements?

◮ Answer: NO
◮ No. of meas. needed for exact recon depends on support size

◮ CS-residual reconstructs β := xt − x̂t,init from the LS residual

◮ Support of β is T ∪ ∆ and |T ∪ ∆| ≥ |N| (support size of x)

◮ Need something else...

recall: T : “known” support, ∆: unknown part of support, ∆e : error in known part
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Motivation and Problem Formulation
Sparse recon. with partially known support

Details
Summary, Ongoing Work and Open Questions

LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Modified-CS: noiseless measurements [Vaswani,Lu, ISIT’09, Trans. SP (to appear)]

◮ Our problem: reconstruct a sparse x with support
N = T ∪ ∆ \ ∆e from y := Ax , when T is known
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◮ Our idea: find a vector that is sparsest outside of T and
satisfies the data constraint, i.e.

min
β

‖(β)T c‖0 s.t. y = Aβ
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Modified-CS: noiseless measurements [Vaswani,Lu, ISIT’09, Trans. SP (to appear)]

◮ Our problem: reconstruct a sparse x with support
N = T ∪ ∆ \ ∆e from y := Ax , when T is known

◮ Our idea: find a vector that is sparsest outside of T and
satisfies the data constraint, i.e.

min
β

‖(β)T c‖0 s.t. y = Aβ

◮ Exact recon if δ|N|+|∆e |+|∆| < 1

Namrata Vaswani Recursive Causal Sparse Reconstruction 27/ 53



Motivation and Problem Formulation
Sparse recon. with partially known support

Details
Summary, Ongoing Work and Open Questions

LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Modified-CS: noiseless measurements [Vaswani,Lu, ISIT’09, Trans. SP (to appear)]

◮ Our problem: reconstruct a sparse x with support
N = T ∪ ∆ \ ∆e from y := Ax , when T is known

◮ Our idea: find a vector that is sparsest outside of T and
satisfies the data constraint, i.e.

min
β

‖(β)T c‖0 s.t. y = Aβ

◮ Exact recon if δ|N|+|∆e |+|∆| < 1

◮ ℓ0-CS needs δ2|N| < 1
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Details
Summary, Ongoing Work and Open Questions

LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Modified-CS: noiseless measurements [Vaswani,Lu, ISIT’09, Trans. SP (to appear)]

◮ Our problem: reconstruct a sparse x with support
N = T ∪ ∆ \ ∆e from y := Ax , when T is known

◮ Our idea: find a vector that is sparsest outside of T and
satisfies the data constraint, i.e.

min
β

‖(β)T c‖0 s.t. y = Aβ

◮ Exact recon if δ|N|+|∆e |+|∆| < 1

◮ ℓ0-CS needs δ2|N| < 1

◮ Replace ℓ0 norm by ℓ1 norm: get a convex problem:

min
β

‖(β)T c‖1 s.t. y = Aβ (modified-CS)

recall: T : known part of support, ∆: unknown part, ∆e : error in known part
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Sparse recon. with partially known support

Details
Summary, Ongoing Work and Open Questions

LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Exact recon with modified-CS [Vaswani,Lu, ISIT’09, Trans. SP (to appear)]

min
β

‖βT c‖1 s.t. y = Aβ (modified-CS)

Theorem
x is the unique minimizer of (modified-CS) if δ|T |+|∆| < 1 and

(θ|∆|,|∆| + δ2|∆| + θ|∆|,2|∆|) + (δ|T | + θ2
|∆|,|T | + 2θ2

2|∆|,|T |) < 1

recall: T = N ∪ ∆e \ ∆, T : known part of support, ∆: unknown part, ∆e : error in known part
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Motivation and Problem Formulation
Sparse recon. with partially known support

Details
Summary, Ongoing Work and Open Questions

LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Comparing the sufficient conditions

◮ Modified-CS needs δ|T |+|∆| < 1 and

Mcond := (δ2|∆|+θ|∆|,|∆|+θ|∆|,2|∆|)+(δ|T |+θ2
|∆|,|T |+2θ2

2|∆|,|T |) < 1

◮ CS needs [Decoding by LP, Candes,Tao’05]:

Ccond := δ2|N| + θ|N|,|N| + θ|N|,2|N| < 1
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Details
Summary, Ongoing Work and Open Questions

LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Comparing the sufficient conditions

◮ Modified-CS needs δ|T |+|∆| < 1 and

Mcond := (δ2|∆|+θ|∆|,|∆|+θ|∆|,2|∆|)+(δ|T |+θ2
|∆|,|T |+2θ2

2|∆|,|T |) < 1

◮ CS needs [Decoding by LP, Candes,Tao’05]:

Ccond := δ2|N| + θ|N|,|N| + θ|N|,2|N| < 1

◮ If |∆| ≈ |∆e | ≪ |N| (typical for medical image seq’s),

Mcond < Ccond

◮ the difference (Ccond − Mcond) is larger when n is smaller

◮ e.g. if n < 2|N|, Ccond > 1, but Mcond < 1 can hold

recall: n is the number of measurements, T : known part of support, ∆: unknown part, ∆e : error in known part
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Motivation and Problem Formulation
Sparse recon. with partially known support

Details
Summary, Ongoing Work and Open Questions

LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Comparison with the best sufficient conditions for CS

◮ CS gives exact recon if

δ2|N| <
√

2 − 1 or δ2|N| + δ3|N| < 1 [Candes’08, Candes-Tao’06]

◮ Modified-CS gives exact recon if

2δ2|∆| + δ3|∆| + δ|N|+|∆e |−|∆| + δ2
|N|+|∆e |

+ 2δ2
|N|+|∆e |+|∆| < 1

◮ use δck ≤ cδ2k [CoSaMP’08]

◮ If |∆| = |∆e | = 0.02|N| (typical in medical sequences),
◮ sufficient condition for CS:

δ2|∆| < 1/241.5

◮ sufficient condition for modified-CS:

δ2|∆| < 1/132.5
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Motivation and Problem Formulation
Sparse recon. with partially known support

Details
Summary, Ongoing Work and Open Questions

LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Simulations: probability of exact reconstruction

Simulation setup:

◮ signal length, m = 256, support size s = |N| = 0.1m

◮ use random-Gaussian A, varied n, |∆| and |∆e |
◮ for each choice, Monte Carlo averaged over N, (x)N , ∆, ∆e

◮ we say “works” (gives exact recon) if ‖x − x̂‖2 < 10−5‖x‖2

Namrata Vaswani Recursive Causal Sparse Reconstruction 31/ 53



Motivation and Problem Formulation
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Details
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LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Simulations: probability of exact reconstruction

Simulation setup:

◮ signal length, m = 256, support size s = |N| = 0.1m

◮ use random-Gaussian A, varied n, |∆| and |∆e |
◮ for each choice, Monte Carlo averaged over N, (x)N , ∆, ∆e

◮ we say “works” (gives exact recon) if ‖x − x̂‖2 < 10−5‖x‖2

n mod-CS mod-CS CS
|∆|, |∆e | ≤ 0.08|N| |∆|, |∆e | ≤ 0.20|N| (∆ = N, ∆e = ∅)

19% 0.998 0.68 0

25% 1 0.99 0.002

40% 1 1 0.98

recall: n is number of measurements, ∆: unknown part of support, ∆e : error in known part
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Motivation and Problem Formulation
Sparse recon. with partially known support

Details
Summary, Ongoing Work and Open Questions

LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Modified-CS for time sequences

Initial time (t = 0):

◮ use T0 from prior knowledge, e.g. wavelet approx. coeff’s

◮ typically need more measurements at t = 0
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Details
Summary, Ongoing Work and Open Questions

LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Modified-CS for time sequences

Initial time (t = 0):

◮ use T0 from prior knowledge, e.g. wavelet approx. coeff’s

◮ typically need more measurements at t = 0

Stability: (trivial in the noise-free case)

◮ error stable at zero if Mcond < 1 at t = 0 and at all t > 0
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Motivation and Problem Formulation
Sparse recon. with partially known support

Details
Summary, Ongoing Work and Open Questions

LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Exact recon of a sparsified cardiac sequence

Original sequence

CS−reconstructed sequence

Modified−CS reconstructed sequence

(c) n0 = 50%, n = 16%
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Simple CS
Modified−CS
CS−diff
LS−CS

(d) n0 = 50%, n = 16%

support size ∼ 10%

using n = 16% MRI measurements at t > 0, n0 = 50% at t = 0.

modified-CS gives exact recon (NRMSE ∼ 10−8), others do not
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Sparse recon. with partially known support

Details
Summary, Ongoing Work and Open Questions

LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Small error recon of a true larynx sequence

Original sequence

CS−reconstructed sequence

Modified CS reconstructed sequence

(e) n0 = 50%, n = 19%
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(f) n0 = 50%, n = 19%

using n = 19% MRI measurements at t > 0, n0 = 50% at t = 0
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Motivation and Problem Formulation
Sparse recon. with partially known support

Details
Summary, Ongoing Work and Open Questions

LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Small error recon of a true larynx sequence
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(g) n0 = 20%, n = 19%

5 10 15 20
10

−2

10
−1

Time→

N
−R

M
S

E

 

 

CS−diff
Mod−CS
CS

(h) n0 = 19%, n = 19%

reducing n0 (no. of measurements at t = 0)
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Motivation and Problem Formulation
Sparse recon. with partially known support

Details
Summary, Ongoing Work and Open Questions

LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Noisy measurements

◮ Mod-CS(noisy): relax the data constraint, e.g.

min
β

‖βT c‖1 s.t. ‖yt − Aβ‖2 ≤ ǫ

◮ use add-then-delete for support estimation
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Noisy measurements

◮ Mod-CS(noisy): relax the data constraint, e.g.

min
β

‖βT c‖1 s.t. ‖yt − Aβ‖2 ≤ ǫ

◮ use add-then-delete for support estimation

◮ Noisy meas’s: Mod-CS or LS-CS-residual or Mod-CS-residual
(ongoing work)
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Motivation and Problem Formulation
Sparse recon. with partially known support

Details
Summary, Ongoing Work and Open Questions

LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Noisy measurements

◮ Mod-CS(noisy): relax the data constraint, e.g.

min
β

‖βT c‖1 s.t. ‖yt − Aβ‖2 ≤ ǫ

◮ use add-then-delete for support estimation

◮ Noisy meas’s: Mod-CS or LS-CS-residual or Mod-CS-residual
(ongoing work)

◮ Easy to bound error as a function of |T |, |∆| [Lu,Vaswani,ICASSP’10],

[Jacques,Arxiv’09]

◮ but |T |, |∆| depend on accuracy of previous recon
◮ bound may keep increasing over time – limited use
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Stability [Vaswani, Trans. SP (to appear)]

◮ A bound that may keep increasing over time – limited use
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Stability [Vaswani, Trans. SP (to appear)]

◮ A bound that may keep increasing over time – limited use

◮ Need conditions under which a time-invariant bound holds
◮ i.e. need conditions for “stability” over time

Namrata Vaswani Recursive Causal Sparse Reconstruction 37/ 53



Motivation and Problem Formulation
Sparse recon. with partially known support

Details
Summary, Ongoing Work and Open Questions

LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Stability [Vaswani, Trans. SP (to appear)]

◮ A bound that may keep increasing over time – limited use

◮ Need conditions under which a time-invariant bound holds
◮ i.e. need conditions for “stability” over time

◮ Approach:
◮ obtain a time-invariant bound on the support errors (extras &

misses)
◮ argue: bound small compared to support size
◮ directly implies time-invariant and small bound on recon error
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Motivation and Problem Formulation
Sparse recon. with partially known support

Details
Summary, Ongoing Work and Open Questions

LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Stability of modified-CS and LS-CS: setting

◮ Bounded measurement noise.
◮ Why? -

◮ Gaussian noise: error bounds at t hold with “large” probability
◮ stability: need the bounds to hold for all t: will hold w.p. zero
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Stability of modified-CS and LS-CS: setting

◮ Bounded measurement noise.
◮ Why? -

◮ Gaussian noise: error bounds at t hold with “large” probability
◮ stability: need the bounds to hold for all t: will hold w.p. zero

◮ Two signal models with
◮ two different support change models

1. Sa elements added and deleted “every-so-often”

2. Sa elements added and deleted at every time
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Stability of modified-CS and LS-CS: setting

◮ Bounded measurement noise.
◮ Why? -

◮ Gaussian noise: error bounds at t hold with “large” probability
◮ stability: need the bounds to hold for all t: will hold w.p. zero

◮ Two signal models with
◮ two different support change models

1. Sa elements added and deleted “every-so-often”

2. Sa elements added and deleted at every time

◮ almost constant signal power,
◮ slowly increasing/decreasing coeff. magnitudes
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Motivation and Problem Formulation
Sparse recon. with partially known support

Details
Summary, Ongoing Work and Open Questions

LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Stability of modified-CS and LS-CS: setting

◮ Bounded measurement noise.
◮ Why? -

◮ Gaussian noise: error bounds at t hold with “large” probability
◮ stability: need the bounds to hold for all t: will hold w.p. zero

◮ Two signal models with
◮ two different support change models

1. Sa elements added and deleted “every-so-often”

2. Sa elements added and deleted at every time

◮ almost constant signal power,
◮ slowly increasing/decreasing coeff. magnitudes

◮ In case of 1.: perfect support estimation possible after a small delay
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Motivation and Problem Formulation
Sparse recon. with partially known support

Details
Summary, Ongoing Work and Open Questions

LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Stability of modified-CS and LS-CS: summary [Vaswani, Trans. SP (to appear)]

◮ For a given n (no. of meas.) and noise level,

1. if use enough measurements for accurate recon at t = 0
2. if

◮ the support is small enough, and
◮ the support changes slowly enough,

3. if the nonzero coefficients increase/decrease fast enough, and
4. if addition & deletion thresholds are appropriately set,

then
◮ support errors (no. of extras and misses) are bounded
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Details
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Stability of modified-CS and LS-CS: summary [Vaswani, Trans. SP (to appear)]

◮ For a given n (no. of meas.) and noise level,

1. if use enough measurements for accurate recon at t = 0
2. if

◮ the support is small enough, and
◮ the support changes slowly enough,

3. if the nonzero coefficients increase/decrease fast enough, and
4. if addition & deletion thresholds are appropriately set,

then
◮ support errors (no. of extras and misses) are bounded

◮ Can argue: our sufficient conditions allow larger support
sizes, for a given n, than CS results
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Motivation and Problem Formulation
Sparse recon. with partially known support

Details
Summary, Ongoing Work and Open Questions

LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Result 1: support changes every-so-often [Vaswani, Trans. SP (to appear)]

◮ Signal model:
◮ Sa additions (removals) to (from) support every d frames
◮ support size is always either S0 or S0 − Sa

◮ the magnitude of the i th new coeff increases at rate ai for d
time units and then becomes constant

◮ similar model for coeff decrease
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Details
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Result 1: support changes every-so-often [Vaswani, Trans. SP (to appear)]

◮ Signal model:
◮ Sa additions (removals) to (from) support every d frames
◮ support size is always either S0 or S0 − Sa

◮ the magnitude of the i th new coeff increases at rate ai for d
time units and then becomes constant

◮ similar model for coeff decrease

◮ If “conditions” hold, then
◮ at all times, misses and extras are bounded:

|Nt \ N̂t | ≤ Sa, and |N̂t \ Nt | ≤ 2Sa + 4

◮ within a short delay, Sa + 2, after a new addition, N̂t = Nt

◮ remains this way until next addition time

substituting d0 = 2 in [Vaswani, LS-CS-residual, TSP (to appear)]
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Motivation and Problem Formulation
Sparse recon. with partially known support

Details
Summary, Ongoing Work and Open Questions

LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Simulations: verifying stability
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◮ m = 200, support size, S0 = 20
◮ Sa = 2 additions/removals every d = 8 frames
◮ 29.5% measurements at t > 0, noise ∼ unif (−c , c), c = 0.05

Namrata Vaswani Recursive Causal Sparse Reconstruction 41/ 53



Motivation and Problem Formulation
Sparse recon. with partially known support

Details
Summary, Ongoing Work and Open Questions

LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Proof strategy: key lemmas [Vaswani, Trans. SP (to appear)]

Obtain sufficient conditions so that
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Proof strategy: key lemmas [Vaswani, Trans. SP (to appear)]

Obtain sufficient conditions so that

◮ (few false adds) there are Sa or less false adds per unit time
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Proof strategy: key lemmas [Vaswani, Trans. SP (to appear)]

Obtain sufficient conditions so that

◮ (few false adds) there are Sa or less false adds per unit time

◮ (detection) all current coeff’s with magnitude more than b
get detected
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Proof strategy: key lemmas [Vaswani, Trans. SP (to appear)]

Obtain sufficient conditions so that

◮ (few false adds) there are Sa or less false adds per unit time

◮ (detection) all current coeff’s with magnitude more than b
get detected

◮ (no false deletion) these and previously added large coeff’s do
not get falsely deleted
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Motivation and Problem Formulation
Sparse recon. with partially known support

Details
Summary, Ongoing Work and Open Questions

LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Proof strategy: key lemmas [Vaswani, Trans. SP (to appear)]

Obtain sufficient conditions so that

◮ (few false adds) there are Sa or less false adds per unit time

◮ (detection) all current coeff’s with magnitude more than b
get detected

◮ (no false deletion) these and previously added large coeff’s do
not get falsely deleted

◮ (true deletion) all extras in support estimate (zero coeff’s) do
get deleted
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LS-CS-residual (LS-CS) & error bound
Modified-CS & exact reconstruction conditions
Error Stability of LS-CS & modified-CS

Proof strategy: induction step [Vaswani, Trans. SP (to appear)]

tj
tj+1-1tj+1-rtj+d0

tj+d0+Sa-1

(Sa new adds) (Sa removals)

tj+d0+i-1

LS-CS = Genie-LS

No-FD (N \ A)

DET A(i)

No-FD A(1), . . .A(i), (N \ A)

DEL e

No-FD A, (N \ A)

DEL e

No-FD A,R, N \ (A R)

DET: detection No-FD: no false deletion DEL: true deletion

◮ tj : j th support addition time, tj+1 − 1: support removal time
◮ A: set added at tj (increasing coeff’s),

◮ A(i): i th largest element of A
◮ N \ A: previously added set (constant coeff’s)
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Result 2: support changes at every time

◮ Signal model 2:
◮ Sa additions and Sa removals at each time
◮ support size constant at S0

◮ every new coeff’s magnitude increases at rate r until it reaches
a max value M

◮ similar model for coeff decrease
◮ Noise, ‖w‖ ≤ ǫ
◮ If

1. accurate recon at initial time,
2. δS0+4Sa

< 0.414 and θS0+2Sa,Sa
< 1/

√
18Sa.

◮ if LS error bound equal in all directions: only need θS0+2Sa,Sa
<

√

S0/18Sa

3. r > fincr (S0,Sa, ǫ, αadd , αdel ),
4. αadd , αdel large enough,

then |Nt \ N̂t | ≤ 2Sa and |N̂t \ Nt | = 0
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Result 2: support changes at every time

◮ Signal model 2:
◮ Sa additions and Sa removals at each time
◮ support size constant at S0

◮ every new coeff’s magnitude increases at rate r until it reaches
a max value M

◮ similar model for coeff decrease
◮ Noise, ‖w‖ ≤ ǫ
◮ If

1. accurate recon at initial time,
2. δS0+4Sa

< 0.414 and θS0+2Sa,Sa
< 1/

√
18Sa.

◮ if LS error bound equal in all directions: only need θS0+2Sa,Sa
<

√

S0/18Sa

3. r > fincr (S0,Sa, ǫ, αadd , αdel ),
4. αadd , αdel large enough,

then |Nt \ N̂t | ≤ 2Sa and |N̂t \ Nt | = 0

◮ Compare: CS needs δ2S0 < 0.414
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LS-CS-residual (LS-CS) & error bound
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Error Stability of LS-CS & modified-CS

Simulations: verifying stability

2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016
M/d = 3/4

time

N
M

S
E

genie−LS
dyn mod−CS
dyn CS−res (LS−CS)
mod−CS step
CS−res step

(i) r = 0.75

◮ m = 200, S0 = 20, additions/removals, Sa = 2 at each time

◮ 29.5% measurements at t > 0, noise ∼ unif (−c , c), c = 0.1266

◮ CS error 22-30% in all cases
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Summary

T := N̂t−1, µT := (x̂t−1)T
◮ CS on observation residual

◮ initial estimate: compute using LS(yt ,T ) or use previous recon
or use KF’ed estimate
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T := N̂t−1, µT := (x̂t−1)T
◮ CS on observation residual

◮ initial estimate: compute using LS(yt ,T ) or use previous recon
or use KF’ed estimate

◮ compute observation residual, do CS on residual, add back
initial estimate
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T := N̂t−1, µT := (x̂t−1)T
◮ CS on observation residual

◮ initial estimate: compute using LS(yt ,T ) or use previous recon
or use KF’ed estimate

◮ compute observation residual, do CS on residual, add back
initial estimate

◮ Modified-CS
◮ search for a signal that is sparsest outside of T and satisfies

the data constraint
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Summary

T := N̂t−1, µT := (x̂t−1)T
◮ CS on observation residual

◮ initial estimate: compute using LS(yt ,T ) or use previous recon
or use KF’ed estimate

◮ compute observation residual, do CS on residual, add back
initial estimate

◮ Modified-CS
◮ search for a signal that is sparsest outside of T and satisfies

the data constraint
◮ noisy meas.’s: can combine with CS-residual idea
◮ or can combine with KF (or regularized LS) idea

min
β

‖(β)T c‖1 + γ‖yt − Aβ‖2
2 + λ‖(β)T − µT‖2

2
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T := N̂t−1, µT := (x̂t−1)T
◮ CS on observation residual

◮ initial estimate: compute using LS(yt ,T ) or use previous recon
or use KF’ed estimate

◮ compute observation residual, do CS on residual, add back
initial estimate

◮ Modified-CS
◮ search for a signal that is sparsest outside of T and satisfies

the data constraint
◮ noisy meas.’s: can combine with CS-residual idea
◮ or can combine with KF (or regularized LS) idea

min
β

‖(β)T c‖1 + γ‖yt − Aβ‖2
2 + λ‖(β)T − µT‖2

2

◮ Support estimation in either case
◮ add-LS-delete is better than simple thresholding
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◮ If support changes slowly enough,

◮ under much weaker sufficient conditions than CS,
◮ modified-CS gives exact reconstruction

◮ its stability proof is trivial

◮ noisy meas’s: LS-CS & modified-CS error is stable
◮ noisy meas’s: both error bounds smaller than CS bound
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◮ If support changes slowly enough,

◮ under much weaker sufficient conditions than CS,
◮ modified-CS gives exact reconstruction

◮ its stability proof is trivial

◮ noisy meas’s: LS-CS & modified-CS error is stable
◮ noisy meas’s: both error bounds smaller than CS bound

◮ For dynamic MRI and video reconstruction,
◮ significant improvement over CS, Gauss-CS and CS-diff
◮ only slightly worse than batch methods (batch-CS, k-t-focuss)
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Slow support and signal value change [Vaswani, ICIP’08, ICASSP’09]

◮ ⇔ Track a time sequence of signals with slowly changing
“principal” directions (in a given sparsity basis) and
slowly changing principal coefficient values

1. can we accurately detect the changes?
2. can we compute/approximate the causal MMSE estimate?
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◮ Proposed solution 1: Kalman filtered CS-residual (KF-CS)

◮ KF on the coefficients in the current “principal” subspace
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◮ Proposed solution 1: Kalman filtered CS-residual (KF-CS)

◮ KF on the coefficients in the current “principal” subspace
◮ CS on KF residual to add new “principal” directions (if any)

◮ replacing “CS on LS residual” by “CS on KF residual”

◮ delete directions which have near-zero coefficients

Namrata Vaswani Recursive Causal Sparse Reconstruction 50/ 53



Motivation and Problem Formulation
Sparse recon. with partially known support

Details
Summary, Ongoing Work and Open Questions

Summary
Ongoing Work
Open Questions

Slow support and signal value change [Vaswani, ICIP’08, ICASSP’09]

◮ ⇔ Track a time sequence of signals with slowly changing
“principal” directions (in a given sparsity basis) and
slowly changing principal coefficient values

1. can we accurately detect the changes?
2. can we compute/approximate the causal MMSE estimate?

◮ Proposed solution 1: Kalman filtered CS-residual (KF-CS)

◮ KF on the coefficients in the current “principal” subspace
◮ CS on KF residual to add new “principal” directions (if any)

◮ replacing “CS on LS residual” by “CS on KF residual”

◮ delete directions which have near-zero coefficients

◮ KF-CS error is stable (so 1. and 2. hold): under strong assumptions
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Proposed solution 2: Regularized Modified-CS

◮ Most practical apps: the (significantly) nonzero elements of xt

also change slowly

◮ To also use this fact, we can solve

min
β

‖(β)T c‖1 + γ‖(β)T − µT‖2
2 s.t. yt = Aβ

with T = N̂t−1, µT = (x̂t−1)T , µT c = 0
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Proposed solution 2: Regularized Modified-CS

◮ Most practical apps: the (significantly) nonzero elements of xt

also change slowly

◮ To also use this fact, we can solve

min
β

‖(β)T c‖1 + γ‖(β)T − µT‖2
2 s.t. yt = Aβ

with T = N̂t−1, µT = (x̂t−1)T , µT c = 0

◮ Above computes a causal MAP estimate if
◮ posterior at t − 1 approx by a Dirac delta at µ
◮ (xt)T are i.i.d. Gaussian with mean µT and variance σ2,
◮ (xt)T c are i.i.d. Laplacian with mean zero and scale b,
◮ and we set γ = b/2σ2
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Regularized Modified CS (RegModCS): simulations

min
β

‖(β)T c‖1 + γ‖yt − Aβ‖2
2 + λ‖(β)T − µT‖2

2

with T = N̂t−1, µT = (x̂t−1)T
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Regularized Modified CS (RegModCS): simulations

min
β

‖(β)T c‖1 + γ‖yt − Aβ‖2
2 + λ‖(β)T − µT‖2

2

with T = N̂t−1, µT = (x̂t−1)T
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(m) n0 = 19%, n = 6%
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Ongoing/Future Work

Most current work: non-Bayesian, only recursive approaches
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Ongoing/Future Work

Most current work: non-Bayesian, only recursive approaches

Open questions:

◮ Partly Bayesian and Fully Bayesian models:
◮ KF-CS, reg-mod-CS: “stability” under mild assumptions?

◮ much more difficult: dependence on prev. recon signal values
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Most current work: non-Bayesian, only recursive approaches

Open questions:

◮ Partly Bayesian and Fully Bayesian models:
◮ KF-CS, reg-mod-CS: “stability” under mild assumptions?

◮ much more difficult: dependence on prev. recon signal values

◮ Fully Bayesian case: open...

◮ “Optimal” causal estimate?
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Ongoing/Future Work

Most current work: non-Bayesian, only recursive approaches

Open questions:

◮ Partly Bayesian and Fully Bayesian models:
◮ KF-CS, reg-mod-CS: “stability” under mild assumptions?

◮ much more difficult: dependence on prev. recon signal values

◮ Fully Bayesian case: open...

◮ “Optimal” causal estimate?

◮ Real dynamic MRI problems (ongoing: fMRI)
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