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Abstract— In this work, we show the “stability” of two of our
recently proposed algorithms, LS-CS-residual (LS-CS) and the
noisy version of modified-CS, designed for recursive reconstruc-
tion of sparse signal sequences from noisy measurements. By
“stability” we mean that the number of misses from the current
support estimate and the number of extras in it remain bounded
by a time-invariant value at all times. The concept is meaningful
only if the bound is small compared to the current signal support
size. A direct corollary is that the reconstruction errors are also
bounded by a time-invariant value.

I. I NTRODUCTION

We study the “stability” of two of our recently proposed
algorithms, LS-CS-residual (LS-CS) [1] and the noisy version
of modified-CS [2], [3], designed for recursive reconstruction
of sparse signal sequences from noisy measurements. The key
assumption used by both algorithms is that the support changes
slowly over time. This was verified in [2]. LS-CS replaces
compressive sensing (CS) on the observation (simple CS) by
CS on the least squares (LS) residual computed using the
previous support estimate, denoted byT . Modified-CS uses
a different approach. It finds a signal that satisfies the data
constraint and is sparsest outside ofT .

In [1] and [3], we bounded the reconstruction errors of LS-
CS and of modified-CS, respectively, in terms of the sizes of
the unknown part of the support and of the erroneous part
of T . The sizes of these sets, and consequently the error
bound, depend on the accuracy of the previous reconstruction,
i.e. they are not time-invariant. To get a time-invariant error
bound, we need a time-invariant bound on these sets’ sizes, or
equivalently on the size of the misses and extras in the final
support estimate at any given time, i.e. we need “stability”.

In [1], we proved LS-CS stability for a signal model with
bounded signal power and support size. But our model allowed
the delay between support addition times to be more than
one (it needed to be large enough to allow all previously
added elements to get detected). But, in practice, in most
applications, this will not hold. The delay will be one, i.e.
the support will change at every time, e.g. see Fig. 1 of [2].
This important case is the focus of the current work.

We show the stability of both modified-CS and LS-CS
under mild assumptions (bounded noise, high enough SNR and
enough measurements at every time) for a signal model that
allows equal number of support additions/removals at every
timeand gradual coefficient increase/decrease. Our approach is
similar in both cases. The proof for modified-CS is simpler and

the result holds under fewer assumptions. Hence, in Sec. III,
we give that result first. We then discuss the key modifications
needed to prove LS-CS stability, followed by discussing and
comparing the two results with each other and with CS.
Simulation results demonstrating stability are given in Sec.
IV and conclusions in Sec. V.

Related algorithms include [4] (assumes time-invariant sup-
port), [5], [6] (use past reconstructions to speed up current
optimization but not to improve error), KF-CS [7] and regu-
larized modified-CS [8]. Except KF-CS, none of these study
stability over time. The KF-CS result is under very strong
assumptions, e.g. it is for a random walk model with only
support additions (no removals).

A. Notation and Problem Definition

We useT c to denote the complement ofT w.r.t. [1,m] :=
[1, 2, . . . m], i.e. T c := [1,m] \ T . |T | denotes the cardinality
of T . For a vector,v, and a set,T , vT denotes the|T | length
sub-vector containing the elements ofv corresponding to the
indices in the setT . ‖v‖k denotes theℓk norm of a vector
v. If just ‖v‖ is used, it refers to‖v‖2. For a matrix M ,
‖M‖k denotes its inducedk-norm, while just‖M‖ refers to
‖M‖2. M ′ denotes the transpose ofM . For a fat matrixA, AT

denotes the sub-matrix obtained by extracting the columns of
A corresponding to the indices inT . TheS-restricted isometry
constant [9],δ(S), for ann×m matrix (with n < m), A, and
theS, S′ restricted orthogonality constant [9],θ(S, S′), are as
defined in [9, eq 1.3] and [9, eq 1.5] respectively.

We assume the following observation model:

yt = Axt + wt, ‖wt‖ ≤ ǫ (1)

where xt is an m length sparse vector with supportNt, yt

is the n < m length observation vector at timet and wt

is observation noise. The noise is assumed to be bounded:
‖wt‖ ≤ ǫ. Our goal is to recursively estimatext using
y1, . . . yt. By recursively, we mean, use onlyyt and the
estimate fromt − 1, x̂t−1, to compute the estimate att.

We usex̂t to denote the final estimate ofxt at time t and
N̂t to denote its support estimate. To keep notation simple, we
avoid using the subscriptt wherever possible.

Definition 1 (T , ∆, ∆e): We useT := N̂t−1 to denote the
support estimate from the previous time. We use∆ := Nt \T
to denote the unknown part of the support at the current time
and ∆e := T \ Nt to denote the “erroneous” part ofT . We
attach the subscriptt to the set, e.g.Tt or ∆t, where necessary.



Definition 2 (T̃ , ∆̃, ∆̃e): We useT̃ := N̂t to denote the
final estimate of the current support;∆̃ := Nt \ T̃ to denote
the “misses” inN̂t and ∆̃e := T̃ \ Nt to denote the “extras”.

If the setsB,C are disjoint, then we just writeD ∪ B \ C
instead of writing(D ∪ B) \ C, e.g.Nt = T ∪ ∆ \ ∆e.

II. DYNAMIC MODIFIED-CS AND LS-CS

Here, we briefly review dynamic modified-CS and LS-CS.

A. Dynamic modified-CS algorithm

Modified-CS was first proposed in [10] for exact reconstruc-
tion from noiseless measurements when part of the support
is known. It solvedminβ ‖βT c‖1 s.t. y = Aβ. For noisy
measurements, we can relax the data constraint in many
possible ways. In this work, we stick to the following, because
its error bounds have the simplest form and this makes the
corresponding stability result less messy.

min
β

‖βT c‖1 s.t. ‖y − Aβ‖2 ≤ ǫ2 (2)

Denote its output bŷxmodcs. In this work, whenever we refer
to CS, we refer to the following

min
β

‖β‖1 s.t. ‖y − Aβ‖2 ≤ ǫ2 (3)

We summarize below the dynamic modified-CS algorithm
[2] for time sequences. Att = 0, we use large enough number
of measurements,n0 > n, and do CS.
Set N̂−1 = φ (empty set). Fort ≥ 0 do,

1) If t = 0, setA := An0
, else setA := An.

2) Modified-CS.Solve (2) with T = N̂t−1 and y = yt.
Denote its output bŷxt,modcs.

3) Detections / LS.ComputeT̃det and LS estimate using it:

T̃det = T ∪ {i ∈ T c : |(x̂t,modcs)i| > αadd}
(x̂t,det)T̃det

= AT̃det

†yt, (x̂t,det)T̃ c

det
= 0 (4)

4) Deletions / LS.ComputeT̃ and LS estimate using it:

T̃ = T̃det \ {i ∈ T̃det : |(x̂t,det)i| ≤ αdel}
(x̂t)T̃ = AT̃

†yt, (x̂t)T̃ c = 0 (5)

5) Outputx̂t. SetN̂t = T̃ . FeedbackN̂t.

Notice that one could also replace the addition and deletion
steps above by a single step that computesN̂t = {i :
|(x̂t,modcs)i| > α∗}. This would be sufficient when the noise
is small and|∆e| is small. But when either of these does not
hold, the bias in̂xt,modcs creates the following problem. Along
T c, the solution will be biased towards zero, while alongT it
may be biased away from zero (since there is no constraint on
(β)T ). The setT contains∆e which needs to be deleted. Since
the estimates along∆e may be biased away from zero, one
will need a higher threshold to delete them. But that would
make detecting additions more difficult especially since the
estimates along∆ ⊆ T c are biased towards zero.

By adapting the approach of [11], the error of the modified-
CS step can be bounded as a function of|T | = |N |+|∆e|−|∆|
and |∆| [12]. We state a modified version of [12]’s result.

Theorem 1 (modified-CS error bound [12]):If ‖w‖ ≤ ǫ
andδ(max(3|∆|, |N | + |∆| + |∆e|)) <

√
2 − 1, then

‖xt − x̂t,modcs‖ ≤ C1(max(3|∆|, |N | + |∆| + |∆e|))ǫ, where

C1(S) ,
4
√

1 + δ(S)

1 − (
√

2 + 1)δ(S)
(6)

B. LS-CS (dynamic CS-residual) algorithm

LS-CS uses partial knowledge of support in a different way
than modified-CS. The LS-CS algorithm [1] is the same as the
dynamic modified-CS algorithm but with step 2 replaced by

• CS-residual step.

– Use T := N̂t−1 to compute the initial LS estimate,
x̂t,init , and the LS residual,̃yt,res, using

(x̂t,init)T = AT
†yt, (x̂t,init)T c = 0

ỹt,res = yt − Ax̂t,init (7)

– Do CS on the LS residual, i.e. solve (3) withy =
ỹt,res and denote its output bŷβt. Compute

x̂t,CSres:= β̂t + x̂t,init . (8)

The CS-residual step error can be bounded as follows. The
proof follows in exactly the same way as that given in [1]
where CS is done using Dantzig selector instead of (3). We
use (3) here to keep the comparison with modified-CS easier.

Theorem 2 (CS-residual error bound [1]):If ‖w‖ ≤ ǫ,
δ2|∆| <

√
2 − 1 andδ|T | < 1/2,

‖xt − x̂t,CSres‖ ≤ C ′(|T |, |∆|)ǫ + θ|T |,|∆|C
′′(|T |, |∆|)‖x∆‖

C ′(|T |, |∆|) , C1(2|∆|) +
√

2C2(2|∆|)
√

|T |
|∆|

C ′′(|T |, |∆|) , 2C2(2|∆|)
√

|T |, where

C1(S) is defined in (6),C2(S) , 2
1 + (

√
2 − 1)δ(S)

1 − (
√

2 + 1)δ(S)
(9)

III. STABILITY OF DYNAMIC MODIFIED -CS AND LS-CS

So far we bounded the modified-CS and CS-residual error
as a function of|∆| and|∆e|. Similarly the final LS step error
in either case can be bounded as a function of|∆̃| and |∆̃e|.
In this section, we find the conditions under which we can
obtain a time-invariant bound on the sizes of these sets, i.e.
ensure “stability”. This ensures a time-invariant bound onthe
reconstruction errors.

A. Signal model for studying stability

We assume a simple signal model that (a) allows equal
and nonzero number of additions/removals from the support at
every time, (b) allows a new coefficient magnitude to gradually
increase from zero, at a rateM/d, for a duration,d, and finally
reach a constant value,M , (c) allows coefficients to gradually
decrease and become zero (get removed from support) at the
same rate, and (d) has constant signal power and support size.

Signal Model 1:Assume the following.



1) At t = 0, support size isS0 and it contains2Sa elements
each with magnitudeM/d, 2M/d, . . . (d − 1)M/d, and
(S0 − (2d − 2)Sa) elements with magnitudeM .

2) At eacht > 0, Sa coefficients get added to the support
at magnitudeM/d. Denote this set byAt.

3) At each t > 0, Sa coefficients which had magnitude
M/d at t− 1 get removed from the support (magnitude
becomes zero). Denote this set byRt.

4) At eacht > 0, the magnitude ofSa coefficients which
had magnitude(j − 1)M/d at t− 1 increases tojM/d.
This occurs for all2 ≤ j ≤ d.

5) At eacht > 0, the magnitude ofSa coefficients which
had magnitude(j +1)M/d at t− 1 decreases tojM/d.
This occurs for all1 ≤ j ≤ (d − 1).

In the above model, the size and composition of the support
at any t is the same as that att = 0. Also, at eacht, there
are Sa new additions andSa removals and the signal power
is (S0 − (2d − 2)Sa)M2 + Sa

∑d−1
j=1 j2M2/d2.

To understand the model better, define the following sets.
Definition 3: Define the following
1) Dt(j) := {i : |xt,i| = jM/d, |xt−1,i| = (j + 1)M/d}.
2) It(j) := {i : |xt,i| = jM/d, |xt−1,i| = (j − 1)M/d}.
3) Small elements’ set,St(j) := {i : 0 < |xt,i| < jM/d}.

With these definitions, clearly, the newly added set,At :=
It(1), and the newly removed set,Rt := Dt(0).
Consider ad0 ≤ d. From the signal model, it is clear that
at any time,t, Sa elements enter the small coefficients’ set,
St(d0), from the bottom (setAt) and Sa enter from the top
(setDt(d0−1)). Similarly Sa elements leaveSt(d0) from the
bottom (setRt) andSa from the top (setIt(d0)). Thus,

St(d0) = St−1(d0) ∪ (At ∪ Dt(d0 − 1)) \ (Rt ∪ It(d0)) (10)

We will use this in our stability result.
Notice that the above model does not specify a particular

generative model, e.g. at timet, out of the2Sa elements with
magnitudejM/d, for any1 < j < d, one can arbitrarily pick
anySa elements to increase and the otherSa to decrease. Also,
it does not specify the signs of the nonzero elements. One
simple generative model, which we use for our simulations,
is as follows. At eacht, selectAt ⊆ N c

t−1 andDt(d − 1) ⊆
Nt∩{i : |xt,i| = M} of sizeSa, uniformly at random. Then let
the same set of elements increase (decrease) until they become
constant atM (become constant at zero). Set the sign to±1
with equal probability when the element gets added and retain
the same sign at all future times.

B. Stability result for dynamic modified-CS

The first step to show stability is to find sufficient conditions
for (a) a certain set of large coefficients to definitely get
detected, and (b) to definitely not get falsely deleted, and (c)
for the zero coefficients iñTdet to definitely get deleted. These
can be obtained using Theorem 1 and the following facts.

1) An i ∈ ∆ will get detected if|xi| > αadd+‖x−x̂modcs‖.
This follows since‖x − x̂modcs‖ ≥ |(x − x̂det)i|.

2) Similarly, ani ∈ T̃det will not get falsely deleted if|xi| >
αdel + ‖(x − x̂det)T̃det

‖.

3) All i ∈ ∆̃e,det (the zero elements of̃Tdet) will get deleted
if αdel ≥ ‖(x − x̂det)T̃det

‖.
4) If ‖w‖ ≤ ǫ and if δ|T̃det|

< 1/2 (or pick any constant less
than one and the error bound will change appropriately),
then‖(x − x̂det)T̃det

‖ ≤
√

2ǫ + 2θ|T̃det|,|∆̃det|
‖x∆̃det

‖.

Combining the above facts with Theorem 1, we can get the
following three lemmas.

Lemma 1 (Detection condition):Assume that‖w‖ ≤ ǫ,
|N | ≤ SN , |∆e| ≤ S∆e

, |∆| ≤ S∆. Let ∆1 := {i ∈ ∆ :
|xi| ≥ b1}. All elements of∆1 will get detected at the current
time if δ(max(3S∆, SN + S∆e

+ S∆)) <
√

2 − 1 and

b1 > αadd + C1(max(3S∆, SN + S∆e
+ S∆))ǫ (11)

whereC1(S) is defined in Theorem 1.
Proof: The proof follows from fact 1 and Theorem 1 and the

fact thatC1(.) is a non-decreasing function of|N |, |∆|, |∆e|.
Lemma 2 (No false deletion condition):Assume that

‖w‖ ≤ ǫ, |T̃det| ≤ ST and |∆̃det| ≤ S∆. For a givenb1, let
T1 := {i ∈ T̃det : |xi| ≥ b1}. All i ∈ T1 will not get (falsely)
deleted at the current time ifδ(ST ) < 1/2 and

b1 > αdel +
√

2ǫ + 2θST ,S∆
‖x∆̃det

‖. (12)
Proof: The lemma follows directly from facts 2, 4.
Lemma 3 (Deletion condition):Assume that‖w‖ ≤ ǫ,

|T̃det| ≤ ST and |∆̃det| ≤ S∆. All elements of∆̃e,det will get
deleted ifδ(ST ) < 1/2 andαdel ≥

√
2ǫ + 2θST ,S∆

‖x∆̃det
‖.

Proof: The lemma follows directly from facts 3, 4.
Using the above lemmas and the signal model, we obtain

sufficient conditions to ensure that, for somed0 ≤ d, at each
time t, ∆̃ ⊆ St(d0) (so that|∆̃| ≤ (2d0−2)Sa) and|∆̃e| = 0,
i.e. only elements smaller thand0M/d may be missed and
there are no extras. This leads to the following result.

Theorem 3 (Stability of dynamic modified-CS):Assume
Signal Model 1 and bounded noise, i.e.‖w‖ ≤ ǫ. If the
following hold for some1 ≤ d0 ≤ d,

1) (addition and deletion thresholds)

a) αadd is large enough so that there are at mostf
false additions per unit time,

b) αdel =
√

2ǫ + 2θ(S0 + Sa + f, k2(d0))e(d0),

2) (no. of measurements,n) n is large enough so that
δ(max(3k1(d0), S0 + Sa + k1(d0))) <

√
2− 1 and also

δ(S0 + Sa + f) < 1/2,
3) (SNR andn) (d0M/d) ≥ max(G1, G2), where

G1 , αadd + C1(max(3k1(d0), S0 + Sa + k1(d0)))ǫ

G2 , αdel +
√

2ǫ + 2θ(S0 + Sa + f, k2(d0))e(d0) (13)

4) (initialization) at t = 0, n0 is large enough to ensure that
∆̃ ⊆ S0(d0), |∆̃| ≤ (2d0 − 2)Sa, |∆̃e| = 0, |T̃ | ≤ S0,

where

k1(d0) , max(1, 2d0 − 2)Sa

k2(d0) , max(0, 2d0 − 3)Sa

e(d0) ,

√

√

√

√2Sa

d0−1
∑

j=1

j2M2/d2 (14)



then,
1) at all t ≥ 0, |T̃ | ≤ S0, |∆̃e| = 0, and∆̃ ⊆ St(d0) and

so |∆̃| ≤ (2d0 − 2)Sa,
2) at all t > 0, |T | ≤ S0, |∆e| ≤ Sa, and |∆| ≤ k1(d0),
3) at all t > 0, |T̃det| ≤ S0 + Sa + f , |∆̃e,det| ≤ Sa + f ,

and |∆̃det| ≤ k2(d0)

The proof follows by induction. We use the induction
assumption;Tt = T̃t−1; and the signal model to bound
|∆|, |∆e|, |T |. Then we use Lemma 1; the limit on number
of false detections; and|T̃det| ≤ |N | + |∆̃e,det| to bound
|∆̃det|, |∆̃e,det|, |T̃det|. Finally, we use Lemmas 2 and 3 to bound
|∆̃|, |∆̃e|, |T̃ |. The complete proof is given in the Appendix.

Corollary 1: Under assumptions of Theorem 3, at allt ≥ 0,
1) ‖xt − x̂t‖ ≤

√
2ǫ + (2θ(S0, (2d0 − 2)Sa) + 1)e(d0)

2) ‖xt−x̂t,modcs‖ ≤ C1(max(3k1(d0), S0+Sa+k1(d0)))ǫ
(recall: x̂t,modcs is output of step 2) of Sec. II-A).

Remark 1:Note that condition 4 is not restrictive. It is easy
to see that it will hold ifn0 is large enough to ensure that
δ(2S0) ≤

√
2−1; αadd,0 is large enough s.t. there are at most

f false detects;αdel,0 =
√

2ǫ + 2θ(S0 + f, k1(d0))e(d0); and
(d0M/d) > max(αadd,0 + C1(2S0)ǫ, 2αdel,0).

C. Stability result for LS-CS (dynamic CS-residual)

The overall approach is similar to the one discussed above
for modified-CS. The key difference is in the detection con-
dition lemma, which we give below.

Lemma 4 (Detection condition for LS-CS):Assume that
‖w‖ ≤ ǫ, |T | ≤ ST and |∆| ≤ S∆. Let b := ‖x∆‖∞.
For a γ ≤ 1, let ∆1 := {i ∈ ∆ : γb ≤ |xi| ≤ b} and let
∆2 := ∆ \ ∆1. Assume that|∆1| ≤ S∆1

and‖x∆2
‖ ≤ κ.

All i ∈ ∆1 will definitely get detected at the current time if
δ(2S∆) <

√
2 − 1, δ(ST ) < 1/2,

θ(ST , S∆)
√

S∆1
C ′′(ST , S∆) < γ and

max
|∆|≤S∆

αadd + C ′(ST , |∆|)ǫ + θ(ST , |∆|)C ′′(ST , |∆|)κ
γ − θ(ST , |∆|)

√

S∆1
C ′′(ST , |∆|)

< b

whereC ′(., .), C ′′(., .) are defined in Theorem 2.
Proof: From Theorem 2, if‖w‖ ≤ ǫ, δ(2|∆|) <

√
2 −

1, δ(|T |) < 1/2, then ‖x − x̂CSres‖ ≤ C ′(|T |, |∆|)ǫ +
θ(|T |, |∆|)C ′′(|T |, |∆|)‖x∆‖. Using ‖x∆‖ ≤

√

|∆1|b +
‖x∆2

‖, fact 1 of Sec. III-B and the fact that for alli ∈ ∆1,
|xi| ≥ γb, we can conclude that alli ∈ ∆1 will get detected
if δ(2|∆|) <

√
2 − 1, δ(|T |) < 1/2 and αadd + C ′ǫ +

θC ′′‖x∆2
‖ + θC ′′

√

|∆1|b < γb. The third inequality holds

if θ
√

|∆1|C ′′ < γ and
αadd+C′ǫ+θC′′‖x∆2

‖

γ−θ
√

|∆1|C′′

< b.

Since we only know that|T | ≤ ST , |∆| ≤ S∆, |∆1| ≤
S∆1

and‖x∆2
‖ ≤ κ, we need the above inequalities to hold

for all values of|T |, |∆|, |∆1|, ‖x∆2
‖ satisfying these upper

bounds. This leads to the conclusion of the lemma. The left
hand sides (LHS) of all the required inequalities, except the
last one, are non-decreasing functions of|∆|, |T |, |∆1| and
thus we just use their upper bounds. The LHS of the last one
is non-decreasing in|T |, |∆1|, ‖x∆2

‖, but is not monotonic in
|∆| (sinceC ′(|T |, |∆|) is not monotonic in|∆|). Hence we
explicitly maximize over|∆| ≤ S∆. ¥

The stability result then follows in the same fashion as
Theorem 3. The only difference is that instead of Lemma
1, we use Lemma 4 applied withST = S0, S∆ = k1(d0),
b = d0M/d, γ = 1, S∆1

= Sa andκ = e(d0).
Theorem 4 (Stability of LS-CS):Assume Signal Model 1

and‖w‖ ≤ ǫ. If the following hold for some1 ≤ d0 ≤ d,

1) (add/del thresholds)(same condition as in Theorem 3)
2) (no. of measurements,n) n is large enough so that

a) δ(2k1(d0)) <
√

2 − 1 andδ(S0 + Sa + f) < 1/2
b) θ(S0, k1(d0))

√
SaC ′′(S0, k1(d0)) < 1

3) (SNR andn) (d0M/d) ≥ max(G̃1, G̃2), where

G̃1 , max
|∆|≤k1(d0)

[
αadd + C ′(S0, |∆|)ǫ + θ(S0, |∆|)C ′′(S0, |∆|)e(d0)

γ − θ(S0, |∆|)
√

SaC ′′(S0, |∆|) ]

G̃2 , αdel +
√

2ǫ + 2θ(S0 + Sa + f, k2(d0))e(d0)

4) (initialization) (same condition as in Theorem 3)

then, all conclusions of Theorem 3 and Corollary 1 hold for
LS-CS, except the second claim of Corollary 1, which is
replaced by‖xt − x̂t,CSres‖ ≤ max|∆|≤k1(d0)[C

′(S0, |∆|)ǫ +
θ(S0, |∆|)C ′′(S0, |∆|)[e(d0) + Sa(d0M/d)2]].

D. Implications of the Results and Comparisons

Both the stability results provide sufficient conditions under
which the number of misses is less than(2d0 − 2)Sa and
the number of extras is zero. From our discussion in the
introduction, stability is meaningful only if(2d0−2)Sa ≪ S0.
From [2], we know that support changes slowly, i.e.Sa ≪ S0.
Also, usually it is valid to assume that either2dSa ≪ S0 (only
a small number of coefficients are increasing or decreasing)
or M is large enough to ensure thatd0 ≪ d. Either of these
ensures(2d0 − 2)Sa ≪ S0.

For modified-CS, under Signal Model 1, “stability” is
ensured under the following fairly mild assumptions: (a) the
addition/deletion thresholds are appropriately set (conditions
1a and 1b); (b) the noise is bounded and the number of
measurements,n, is large enough for condition 2 to hold; and
(c) for a given support change rate,Sa, and magnitude change
rate,M/d, the worst-case noise power,ǫ2 is small enough and
n is large enough to ensure that condition 3 holds.

The main difference for LS-CS stability is that the detection
condition is much stronger (compare Lemma 4 with Lemma
1). This is because CS-residual error depends on‖x∆‖, while
there is no such dependence for modified-CS. Thus LS-CS
needs an extra condition onθ(S, S′) given in condition 2b of
Theorem 4, which may not hold ifn is too small. Also, when
n is just large enough for condition 2b to hold,̃G1 (defined
in condition 3) may be very large and thus LS-CS will need
higher signal increase rate,M/d, for its condition 3 to hold.

Whenn is large enough (for stability), it is easy to setαadd

so that there are few false detections,f , compared toS0, e.g.
in our simulations, the average value off was less than 1
whenS0 = 20. Now, f ≪ S0 along with (2d0 − 2)Sa ≪ S0

(discussed earlier) implies that the requirements of Theorem 3
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Fig. 1. Normalized MSE (NMSE) plots for modified-CS and LS-CS.
In all cases, NMSE for CS was between 0.22-0.30 (not plotted).

on n (condition 2) aresignificantly weakerthan those for the
corresponding CS result [11] which requiresδ(2S0) ≤

√
2−1.

The same is true when comparing the LS-CS requirements
with those for CS, as long asM/d is large enough to ensure
that d0 is small enough for its conditions 2b and 3 to hold.

IV. SIMULATION RESULTS

We compared dynamic modified-CS, LS-CS and CS for a
few choices ofM/d. In all cases, we usedm = 200, S0 = 20,
Sa = 2, n = 59 anduniform(−c, c) noise withc = 0.1266.
We averaged over 50 simulations. We show the normalized
MSE plot forM = 3, d = 4 in Fig. 1(a). The signal power for
M/d = 3/4 is “large enough” compared ton andǫ, to ensure
stability of both LS-CS and modified-CS. From simulations,
|∆| ≤ 3 for both modified-CS and LS-CS. WhenM/d was
reduced to2/3 (not shown), again both were stable, although
LS-CS errors were a bit higher than modified-CS. When signal
power is decreased toM/d = 2/5 (Fig. 1(b)), it is still
large enough to ensure stability of modified-CS, although for
a larger value ofd0 (results in larger NMSE). But it is too
small for LS-CS, thus resulting in its instability.

The NMSE for simple CS was much larger - between 22%-
30% in all cases - sincen = 59 is too small for CS.

V. CONCLUSIONS

We showed the “stability” of LS-CS and dynamic modified-
CS for signal sequence reconstruction, under mild assump-
tions. By “stability” we mean that the number of misses from
the current support estimate and the number of extras in it
remain bounded by a time-invariant value at all times.

APPENDIX: PROOF OFTHEOREM 3

We prove the first claim by induction. Using condition 4 of
the theorem, the claim holds fort = 0. This proves the base
case. For the induction step, assume that the claim holds at
t−1, i.e. |∆̃e,t−1| = 0, |T̃t−1| ≤ S0, and∆̃t−1 ⊆ St−1(d0) so
that |∆̃t−1| ≤ (2d0 − 2)Sa. Using this assumption we prove
that the claim holds att. We use (10) and the following facts
often: (a)Rt ⊆ Nt−1 andAt ⊆ N c

t−1, (b) Nt = Nt−1 ∪At \
Rt, and (c) if two setsB,C are disjoint, then,(D∩Bc)∪C =
D ∪ C \ B for any setD.

Since Tt = T̃t−1, so |Tt| ≤ S0. Since ∆e,t = N̂t−1 \
Nt = N̂t−1 ∩ [(N c

t−1 ∩Ac
t)∪Rt] ⊆ ∆̃e,t−1 ∪Rt = Rt. Thus

|∆e,t| ≤ |Rt| = Sa.
Next we bound|∆t|. Note that∆t = Nt \ N̂t−1 = (Nt−1∩

N̂ c
t−1 ∩ Rc

t) ∪ (At ∩ Rc
t ∩ N̂ c

t−1) = (∆̃t−1 ∩ Rc
t) ∪ (At ∩

N̂ c
t−1) ⊆ (St−1(d0) ∩ Rc

t) ∪ At = St−1(d0) ∪ At \ Rt. First
consider the case when the conditions of the theorem hold
for a d0 > 1. SinceRt is a subset ofSt−1(d0) and At is
disjoint withSt−1(d0), thus|∆t| ≤ |St−1(d0)|+|At|−|Rt| =
(2d0 − 2)Sa + Sa − Sa. If d0 = 1, St−1(d0) is empty and so
∆t = At and thus|∆t| = Sa. Thus in all cases|∆t| ≤ k1(d0).

Consider the detection step. There are at mostf false detects
(from condition 1a) and thus|∆̃e,det,t| ≤ |∆e,t|+ f ≤ Sa + f .
Thus |T̃det,t| ≤ |Nt| + |∆̃e,det,t| ≤ S0 + Sa + f .

Next we bound|∆det,t|. Using the above discussion and
(10),∆t ⊆ St−1(d0)∪At\Rt = St(d0)∪It(d0)\Dt(d0−1).
Apply Lemma 1 withSN = S0, S∆e

= Sa, S∆ = k1(d0), and
b1 = d0M/d (so that∆1 ⊆ It(d0)). Since conditions 2 and 3
of the theorem hold, all the undetected elements ofIt(d0) will
definitely get detected at timet. Thus∆̃det,t ⊆ St(d0)\Dt(d0−
1). If d0 > 1, |∆̃det,t| ≤ |St(d0)|−|Dt(d0−1)| = (2d0−3)Sa.
This holds sinceDt(d0 − 1) ⊆ St(d0). If d0 = 1, St(d0) is
empty and so|∆̃det,t| = 0. Thus in all cases|∆̃det,t| ≤ k2(d0).

Consider the deletion step. Apply Lemma 3 withST =
S0+Sa+f , S∆ = k2(d0). Use∆̃det,t ⊆ St(d0)\Dt(d0−1) ⊆
St(d0) to bound‖x∆̃det

‖ by e(d0). Since condition 1b holds,
all elements of̃∆e,det,t will get deleted. Thus|∆̃e,t| = 0. Thus
|T̃t| ≤ |Nt| + |∆̃e,t| ≤ S0.

Finally, we bound |∆̃t|. Apply Lemma 2 with ST =
S0 + Sa + f , S∆ = k2(d0), b1 = d0M/d. Use ∆̃det,t ⊆
St(d0) \ Dt(d0 − 1) ⊆ St(d0) to bound‖x∆̃det

‖ by e(d0).
Since conditions 2 and 3 hold, all elements ofT̃det with
magnitude greater than or equal tob1 = d0M/d will definitely
not get falsely deleted. But nothing can be said about the
elements smaller thand0M/d. In the worst case∆̃t may
contain all of these elements, i.e. it may be equal toSt(d0).
Thus,∆̃t ⊆ St(d0) and so|∆̃t| ≤ (2d0 − 2)Sa.

This finishes the proof of the first claim. To prove the second
and third claims for anyt > 0: use the first claim fort − 1
and the arguments from paragraphs 2-5 above.
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