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Abstract—In this work, we show the “stability” of two of our  the result holds under fewer assumptions. Hence, in Sec. IlI
recently proposed algorithms, LS-CS-residual (LS-CS) and the we give that result first. We then discuss the key modification
noisy version of modified-CS, designed for recursive reconstruc needed to prove LS-CS stability, followed by discussing and

tion of sparse signal sequences from noisy measurements. By . - .
“stability” we mean that the number of misses from the current comparing the two results with each other and with CS.

support estimate and the number of extras in it remain bounded Simulation results demonstrating stability are given irc.Se
by a time-invariant value at all times. The concept is meaningful 1V and conclusions in Sec. V.
only if the bound is small compared to the current signal support  Related algorithms include [4] (assumes time-invariapt su
size. A direct cc_)rolle}ry is that the reconstruction errors are also port), [5], [6] (use past reconstructions to speed up ctrren
bounded by a time-invariant value. S .
optimization but not to improve error), KF-CS [7] and regu-

larized modified-CS [8]. Except KF-CS, none of these study
stability over time. The KF-CS result is under very strong

We study the “stability” of two of our recently proposedassumptions, e.g. it is for a random walk model with only
algorithms, LS-CS-residual (LS-CS) [1] and the noisy \@msi support additions (no removals).
of modified-CS [2], [3], designed for recursive reconstiat ) o
of sparse signal sequences from noisy measurements. The ReyNotation and Problem Definition
assumption used by both algorithms is that the support @sang We useT to denote the complement @f w.r.t. [1,m] :=
slowly over time. This was verified in [2]. LS-CS replaces$l,2,...m], i.e. T¢:=[1,m] \ T. |T'| denotes the cardinality
compressive sensing (CS) on the observation (simple CS) dfyT". For a vectory, and a set]’, vy denotes theéT'| length
CS on the least squares (LS) residual computed using thé-vector containing the elements:wotorresponding to the
previous support estimate, denoted By Modified-CS uses indices in the sefl. ||v||, denotes the/, norm of a vector
a different approach. It finds a signal that satisfies the datalf just |[v| is used, it refers to|v||,. For a matrix M,
constraint and is sparsest outsideTof |[M]|x denotes its induced-norm, while just||M|| refers to

In [1] and [3], we bounded the reconstruction errors of LS}M ||2. M’ denotes the transpose bf. For a fat matrix4, A
CS and of modified-CS, respectively, in terms of the sizes dénotes the sub-matrix obtained by extracting the colunins o
the unknown part of the support and of the erroneous pattcorresponding to the indices . The S-restricted isometry
of T. The sizes of these sets, and consequently the ergonstant [9],4(S), for ann x m matrix (withn < m), 4, and
bound, depend on the accuracy of the previous reconstnyctithe S, S’ restricted orthogonality constant [#](S, S”), are as
i.e. they are not time-invariant. To get a time-invariantoer defined in [9, eq 1.3] and [9, eq 1.5] respectively.
bound, we need a time-invariant bound on these sets’ sires, oWe assume the following observation model:
equivalently on the size of the misses and extras in the final
support estimate at any given time, i.e. we need “stability”

In [1], we proved LS-CS stability for a signal model withwhere z; is an m length sparse vector with suppah, »;
bounded signal power and support size. But our model allowsdthe n < m length observation vector at time and w;
the delay between support addition times to be more thanobservation noise. The noise is assumed to be bounded:
one (it needed to be large enough to allow all previouslyw,| < e. Our goal is to recursively estimate;, using
added elements to get detected). But, in practice, in magt...y;. By recursively we mean, use only; and the
applications, this will not hold. The delay will be one, i.eestimate fromt — 1, #;_;, to compute the estimate at
the support will change at every time, e.g. see Fig. 1 of [2]. We usez; to denote the final estimate ef at timet¢ and
This important case is the focus of the current work. N, to denote its support estimate. To keep notation simple, we

We show the stability of both modified-CS and LS-C%void using the subscrigtwherever possible.
under mild assumptions (bounded noise, high enough SNR andefinition 1 (", A, A.): We useT := N,_; to denote the
enough measurements at every time) for a signal model tisapport estimate from the previous time. We dse= N, \ T
allows equal number of support additions/removals at eveitp denote the unknown part of the support at the current time
timeand gradual coefficient increase/decrease. Our approachnsl A, := T\ N, to denote the “erroneous” part @f. We
similar in both cases. The proof for modified-CS is simplat amattach the subscriptto the set, e.dl; or A, where necessary.

I. INTRODUCTION

yr = Arg +wy, [l <€ 1)



Definition 2 (', A, A,.): We useT := N, to denote the Theorem 1 (modified-CS error bound [12])f |jw| < e
final estimate of the current suppork := N, \ T to denote andd(max(3|Al,|N| + |A| + |A.])) < V2 — 1, then
the “misses” inN; and A, := T\ N, to denote the “extras”.
If the setsB, C' are disjoint, then we just writdd U B \ C'
instead of writing(DU B)\ C, e.g.N; = TUA\ A..

2t — Zemodes|| < C1(max(3|Al, [N| + |A] +|Ac]))e, where

s A/T16(9)
GlS) = o (V2 +1)8(S) ©)

II. DYNAMIC MODIFIED-CSAND LS-CS

Here, we briefly review dynamic modified-CS and LS-CS.
B. LS-CS (dynamic CS-residual) algorithm

. ] _ LS-CS uses partial knowledge of support in a different way
Modified-CS was first proposed in [10] for exact reconstrugnan modified-CS. The LS-CS algorithm [1] is the same as the

tion from noiseless measurements when part of the supp@%amiC modified-CS algorithm but with step 2 replaced by
is known. It solvedming ||Br-||1 s.t. y = AB. For noisy CS-residual step

measurements, we can relax the data constraint in many " o .

possible ways. In this work, we stick to the following, besau — UseT := N;_, to compute the initial LS estimate,
its error bounds have the simplest form and this makes the Z1init, and the LS residualy; res using
corresponding stability result less messy.

A. Dynamic modified-CS algorithm

(Zinit)T = Arty, (Z¢init)7e =0
Hgn HﬂTUHl s.t. Hy - A5H2 < e 2 Ytres= Yt — Ait,init (7)

— Do CS on the LS residual, i.e. solve (3) with=

Denote its output byi,,.qcs- IN this work, whenever we refer - - -
Ut res @and denote its output by,. Compute

to CS, we refer to the following
min ||3]1 s.t. ly — AB|* < € (3) &1 .csresi= Bi + Er,init- (8)
B

The CS-residual step error can be bounded as follows. The
roof follows in exactly the same way as that given in [1]
where CS is done using Dantzig selector instead of (3). We
use (3) here to keep the comparison with modified-CS easier.
Theorem 2 (CS-residual error bound [1])f [Jw| < e,

We summarize below the dynamic modified-CS algorithm
[2] for time sequences. At= 0, we use large enough numbe
of measurementsyy > n, and do CS.

SetN_; = ¢ (empty set). For > 0 do,

D IfL=0,seld := Ay, else setd = An. 5 o5 Tandd < 1/2
2) Modified-CS.Solve (2) withT = N;_; andy = ;.
Denote its OUtpUt bVEt,77L0(Nics- H‘Lt - £t7csre4| < Cl(|T‘> ‘ADG + Q\T\,|A\C”(|T|7 ‘AD”‘%A”
3) Detections / LSComputeTyet and LS estimate using it: 7]
. e C'(IT],|A]) £ C1(2|A]) + V205 (2| A]) |
Fam TU (i € T {Gomoseei] > od) (T11A]) £ Cr1AD + V2 21ANy 5

(1,060 7oy = Ay Ytr (Br,0ede =0 (4 "1, |A]) £ 2C5(2|A))V/|T], where
4) Deletions / LSComputeT and LS estimate using it: ¢, (s) is defined in (6)Cs(S) 2 oLt (vV2-1)a(S) )

S s 1—(V2+1)3(S)
T = Tyet\ {7 € Taet: |(Zr,de)i| < ager}
IIl. STABILITY OF DYNAMIC MODIFIED-CSAND LS-CS

(@) = Ajjyty ()7 =0 (%) -~ ,
) ~ ) So far we bounded the modified-CS and CS-residual error
5) Outputi;. SetN; = T'. Feedback\;. as a function of A| and|A.|. Similarly the final LS step error
Notice that one could also replace the addition and deletigmeither case can be bounded as a function/ofand |A.|.
steps above by a single step that compubdés = {i : In this section, we find the conditions under which we can

[(Z¢,modes)i| > au}. This would be sufficient when the noiseobtain a time-invariant bound on the sizes of these sets, i.e
is small and/A.| is small. But when either of these does noénsure “stability”. This ensures a time-invariant boundtios
hold, the bias irt; ,,.qcs Creates the following problem. Along reconstruction errors.
T¢, the solution will be biased towards zero, while aldhgt ) ) -
may be biased away from zero (since there is no constraintdn Signal model for studying stability
(8)T). The setl’ containsA. which needs to be deleted. Since We assume a simple signal model that (a) allows equal
the estimates along\. may be biased away from zero, oneand nonzero number of additions/removals from the support a
will need a higher threshold to delete them. But that woulelvery time, (b) allows a new coefficient magnitude to gralgual
make detecting additions more difficult especially since thincrease from zero, at a ralé/d, for a duration, and finally
estimates along\ C 7 are biased towards zero. reach a constant valué/, (c) allows coefficients to gradually

By adapting the approach of [11], the error of the modifiediecrease and become zero (get removed from support) at the
CS step can be bounded as a functiofifdf= | N|+|A.|—|A| same rate, and (d) has constant signal power and suppart size
and|A| [12]. We state a modified version of [12]'s result. Signal Model 1:Assume the following.



1) Att¢ =0, support size i, and it contain®.5, elements 3) Allie Ae,det (the zero elements d?det) will get deleted

each with magnitudé//d,2M/d,...(d — 1)M/d, and if Qger > [|(x — Zaet) 7, ||

(So — (2d — 2)S,) elements with magnitudé/. 4) If |w]| < eandifé 7, , < 1/2 (or pick any constant less
2) At eacht > 0, S, coefficients get added to the support than one and the error bound will change appropriately),

at magnitudeM/d. Denote this set by,. then |(z — Zded) 7, | < V26 + 20,71 | At [T,

3) At eacht > 0, S, coefficients which had magnitudeCombining the above facts with Theorem 1, we can get the
M/d att— 1 get removed from the support (magnitudgollowing three lemmas.

becomes zero). Denote this set Ry. Lemma 1 (Detection condition)Assume that|w| < e,
4) At eacht > 0, the magnitude of5, coefficients which IN| < Sy, |Ac| < Sa,, |A| < Sa. Let Ay := {i € A :

had magnitude;j —1)M/d att — 1 increases tgM/d. |z;| > b, }. All elements ofA; will get detected at the current

This occurs for all2 < j < d. time if §(max(3Sa, Sy + Sa. +Sa)) < V2 -1 and
5) At eacht > 0, the magnitude of5, coefficients which
had magnitudé;j +1)M/d att — 1 decreases tgM/d. b1 > @qdq + C1(max(35a, Sn + Sa, +5a))e  (11)

This occurs foralll <j < (d-1). whereC (S) is defined in Theorem 1.
In the above model, the size and composition of the supportproof: The proof follows from fact 1 and Theorem 1 and the
at anyt is the same as that at= 0. Also, at eacly, there ¢t thatCy(.) is a non-decreasing function oV |, |A|, |A.|.

are S, new additions ands, removals and the signal power | emma 2 (No false deletion conditionkssume that
is (So — (2d — 2)Sa) M? + Sa 37571 j2M? /d?. _ w]| < e |Tyed < S and |Aged < Sa. For a givenb,, let
To understand the model better, define the following setsy, ._ {i e Tt : || > bi}. All i e Ty will not get (falsely)
Definition 3: Define the following deleted at the current time #(Sr) < 1/2 and
1) Di(j) i= i |zl = iM/d, |z, = (G + 1)M/d}.
2) T,(j) = {i : |zes] = jM/d, |we_1i| = (j — 1)M/d}. > agat V2e+ 205, 55|25, I (12)
3) Small elements’ setS; (j) := {i: 0 < |z < jM/d}. Proof: The lemma follows directly from facts 2, 4.

With these definitions, clearly, the newly added sdt, .— . -€mma 3 (Deletion condition)Assume that|jw| < e,
7,(1), and the newly removed seR; := D, (0). |Taed < ST and|Aged < Sa. All elements ofA, ger Will get
Consider ady < d. From the signal model, it is clear thatde!eted if6(S) < 1/2 andavger > V2e+ 205, 54|74, ]l

at any time,t, S, elements enter the small coefficients’ set, F"00f: The lemma follows directly from facts 3, 4. ,
S.(dy), from the bottom (seid,) and S, enter from the top U_S|_ng the ai_agve lemmas and the signal model, we obtain
(setD;(dy — 1)). Similarly S, elements leave, (dy) from the sufficient conditions to ensure that, for somige< d, at each

bottom (setR,) and S, from the top (sefZ;(dy)). Thus, timet, A C S;(do) (so that|A| < (2dp —2)S5,) and|A| =0,
i.e. only elements smaller thadyM /d may be missed and

St(do) = St—1(do) U (At UD¢(do — 1)) \ (Rt UZt(do)) (10)  there are no extras. This leads to the following result.

We will use this in our stability result. .Theorem 3 (Stability of dynamic.mod'ified-Cﬁssume
Notice that the above model does not specify a particul@gnal Model 1 and bounded noise, ifw|| < e. If the

generative model, e.g. at tinteout of the2S, elements with following hold for somel < dy < d,

magnitudej M /d, for any1 < j < d, one can arbitrarily pick 1) (addition and deletion thresholds)

any S, elements to increase and the otlgrto decrease. Also, a) «aqqq IS large enough so that there are at mgst
it does not specify the signs of the nonzero elements. One false additions per unit time,

simple generative model, which we use for our simulations, b) ager = V2e + 20(So + Sa + f, ka(do))e(do),

is as follows. At eaclt, selectA, C Ni_; andDy(d —1) S 2) (no. of measurements) = is large enough so that
NN{i - x| = M} of sizeS,, uniformly at random. Then let §(max(3k1(do), So + Sa + k1(do))) < v2—1 and also

the same set of elements increase (decrease) until theyeeco 55, 4+ 5, + f) < 1/2,

constant atV/ (become constant at zero). Set the signtb  3) (SNR andn) (dygM/d) > max(Gy, Gs), where
with equal probability when the element gets added andrretai

the same sign at all future times. G1 £ aaga + Cr(max(3k1(do), So + Sa + k1(do)))e

A
B. Stability result for dynamic modified-CS Ga = ader + V2 +20(So + S + [, ka(do)e(do)  (13)

The first step to show stability is to find sufficient condison 4) (initialization) att = 0, ng is large enough to ensure that
for (a) a certain set of large coefficients to definitely get A C So(do), |A] < (2do —2)S,, |Ae] =0, |T| < S,
detected, and (b) to definitely not get falsely deleted, and (here
for the zero coefficients iffye to definitely get deleted. These n
can be obtained using Theorem 1 and the following facts. Fi(do) = max(1, 2dy — 2)S,

1) An:i e A will getdetected ifz;| > aqaa+||T—Zmodes |- ka(do) £ max(0,2dy — 3)S,

This follows since||x — Zyodes|| > (2 — Tdet)i- do—1
e(do) = \l

2) Similarly, ani € Tyet will not get falsely deleted ifx;| > 25, Z j2M?2/d? (14)
et + || (€ — Zdet) 7l =1



then, The stability result then follows in the same fashion as
1) atallt >0, \T| < So, |Ae| =0, andA C Si(do) and Theorem 3. The only difference is that instead of Lemma
S0 |A| < (2dy — 2)S,, 1, we use Lemma 4 applied withy = Sy, Sa = k1(dp),
2) atallt >0, |T| < So, |Ac] < S, and|A| < ky(dg), b =doM/d, v =1, Sa, = Sa @ndr = e(dy).
3) atallt >0, |Tyed < So + Sa + fr |Acded < Sa + f, Theorem 4 (Stability of LS-CSAssume Signal Model 1
and |Aged < ka(do) and||w|| < e. If the following hold for somel < d, < d,

The proof follows by induction. We use the induction 1) (add/del thresholds)(same condition as in Theorem 3)
assumption;7, = T,_;; and the signal model to bound 2) (no. of measurements) n is large enough so that
|A[,|Acl,|T|. Then we use Lemma 1; the limit on number a) 6(2k1(dp)) < V2 —1andds(Sy + S, + f<1/2
of false detections; andue < |N| + |Acged to bound b) 6(So, k1(do))v/SaC" (S0, k1(do)) <

|Adet\ A, dets |Tgeq. Finally, we use Lemmas 2 and 3 to bound 3) (SNR andn) (doM/d) > max(G1,Gs), where
|A|,|A.],|T|. The complete proof is given in the Appendix.

Corollary 1: Under assumptions of Theorem 3, atialt 0, G2 \A\I?ka)((d )

D llze = &all < v2e + (20(So, (2do —2)5a) + De(do) Cadad + C'(So, |A])e + 0(So, |A)C" (S0, | Al e(do)

2) th_xt,modcs” S Cl(max(gkl(dO)aSO+Sa+k1(d0)))€ [ _9(5 |A|)\/S_C//(S |A|) ]
(recall: Z¢ modcs IS output of step 2) of Sec. II-A). . v 0 a 0

Remark 1:Note that condition 4 is not restrictive. It is easy Ga £ ager + V26 + 20(So + Sa + f, k2(do))e(do)

to see that it will hold ifny is large enough to ensure that

4) (initialization) (same condition as in Theorem 3)
0(25p) < V2—1; Qiedd,0 IS large enough s.t. there are at most
£ false detectSiigeo = v2¢ + 20(So + f, k1(do))e(do); and then, all conclusions of Theorem 3 and Corollary 1 hold for

LS-CS, except the second claim of Corollary 1, which is
doM/d) > add,0 + C1(250)€, 20,
( 0 / ) maX(Oé dd,0 1( 0)6 (.)[d lO) . replaced byHmt o i’tA,CSres” < maX|A\§k1(do)[Cl(507 |A|)E +
C. Stability result for LS-CS (dynamic CS-residual) 0(So, |A|)C"(So, |A)]e(do) + Sa(doM/d)?]].

The overall approach is similar to the one discussed aboese

for modified-CS. The key difference is in the detection con- Implications of the Resuits and Comparisons

dition lemma, which we give below. Both the stability results provide sufficient conditiongden
Lemma 4 (Detection condition for LS-CSssume  that Which the number of misses is less théhl, — 2)S, and
lw| < e |T| < Sp and |A| < Sa. Let b := [|za] . the number of extras is zero. From our discussion in the
Foravy < 1, let Ay := {i € A : vb < |z;| < b} and let introduction, stability is meaningful only i2do—2)S, < So.
Ay = A\ A;. Assume thatA;| < Sa, and ||za, || < &. From [2], we know that support changes slowly, i%. < Sp.
All i € Ay will definitely get detected at the current time ifAls0, usually it is valid to assume that eithigtS, < .Sy (only
6(250) < V2 —1,6(S7) < 1/2, a small number of coefficients are increasing or decreasing)
or M is large enough to ensure th&f < d. Either of these
0(St, Sa)\/Sa,C" (S, Sa) <~ and ensures2dy — 2)S, < Sp.
oy Cadd T C'(Sr, [Ae + 0(Sr, [A)C"(S1, [A])s _ "+ For modified-CS, under Signal Model 1, “stability” is
|A|<Sa v —0(St,|A|)\/Sa,C"(ST,|Al) ensured under the following fairly mild assumptions: (&g th

addition/deletion thresholds are appropriately set (@@t
la and 1b); (b) the noise is bounded and the number of
measurements;, is large enough for condition 2 to hold; and
(c) for a given support change rate,, and magnitude change
rate, M /d, the worst-case noise powef,is small enough and
n is large enough to ensure that condition 3 holds.

The main difference for LS-CS stability is that the detattio

whereC’(.,.), C"(.,.) are defined in Theorem 2.

Proof: From Theorem 2, if|w| < ¢ §(2|A]) < V2 —
1, 0(|T)) < 1/2, then ||z — Zosresl] < C'(|T],|A])e +
0(1T1,|A)C"(T|. |A])|eall. Using [lzal < /IAub +
lza,]l, fact 1 of Sec. IlI-B and the fact that for alle A,
|x;| > b, we can conclude that alle A; will get detected

1 /
gC(’s’(IIQJUiJ)II fBC’?\/\Al—’ﬂg(g|2yb.<T&éch?eriggéteilriti ;oJI:js conditior_w is much stronger. (compare Lemma 4 with L.emma
; " CaddTC e+0C" |z, |l 1). This is because CS-residual error depend§aoq||, while
if 01/]A1]C" <~ and Y e = <D there is no such dependence for modified-CS. Thus LS-CS
Since we only know thatT| < Sr, |A] < Sa, |A1] < needs an extra condition @l{.S, S’) given in condition 2b of
Sa, and||za,|| < k, we need the above inequalities to holdheorem 4, which may not hold if is too small. Also, when
for all values of|T|,|Al,|A1],||za,| satisfying these upper n is just large enough for condition 2b to hol@; (defined
bounds. This leads to the conclusion of the lemma. The léft condition 3) may be very large and thus LS-CS will need
hand sides (LHS) of all the required inequalities, except tthigher signal increase raté//d, for its condition 3 to hold.
last one, are non-decreasing functions|af, |7, |A;| and Whenn is large enough (for stability), it is easy to setyqy
thus we just use their upper bounds. The LHS of the last ose that there are few false detectioris,compared taS,, e.g.
is non-decreasing ifi’|, |A1], ||z, ||, but is not monotonic in in our simulations, the average value ffwas less than 1
|A] (since C’(|T|,|Al) is not monotonic in|A|). Hence we when S, = 20. Now, f < Sy along with (2dy — 2)S, < Sop
explicitly maximize overlA| < Sn. B (discussed earlier) implies that the requirements of Tér@o3




M/d = 3/4 M/d = 2/5

o e ] °1 B Nf_l_) C (Si—1(do) NRE) U A = St__.l(do) UA; \ R;. First
oorsh e [gemets T |Sdncs sy consider the case when the conditions of the theorem hold
) zuin CS-res (LS-CS)| 01 -A-mod-CS step

for ady > 1. SinceR, is a subset ofS;_1(dp) and A, is
disjoint with S;_1 (do ), thus|A¢| < [S;—1(do)|+|Ae[—[Re| =
(2do —2)Ss + Sq — Sq. If dg =1, S;—1(dp) is empty and so
A; = A; and thugA,| = S,. Thus in all casefA\;| < k1 (dp).
2 : e e 0 2 L e ® 10 Consider the detection step. There are at nfdatse detects
(@ M=3, d=4 Oy M =2 d=5 (from condition 1a) and thugA. get¢| < [Ac |+ f < So + f.
Fig. 1. Normalized MSE (NMSE) plots for modified-CS and LS-CSThuS |Tyett| < [N¢| + [Ac dett| < So + Sa + f.
In all cases, NMSE for CS was between 0.22-0.30 (not plotted).  Next we bound|Ager|. Using the above discussion and
L i . (10)1At g St_l(dO)UAt\Rt :St(do)UL(do)\Df(do—l)
on n (condition 2) aresignificantly weakethan those for the Apply Lemma 1 withSx = So, Sa. = Sa, Sa = k1(dp), and
corresponding CS result [11] which requid25,) < v2—1. p — doM/d (so thatA, C Z,(dy)). Since conditions 2 and 3
The same is true when comparing the LS-CS requiremegjsthe theorem hold, all the undetected elements, ¢d,) will

with those for CS, as long a%//d is large enough to ensuredefinitely get detected at tim&eThusAdegt C 8i(do)\Dy(do—
that dy is small enough for its conditions 2b and 3 to hold. 1). 1f do > 1, | Ages| < |Si(do)|—|De(do—1)| = (2do—3)S

1V. SIMULATION RESULTS This holds SinpéDt(dO — 1) g St(d()) If d0~: 1, Sf(do) is

: o empty and sdAget¢| = 0. Thus in all casefAget¢| < ka(dp).

We compared dynamic modified-CS, LS-CS and CS for a . AT 4 :

few choicez ofM/dyIn all cases, we usea = 200, Sy = 20 Consider the deletion step. Apply Lemma 3 wify =
; ! 120 ! So+Sa+f, SA = k‘g(do) UseAdeLt - St(do)\pt(do—l) -

Sa = 2, n = 59 anduniform(—c,c) noise withc = 0.1266. (do) to bound||zx_|| by e(dy). Since condition 1b holds,
We averaged over 50 simulations. We show the normahzeﬁ ~ det’’ <
all elements ofA. get; Will get deleted. ThusA. ;| = 0. Thus

MSE plot for M = 3,d = 4 in Fig. 1(a). The signal power for - po

M/d = 3/4 is “large enough” compared to ande, to ensure 74| .g |vat‘ * |A§~rt| gdSQ' | ith

stability of both LS-CS and modified-CS. From simulationss Finally, we oui 2] App y_Lemma 2 W'tAST -

IA| < 3 for both modified-CS and LS-CS. Whel/d was 20 T Sa +f, Sa = kaldo), by = doM/d. USe Agery C
reduced t2/3 (not shown), again both were stable, althougﬁf(d(’) \Dt<_d,0 — 1) € Si(do) to bound|jzz || by e(d(?)'
LS-CS errors were a bit higher than modified-CS. When signainc€_conditions 2 and 3 hold, all elements e with
power is decreased ta//d = 2/5 (Fig. 1(b)), it is stil magnitude greater than or equalbtp_: doM /d will d_ef|n|tely
large enough to ensure stability of modified-CS, although f§°t 9et falsely deleted. But nothing can be said about the
a larger value ofl, (results in larger NMSE). But it is too €léments smaller thanyA//d. In the worst cased, may

small for LS-CS, thus resulting in its instability. contain all of these elements, i.e. it may be equabt@iy).

The NMSE for simple CS was much larger - between 2204 1US; &: € Si(do) and so[A| < (2do — 2)S,.

30% in all cases - since — 59 is too small for CS. This finishes the proof of the first claim. To prove the second
and third claims for any > 0: use the first claim for — 1
V. CONCLUSIONS and the arguments from paragraphs 2-5 above.

We showed the “stability” of LS-CS and dynamic modified-
CS for signal sequence reconstruction, under mild assump- . _ _ I
tions. By “stability” we mean that the number of misses from 1 N. Vaswani, ‘Ls-cs: Compressive sensing on |east squezstiual
- By y Accepted (AQ) to IEEE Trans. Sig. Proc., arXiv:0911.552@10.

the current support estimate and the number of extras in [#] W. Lu and N. Vaswani, “Modified compressive sensing forl+tame

0.0 -£-mod-CS step
o A - CS-res step
—
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