Kalman Filtered Compressed Sensing

Namrata Vaswani, Iowa State University, namrata@iastate.edu

The Problem

- Causally reconstruct time sequences of sparse signals with slowly changing sparsity patterns from a limited number of noise-corrupted "incoherent" measurements
- Examples:
 - making dynamic MRI reconstruction real-time
 - * MRI measures a limited number of Fourier coefficients
 - * Fourier "incoherent" w.r.t. sparsity basis of image (wavelet)
 - * real-time capture & recons: needed for interventional radiology
 - "single-pixel" video camera with real-time display
 - real-time estimation of temperature or other random fields using the sensor network of [Haupt-Nowak06]

examples of sparse image sequences (brain, heart)

slowly changing sparsity pattern

obtaining incoherent measurements

Existing Work and Our Goal

- · Static version of the problem
 - Compressed Sensing (CS) [Candes et al, Donoho], MP, OMP,...

$$\hat{x} = \arg\min_{\beta} ||\beta||_1 \ s.t. \ ||A'(y - A\beta)||_{\infty} < \lambda \sigma$$

- The actual problem (recons. time series of sparse signals)
 - CS at each time: causal (real-time), but large reconstruction error
 - Batch CS [Wakin et al (video), Gamper et al (MRI)]: non-causal
 - other related work: [Rozell et al'07], [Jung et al'08],
- Our Goal: a causal algorithm with smallest possible reconstruction error, for a given (small) number of measurements
- Key Ideas:
 - Sparsity pattern changes slowly with time: use estimated sparsity pattern from t-1 to improve CS reconstruction at t
 - Use prior model on nonzero coefficients values (if available)

Problem Formulation

- observation, $y_t : n \times 1$, unknown sparse vector, $x_t : m \times 1$, n < m
- at each time t, $y_t = Ax_t + w_t$, $w_t \sim \mathcal{N}(0, \sigma^2 I)$
- each x_t is s_t -sparse with support set T_t and $s_t = |T_t| << n < m$
- prior model on $(x_t)_{T_t}$: $(x_t)_{T_t} = (x_{t-1})_{T_t} + \mathcal{N}(0, \sigma_{sus}^2 I_{s_t})$

Goal: Recursively obtain the "best" estimate of x_t from $y_1, y_2, \dots y_t$

Finding A Solution

- If the sparsity pattern (support), T_t , is known at each t
 - easy to compute the restricted Least Squares (LS) estimate:

$$(\hat{x}_t)_{T_t} = A_{T_t}^{\dagger} y_t, \ (\hat{x}_t)_{T_t^c} = 0$$

- if prior model also available: Kalman filter (KF) on $(x_t)_{T_t}$
- Our problem: the support, T_t , is unknown
- Solution strategy: use compressed sensing (CS) + thresholding
 - option 1: CS on observation

$$\hat{T}_t = \text{threshold}(CS(y_t))$$

- option 2: CS on LS error in observation computed using \hat{T}_{t-1}

$$\tilde{y}_t = y_t - A\hat{x}_{t,LS}, \ \hat{x}_{t,LS} := \text{restricted-LS}(y_t, \hat{T}_{t-1})$$

$$\hat{T}_t = \text{threshold}(CS(\tilde{y}_t) + \hat{x}_{t,LS})$$

- option 3: replace LS by KF in option 2 if prior model available

Comparing CS with CS on LS (or KF) error

- CS on observation
 - uses CS to estimate x_t from $y_t = Ax_t + w_t$
 - $-x_t$ is $|T_t|$ -sparse
- CS on LS error (LSE) in observation
 - uses CS to estimate $\beta_t = x_t \hat{x}_{t,LS}$ from $\tilde{y}_t = A\beta_t + w_t$
 - $-\beta_t$ is only $|T_t \setminus \hat{T}_{t-1}|$ -compressible (assumes $(\beta_t)_{T_{t-1}}$ is small)
- If the sparsity pattern (T_t) changes slowly enough,
 - LS estimation error, $(\beta_t)_{T_{t-1}}$, will be small
 - CS on LSE has much smaller error than CS on observation (CS error strongly depends on effective support size)
 - ongoing work: shown the above rigorously
- CS on KF error (KFE) in observation
 - analysis gets more complicated but similar conclusions will hold
 - KF estimation error will be smaller than LS error (assuming CS selects correct model)

Kalman Filtered Compressed Sensing (KF-CS)

Input: $y_t, \hat{T}_{t-1}, \hat{x}_{t-1}, P_{t-1}, \text{Output: } \hat{T}_t, \hat{x}_t, P_t$ **Initialize:** $T_0 = \phi$, $\hat{x}_0 = 0$, $P_0 = 0$. At each time t > 0, do

• Kalman filter (KF) on $(x_t)_{\tilde{T}_{t-1}}$ to compute KF error, \tilde{y}_t

$$\begin{split} \hat{x}_{t,0} &= \mathrm{KF}(I, \sigma_{sys}^2 I_{\hat{T}_{t-1}}, A_{\hat{T}_{t-1}}, \sigma^2 I) (\hat{x}_{t-1}, P_{t-1}) \\ \tilde{y}_t &= y_t - A \hat{x}_{t,0} \end{split}$$

• Compressed Sensing (CS) on KF error + thresholding

$$\hat{T}_t = \text{threshold}(\text{CS}(\tilde{y}_t) + \hat{x}_{t,0})$$

added set: $\hat{\Delta}_t = \hat{T}_t \setminus \hat{T}_{t-1}$, deleted set: $\hat{D}_t = \hat{T}_{t-1} \setminus \hat{T}_t$

- zero out elements of deleted set from \hat{x}_{t-1} , P_{t-1} • Kalman filter (KF) on $(x_t)_{\hat{T}}$

$$[\hat{x}_t, P_t] = \text{KF}(I, \sigma_{sus}^2 I_{\hat{T}_t}, A_{\hat{T}_t}, \sigma^2 I)(\hat{x}_{t-1}, P_{t-1})$$

Simulation Results

- Left plot: simulated data, average MSE over 100 simulations
 - -m=256, n=72, A=random Gaussian
 - $-s_t$ increased from 8 to 26,
 - but maximum number of new additions per unit time was 2
 - delay b/w two addition times was 5 time units
 - nonzero coefficients, $(x_t)_{T_t}$ followed random walk
- Right plot: ongoing work on brain MRI reconstruction

MSE plot for simulated data m=256, n=72, A: rand. Gaussian m=4096, n=2049, A = F_eW

MRI recon [Qiu et al, submitted]

Ongoing Work

- Shown that CS on LSE has lower error than CS if sparsity pattern changes slowly enough [Vaswani, submitted]
 - Ongoing work: similar analysis for CS on KFE
- Obtained sufficient conditions under which KF-CS approaches the genie-aided KF for large t [Vaswani, submitted]
- Working on KF-CS for dynamic MRI reconstruction [Qiu et al, submitted]