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MR Imaging
» MRI measures the 2D Fourier transform of the image, which is

“incoherent” w.r.t. the wavelet basis

»Medical images are approximately sparse (compressible) in the
wavelet transform domain

» MR data acquisition is sequential, the scan time is reduced if
fewer measurements are needed for accurate reconstruction.

k-space

wavelets

M. Lustig: Compressed Sensing for Rapid MRI



Real-time dynamic MRI

»Reduce scan time: use as few measurements as possible

»Reduce reconstruction time: Reconstruct
» Causally: using current and all past observations
and
» Recursively: use previous reconstruction and current
observation to obtain current reconstruction)

»Use the fact that
» sparsity pattern changes slowly over time, and
» values of the current set of (significantly) nonzero wavelet
coefficients also change slowly



Slowly Changing Sparsity
0 e e e e

e Approx. Sparsity. Size of 99%-energy support set: less than 7% for
the larynx sequence and less than 9% for the cardiac sequence.

e Slow Change in Sparsity Pattern. Maximum size of change in
support: less than 2% of minimum sparsity size in both cases



Problem Definition

Recursively reconstruct a sparse vector, r;, from the current obser-
vation, y; := Az, + w;, & all past observations, yi.;_1

o dim(y;) =n < dim(xy) =m
e 1; is approx. S;-sparse with approx. support set, /V;
e the support, /V;, changes slowly over time

o Ais S.-“approximately orthonormal” (dg, < 1/2) and S, > S;

e For MRI: A = HFW' with

— H, ., random row selection matrix
— Foxm: DFT matrix, W, «m: DWT matrix
— “random sample kx-ky plane” or “random sample ky, full sample kx”

— “unformly random sample” or “variable density undersampling”



RIP aﬂd ROP COnStantS [Candes,Tao]

e Restricted Isometry constant, dg: smallest real number satisfying
(1= 3s)lellz < [[Arell3 < (1+ ds)lle]]3
for all subsets T" with |T'| < S and for all ¢

— Easy to see: ||[(A7"Ap)~t|2 <1/(1—0j7))

e Restricted Orthogonality constant, g s/: smallest real number satistying
e’ A1y A, o] < 05,50 |ca|2]le2]]2
for all disjoint sets 17,75 with |11 < S, |T3] < S’ and for all ¢q, ¢o

— Easy to see: {|AT1’AT2||2 < 9|T1\,|Tz\



COm preSSEd Se nSI ng [Candes, Romberg, Tao] [Donoho]

o CS (ﬂOiSGl@SS) [Candes, Romberg, Tao ’05] [Donoho’05]. mlnﬁ ||/6H1 S.t. yt — Aﬁ
e CS (noisy - Dantzig Selector) [candes, Tao *06]

o CS (IlOiSy - BaSiS PUISUit DeIlOiSiIlg (BPDN)) [Chen,Donoho] [Tropp’06]

mﬁianﬁHl +(1/2)[lye — ABill3

We use z; = CS(y;) to denote the solution of above

L CS fOI“ MR lmage I‘GCOHStI’UCtiOH [Lustig, Donoho, Pauly ’07]



The Question

e Most existing work: Batch-CS on entire time sequence

[Gamper et al ’08 (dynamic MRI)], [Wakin et al (video)]

— Oflline and very slow, but uses few measurements

e Alternative: CS at each time separately (simple CS)

— (Causal and fast, but needs many more measurements

e The Question: How can we

— improve simple CS by using past observations, and

— how can we do it recursively, i.e. by only using the previous
signal estimate and the current observation?



Finding a Recursive Solution

e Given vy; := Axy + wy, x; is sparse with support Vi, INV; changes slowly
over time, A satisfies dg, < 1/2, Sy := | N¢|

e If N; known: easy to compute a restricted-LS estimate

A

iy = restrictedLS(ys, Ny) = (&), = An, ys, (Z¢)ne =0

e If N, unknown: an option is to estimate it by thresholding CS output
N, = threshold(CS(y;)) threshold(z):= {i:2? > a}
and then do the same thing

— But: not using past observations: large error



CS' reSId U al Id ea. [Vaswani, ICIP'08]

o Let T := N,_; (estimated support at t — 1) and A := N; \ N;_q
e Assume that the undetected set, A, is small, i.e.

— the support changes slowly, and

— the support at t — 1 is well estimated

e Use T := N,_; to compute restricted LS estimate, & observation residual
(2, ip5t)7 = restrictedLS(y:, T)
Ytres — Yt — Ait,init
o CS-residual: C??t = C?Z‘t init -+ CS(yt,res)

— Y res is a noisy measurement of an approx. |A| sparse vector



Why CS-residual works?

o Notice that y; res = AB; +w; and B := x4 — T, 3543 satisfies

(ﬁt)A = (SUt)A
B)r = —ArT(Aa(z)a +wy)

(ﬁt)(TUA)c = 0
o If |A] small enough s.t. ||A7r"Aall2 < 07| a| small:
— (; small along T, i.e. it is only |A|-approx-sparse

e CS error strongly depends on approx. sparsity size

— CS-residual: much smaller error than CS on y; (simple CS)



LS CS-residual (LS-CS)

Initial LS 2 CS-residual
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o Initial LS. Compute , ;,;1 & observation residual y; res using 1" := Nt_l
o CS-residual. Compute &t csres = Z, jnit + CS(Yt.res)
e Estimate Support. Compute N, = threshold(Z; csres)

e Final LS. Z; = restrictedLS(y, Nt) often improves estimate [candes, Tao "06]



Kalman filtered CS-residual (KF-CS)

[Vaswani, ICIP’08]

e So far only used N;_1 to improve accuracy of CS at ¢: did not use T+

e If a prior dynamic model for nonzero coefficients of x; is available: do this
by replacing initial LS by a KF for (x:)r

e A possible prior model: random-walk on (z¢)y, starting with zg =0

()N, = (@-1)n,_, +N(0,021)
(xt)Nt\Nt—l — N(0,0’?I)
(iUt)Ntc = 0

e KF (CS-residual:

— dimension-varying KF with current states’ set being 1" := Ny

— compute N, by thresholding output of CS on KF residual



KF-CS algorithm

Tnitialize: Ny = o, 9o =0, Fh =0. Fort > 0, do

e Initial KF. KF on (z;)y . and compute KF residual, y; res

it,init — KF(I sysINt_l 3 ANt_l ) 0-21) (yt7 Ti_1, Pt—l)

Ytres = Yyt — Az, init
e CS-residual. Compute Z¢ csres = CS(9:) + it,init
e Estimate Support. Compute N; = threshold(Z csres)
— zero out elements of deleted set, Nt_l \ Nt, from z,_1, Pi_1

e Final KF. KF on (z)y,

[’j\jh Pt] — KF(I sysINt A I)(yt7 jjt—l) Pt—l)



Initial KF. Let T = N,_,

Py1 = B+ Q:, where Q; := o 1y

Ky = Py 1A (AP A"+ o’I)7', Po=(I- Ky A) Py
it,imit = (I - KA1+ Ky,
Ytres = Yt — Ait,init

Final KF. Do the above but with T = Nt



Brain fMRI sequence
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« Variable density undersampling in kx-ky
« Usey=2(2\log m¥2c as suggested in [Candes-?]

e Mm=4096, n=m/2, 62 =25



Cardiac sequence

original simple C5 LS CSres KF CSres offline C5

A

Cardiac seguence:reconstructedast-frame

« variable density undersampling in ky, full resolution in kx

e select y using a heuristic motivated by the error bound of
[Tropp’06]

e m =128 (one column at atime), n =m/2, 6> =25



Cardiac sequence
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« variable density undersampling in ky, full resolution in kx

e select y using a heuristic motivated by the error bound of
[Tropp’06]

e m =128 (one column at a time), n =m/4, > =25



Cardiac sequence
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« Uniformly random sample in ky, full resolution in kx
* Use best possible y for each method

— (y=0.05 for CS, y = 20 for KF-CS, LS-CS)
e m =128 (one column at a time), n =m/2, > =25
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« Variable density undersampling in ky, full resolution in kx
* Use best possible y for each method

— (y = 0.05 for all)
e m =128 (one column at a time), n =m/2, > =25



Related Work

e Our Kalman filtered CS work first appeared in ICIP’08
¢ Works not using current observation to compute residual

— k-t FOCUSS [sung,Ye, 15BT°08]

— Locally Competitive Algorithms for sparse coding [rozel et a1, 1cIP?07]
e Very recent work

— Recursive LLassSoO [Angelosante, Giannakis, ICASSP’09]
— Dynamic 11 minimization (asif, Romberg, CISS’09]
— Analyzing LS and KF CS [vaswani, icasspo9]
— Modiﬁed—CS [Vaswani, Lu, ISIT’09]



Ongoing/Future Work

e Comparisons, use real MR scanner data, volume seqeunce reconstruction

e Bounding reconstruction error, Studying stability of LS and KF CS-residual

e Modified-CS [vaswani, Lu, 1s11000]. 24 1S the solution of

1 S.t. yt:A,@

min c
in |37

— an approach for provably exact reconstruction from noiseless mea-
surements using partly known support, T' := N;_4

— exact reconstruction if §|7| 24| < 1/5 (much weaker than CS)

e Combine Modified-CS with CS-residual for noisy/compressible cases

1+ (1/2)[lye — ABI[

min c
3 7”5T

miny||relly + |87 = (Ee-1)7llp,,_, + (1/20%) [y — ABIl3



