# Real-time Dynamic MRI using Kalman Filtered Compressed Sensing

Chenlu Qiu, Wei Lu and Namrata Vaswani Dept. of Electrical & Computer Engineering Iowa State University

http://www.ece.iastate.edu/~namrata/

# MR Imaging

- ➤ MRI measures the 2D Fourier transform of the image, which is "incoherent" w.r.t. the wavelet basis
- ➤ Medical images are approximately sparse (compressible) in the wavelet transform domain
- ➤ MR data acquisition is sequential, the scan time is reduced if fewer measurements are needed for accurate reconstruction.



M. Lustig: Compressed Sensing for Rapid MRI

# Real-time dynamic MRI

- > Reduce scan time: use as few measurements as possible
- > Reduce reconstruction time: Reconstruct
  - ➤ Causally: using current and all past observations and
  - ➤ Recursively: use previous reconstruction and current observation to obtain current reconstruction)
- ➤ Use the fact that
  - sparsity pattern changes slowly over time, and
  - > values of the current set of (significantly) nonzero wavelet coefficients also change slowly

# Slowly Changing Sparsity



- Approx. Sparsity. Size of 99%-energy support set: less than 7% for the larynx sequence and less than 9% for the cardiac sequence.
- Slow Change in Sparsity Pattern. Maximum size of change in support: less than 2% of minimum sparsity size in both cases

#### **Problem Definition**

Recursively reconstruct a sparse vector,  $x_t$ , from the current observation,  $y_t := Ax_t + w_t$ , & all past observations,  $y_{1:t-1}$ 

- $dim(y_t) = n < dim(x_t) = m$
- $x_t$  is approx.  $S_t$ -sparse with approx. support set,  $N_t$
- the support,  $N_t$ , changes slowly over time
- A is  $S_*$ -"approximately orthonormal" ( $\delta_{S_*} < 1/2$ ) and  $S_* > S_t$
- For MRI: A = HFW' with
  - $H_{n\times m}$ : random row selection matrix
  - $F_{m \times m}$ : DFT matrix,  $W_{m \times m}$ : DWT matrix
  - "random sample kx-ky plane" or "random sample ky, full sample kx"
  - "unformly random sample" or "variable density undersampling"

### RIP and ROP constants [Candes, Tao]

• Restricted Isometry constant,  $\delta_S$ : smallest real number satisfying

$$(1 - \delta_S)||c||_2^2 \le ||A_T c||_2^2 \le (1 + \delta_S)||c||_2^2$$

for all subsets T with  $|T| \leq S$  and for all c

- Easy to see:  $||(A_T'A_T)^{-1}||_2 \le 1/(1-\delta_{|T|})$
- Restricted Orthogonality constant,  $\theta_{S,S'}$ : smallest real number satisfying

$$|c_1' A_{T_1}' A_{T_2} c_2| \le \theta_{S,S'} ||c_1||_2 ||c_2||_2$$

for all disjoint sets  $T_1, T_2$  with  $|T_1| \leq S, |T_2| \leq S'$  and for all  $c_1, c_2$ 

- Easy to see:  $||A_{T_1}'A_{T_2}||_2 \le \theta_{|T_1|,|T_2|}$ 

# Compressed Sensing [Candes, Romberg, Tao] [Donoho]

- CS (noiseless) [Candes, Romberg, Tao '05] [Donoho'05]:  $\min_{\beta} ||\beta||_1$  s.t.  $y_t = A\beta$
- CS (noisy Dantzig Selector) [Candes, Tao '06]
- CS (noisy Basis Pursuit Denoising (BPDN)) [Chen, Donoho] [Tropp'06]

$$\min_{\beta} \gamma ||\beta||_1 + (1/2)||y_t - A\beta_t||_2^2$$

We use  $\hat{x}_t = \mathbf{CS}(y_t)$  to denote the solution of above

• CS for MR image reconstruction [Lustig, Donoho, Pauly '07]

### The Question

- Most existing work: Batch-CS on entire time sequence [Gamper et al '08 (dynamic MRI)], [Wakin et al (video)]
  - Offline and very slow, but uses few measurements
- Alternative: CS at each time separately (simple CS)
  - Causal and fast, but needs many more measurements
- The Question: How can we
  - improve simple CS by using past observations, and
  - how can we do it recursively, i.e. by only using the previous signal estimate and the current observation?

# Finding a Recursive Solution

- Given  $y_t := Ax_t + w_t$ ,  $x_t$  is sparse with support  $N_t$ ,  $N_t$  changes slowly over time, A satisfies  $\delta_{S_t} < 1/2$ ,  $S_t := |N_t|$
- If  $N_t$  known: easy to compute a restricted-LS estimate

$$\hat{x}_t = \text{restrictedLS}(y_t, N_t) := (\hat{x}_t)_{N_t} = A_{N_t}^{\dagger} y_t, \ (\hat{x}_t)_{N_t^c} = 0$$

• If  $N_t$  unknown: an option is to estimate it by thresholding CS output

$$\hat{N}_t$$
 = threshold(CS( $y_t$ )) threshold( $x$ ) := { $i: x_i^2 > \alpha$ }

and then do the same thing

But: not using past observations: large error

### CS-residual idea [Vaswani, ICIP'08]

- Let  $T := \hat{N}_{t-1}$  (estimated support at t-1) and  $\Delta := N_t \setminus \hat{N}_{t-1}$
- Assume that the undetected set,  $\Delta$ , is small, i.e.
  - the support changes slowly, and
  - the support at t-1 is well estimated
- Use  $T := \hat{N}_{t-1}$  to compute restricted LS estimate, & observation residual

$$(\hat{x}_{t,\text{init}})_T = \text{restrictedLS}(y_t, T)$$
  
 $y_{t,\text{res}} = y_t - A\hat{x}_{t,\text{init}}$ 

- CS-residual:  $\hat{x}_t = \hat{x}_{t, \text{init}} + \text{CS}(y_{t, \text{res}})$ 
  - $y_{t,res}$  is a noisy measurement of an approx.  $|\Delta|$  sparse vector

# Why CS-residual works?

• Notice that  $y_{t,res} = A\beta_t + w_t$  and  $\beta_t := x_t - \hat{x}_{t,init}$  satisfies

$$(\beta_t)_{\Delta} = (x_t)_{\Delta}$$

$$(\beta_t)_T = -A_T^{\dagger} (A_{\Delta}(x_t)_{\Delta} + w_t)$$

$$(\beta_t)_{(T \cup \Delta)^c} = 0$$

- If  $|\Delta|$  small enough s.t.  $||A_T'A_\Delta||_2 < \theta_{|T|,|\Delta|}$  small:
  - $-\beta_t$  small along T, i.e. it is only  $|\Delta|$ -approx-sparse
- CS error strongly depends on approx. sparsity size
  - CS-residual: much smaller error than CS on  $y_t$  (simple CS)

# LS CS-residual (LS-CS)



- Initial LS. Compute  $\hat{x}_{t,\text{init}}$  & observation residual  $y_{t,\text{res}}$  using  $T := \hat{N}_{t-1}$
- CS-residual. Compute  $\hat{x}_{t,CSres} = \hat{x}_{t,init} + CS(y_{t,res})$
- Estimate Support. Compute  $\hat{N}_t = \text{threshold}(\hat{x}_{t,CSres})$
- Final LS.  $\hat{x}_t = \text{restrictedLS}(y_t, \hat{N}_t)$  often improves estimate [Candes, Tao '06]

## Kalman filtered CS-residual (KF-CS)

[Vaswani, ICIP'08]

- So far only used  $\hat{N}_{t-1}$  to improve accuracy of CS at t: did not use  $\hat{x}_{t-1}$
- If a prior dynamic model for nonzero coefficients of  $x_t$  is available: do this by replacing initial LS by a KF for  $(x_t)_T$
- A possible prior model: random-walk on  $(x_t)_{N_t}$  starting with  $x_0 = 0$

$$(x_t)_{N_{t-1}} = (x_{t-1})_{N_{t-1}} + \mathcal{N}(0, \sigma_s^2 I)$$

$$(x_t)_{N_t \setminus N_{t-1}} = \mathcal{N}(0, \sigma_s^2 I)$$

$$(x_t)_{N_t^c} = 0$$

#### • KF CS-residual:

- dimension-varying KF with current states' set being  $T := \hat{N}_{t-1}$
- compute  $\hat{N}_t$  by thresholding output of CS on KF residual

# KF-CS algorithm

Initialize:  $\hat{N}_0 = \phi$ ,  $\hat{x}_0 = 0$ ,  $P_0 = 0$ . For t > 0, do

• Initial KF. KF on  $(x_t)_{\hat{N}_{t-1}}$  and compute KF residual,  $y_{t,res}$ 

$$\hat{x}_{t,\text{init}} = \text{KF}(I, \sigma_{sys}^2 I_{\hat{N}_{t-1}}, A_{\hat{N}_{t-1}}, \sigma^2 I)(y_t, \hat{x}_{t-1}, P_{t-1})$$
$$y_{t,\text{res}} = y_t - A\hat{x}_{t,\text{init}}$$

- CS-residual. Compute  $\hat{x}_{t,CSres} = CS(\tilde{y}_t) + \hat{x}_{t,init}$
- Estimate Support. Compute  $\hat{N}_t = \text{threshold}(\hat{x}_{t,CSres})$ 
  - zero out elements of deleted set,  $\hat{N}_{t-1} \setminus \hat{N}_t$ , from  $\hat{x}_{t-1}, P_{t-1}$
- Final KF. KF on  $(x_t)_{\hat{N}_t}$

$$[\hat{x}_t, P_t] = KF(I, \sigma_{sys}^2 I_{\hat{N}_t}, A_{\hat{N}_t}, \sigma^2 I)(y_t, \hat{x}_{t-1}, P_{t-1})$$

Initial KF. Let  $T = \hat{N}_{t-1}$ 

$$P_{t|t-1} = P_{t-1} + \hat{Q}_t$$
, where  $\hat{Q}_t := \sigma_s^2 I_T$   
 $K_t = P_{t|t-1} A' (A P_{t|t-1} A' + \sigma^2 I)^{-1}$ ,  $P_t = (I - K_t A) P_{t|t-1}$   
 $\hat{x}_{t,\text{init}} = (I - K_t A) \hat{x}_{t-1} + K_t y_t$   
 $y_{t,\text{res}} = y_t - A \hat{x}_{t,\text{init}}$ 

**Final KF.** Do the above but with  $T = \hat{N}_t$ 

# Brain fMRI sequence



- Variable density undersampling in kx-ky
- Use  $\gamma = 2 (2 \log m)^{1/2} \sigma$  as suggested in [Candes-?]
- m = 4096, n = m/2,  $\sigma^2 = 25$

# Cardiac sequence



Cardiac sequence: reconstructed last frame

- variable density undersampling in ky, full resolution in kx
- select γ using a heuristic motivated by the error bound of [Tropp'06]
- m = 128 (one column at a time), n = m/2,  $\sigma^2$  = 25

# Cardiac sequence



- variable density undersampling in ky, full resolution in kx
- select γ using a heuristic motivated by the error bound of [Tropp'06]
- m = 128 (one column at a time), n = m/4,  $\sigma^2$  = 25

# Cardiac sequence



- Uniformly random sample in ky, full resolution in kx
- Use best possible  $\gamma$  for each method ( $\gamma$  = 0.05 for CS,  $\gamma$  = 20 for KF-CS, LS-CS)
- m = 128 (one column at a time), n = m/2,  $\sigma^2$  = 25

#### 8×10<sup>-4</sup> simple CS Cardiac Gauss Lasso KF CSres LS CSres 6 Batch CS NSE\gnergy 20 25 30 10 15 KF CS-res Original Simple CS LS CS-res Batch CS

- Variable density undersampling in ky, full resolution in kx
- Use best possible γ for each method
   (γ = 0.05 for all)
- m = 128 (one column at a time), n = m/2,  $\sigma^2$  = 25

#### Related Work

- Our Kalman filtered CS work first appeared in ICIP'08
- Works not using current observation to compute residual
  - k-t FOCUSS [Jung, Ye, ISBI'08]
  - Locally Competitive Algorithms for sparse coding [Rozell et al, ICIP'07]
- Very recent work
  - Recursive Lasso [Angelosante, Giannakis, ICASSP'09]
  - Dynamic 11 minimization [Asif, Romberg, CISS'09]
  - Analyzing LS and KF CS [Vaswani, ICASSP'09]
  - Modified-CS [Vaswani, Lu, ISIT'09]

# Ongoing/Future Work

- Comparisons, use real MR scanner data, volume sequence reconstruction
- Bounding reconstruction error, Studying stability of LS and KF CS-residual
- Modified-CS [Vaswani, Lu, ISIT'09].  $\hat{x}_t$  is the solution of

$$\min_{\beta} ||\beta_{T^c}||_1 \quad \text{s.t.} \quad y_t = A\beta$$

- an approach for provably exact reconstruction from noiseless measurements using partly known support,  $T := \hat{N}_{t-1}$
- exact reconstruction if  $\delta_{|T|+2|\Delta|} < 1/5$  (much weaker than CS)
- Combine Modified-CS with CS-residual for noisy/compressible cases

$$\min_{\beta} \gamma ||\beta_{T^c}||_1 + (1/2)||y_t - A\beta||_2^2$$

$$\min_{\beta} \gamma ||\beta_{T^c}||_1 + ||\beta_T - (\hat{x}_{t-1})_T||_{P_{t|t-1}}^2 + (1/2\sigma^2)||y_t - A\beta||_2^2$$