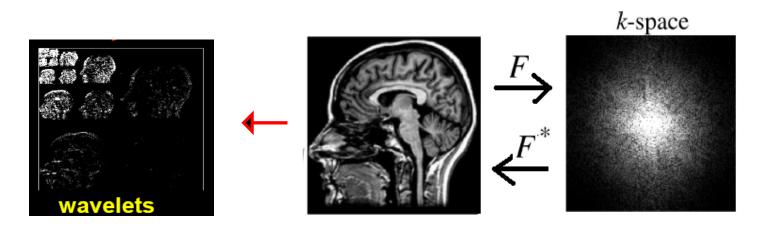
Real-time Dynamic MRI using Kalman Filtered Compressed Sensing

Chenlu Qiu, Wei Lu and Namrata Vaswani Dept. of Electrical & Computer Engineering Iowa State University

http://www.ece.iastate.edu/~namrata/

MR Imaging

- ➤ MRI measures the 2D Fourier transform of the image, which is "incoherent" w.r.t. the wavelet basis
- ➤ Medical images are approximately sparse (compressible) in the wavelet transform domain
- ➤ MR data acquisition is sequential, the scan time is reduced if fewer measurements are needed for accurate reconstruction.

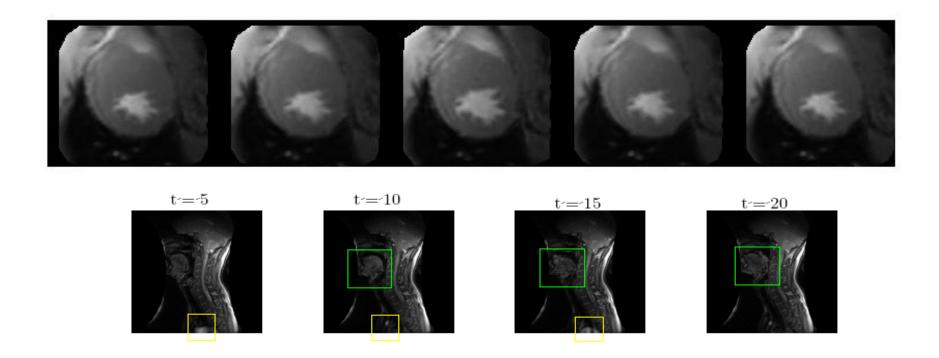


M. Lustig: Compressed Sensing for Rapid MRI

Real-time dynamic MRI

- > Reduce scan time: use as few measurements as possible
- > Reduce reconstruction time: Reconstruct
 - ➤ Causally: using current and all past observations and
 - ➤ Recursively: use previous reconstruction and current observation to obtain current reconstruction)
- ➤ Use the fact that
 - sparsity pattern changes slowly over time, and
 - > values of the current set of (significantly) nonzero wavelet coefficients also change slowly

Slowly Changing Sparsity



- Approx. Sparsity. Size of 99%-energy support set: less than 7% for the larynx sequence and less than 9% for the cardiac sequence.
- Slow Change in Sparsity Pattern. Maximum size of change in support: less than 2% of minimum sparsity size in both cases

Problem Definition

Recursively reconstruct a sparse vector, x_t , from the current observation, $y_t := Ax_t + w_t$, & all past observations, $y_{1:t-1}$

- $dim(y_t) = n < dim(x_t) = m$
- x_t is approx. S_t -sparse with approx. support set, N_t
- the support, N_t , changes slowly over time
- A is S_* -"approximately orthonormal" ($\delta_{S_*} < 1/2$) and $S_* > S_t$
- For MRI: A = HFW' with
 - $H_{n\times m}$: random row selection matrix
 - $F_{m \times m}$: DFT matrix, $W_{m \times m}$: DWT matrix
 - "random sample kx-ky plane" or "random sample ky, full sample kx"
 - "unformly random sample" or "variable density undersampling"

RIP and ROP constants [Candes, Tao]

• Restricted Isometry constant, δ_S : smallest real number satisfying

$$(1 - \delta_S)||c||_2^2 \le ||A_T c||_2^2 \le (1 + \delta_S)||c||_2^2$$

for all subsets T with $|T| \leq S$ and for all c

- Easy to see: $||(A_T'A_T)^{-1}||_2 \le 1/(1-\delta_{|T|})$
- Restricted Orthogonality constant, $\theta_{S,S'}$: smallest real number satisfying

$$|c_1' A_{T_1}' A_{T_2} c_2| \le \theta_{S,S'} ||c_1||_2 ||c_2||_2$$

for all disjoint sets T_1, T_2 with $|T_1| \leq S, |T_2| \leq S'$ and for all c_1, c_2

- Easy to see: $||A_{T_1}'A_{T_2}||_2 \le \theta_{|T_1|,|T_2|}$

Compressed Sensing [Candes, Romberg, Tao] [Donoho]

- CS (noiseless) [Candes, Romberg, Tao '05] [Donoho'05]: $\min_{\beta} ||\beta||_1$ s.t. $y_t = A\beta$
- CS (noisy Dantzig Selector) [Candes, Tao '06]
- CS (noisy Basis Pursuit Denoising (BPDN)) [Chen, Donoho] [Tropp'06]

$$\min_{\beta} \gamma ||\beta||_1 + (1/2)||y_t - A\beta_t||_2^2$$

We use $\hat{x}_t = \mathbf{CS}(y_t)$ to denote the solution of above

• CS for MR image reconstruction [Lustig, Donoho, Pauly '07]

The Question

- Most existing work: Batch-CS on entire time sequence [Gamper et al '08 (dynamic MRI)], [Wakin et al (video)]
 - Offline and very slow, but uses few measurements
- Alternative: CS at each time separately (simple CS)
 - Causal and fast, but needs many more measurements
- The Question: How can we
 - improve simple CS by using past observations, and
 - how can we do it recursively, i.e. by only using the previous signal estimate and the current observation?

Finding a Recursive Solution

- Given $y_t := Ax_t + w_t$, x_t is sparse with support N_t , N_t changes slowly over time, A satisfies $\delta_{S_t} < 1/2$, $S_t := |N_t|$
- If N_t known: easy to compute a restricted-LS estimate

$$\hat{x}_t = \text{restrictedLS}(y_t, N_t) := (\hat{x}_t)_{N_t} = A_{N_t}^{\dagger} y_t, \ (\hat{x}_t)_{N_t^c} = 0$$

• If N_t unknown: an option is to estimate it by thresholding CS output

$$\hat{N}_t$$
 = threshold(CS(y_t)) threshold(x) := { $i: x_i^2 > \alpha$ }

and then do the same thing

But: not using past observations: large error

CS-residual idea [Vaswani, ICIP'08]

- Let $T := \hat{N}_{t-1}$ (estimated support at t-1) and $\Delta := N_t \setminus \hat{N}_{t-1}$
- Assume that the undetected set, Δ , is small, i.e.
 - the support changes slowly, and
 - the support at t-1 is well estimated
- Use $T := \hat{N}_{t-1}$ to compute restricted LS estimate, & observation residual

$$(\hat{x}_{t,\text{init}})_T = \text{restrictedLS}(y_t, T)$$

 $y_{t,\text{res}} = y_t - A\hat{x}_{t,\text{init}}$

- CS-residual: $\hat{x}_t = \hat{x}_{t, \text{init}} + \text{CS}(y_{t, \text{res}})$
 - $y_{t,res}$ is a noisy measurement of an approx. $|\Delta|$ sparse vector

Why CS-residual works?

• Notice that $y_{t,res} = A\beta_t + w_t$ and $\beta_t := x_t - \hat{x}_{t,init}$ satisfies

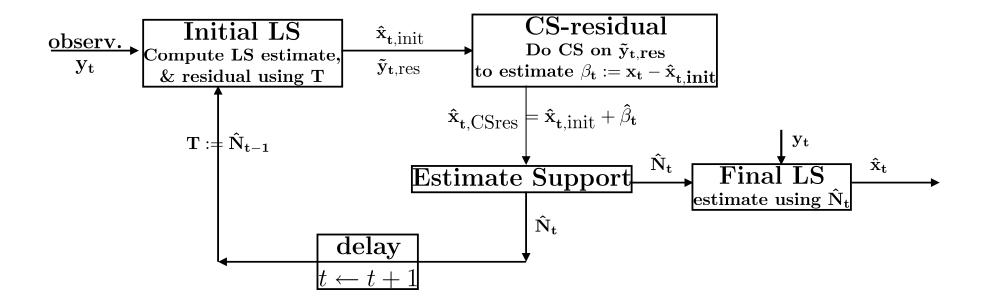
$$(\beta_t)_{\Delta} = (x_t)_{\Delta}$$

$$(\beta_t)_T = -A_T^{\dagger} (A_{\Delta}(x_t)_{\Delta} + w_t)$$

$$(\beta_t)_{(T \cup \Delta)^c} = 0$$

- If $|\Delta|$ small enough s.t. $||A_T'A_\Delta||_2 < \theta_{|T|,|\Delta|}$ small:
 - $-\beta_t$ small along T, i.e. it is only $|\Delta|$ -approx-sparse
- CS error strongly depends on approx. sparsity size
 - CS-residual: much smaller error than CS on y_t (simple CS)

LS CS-residual (LS-CS)



- Initial LS. Compute $\hat{x}_{t,\text{init}}$ & observation residual $y_{t,\text{res}}$ using $T := \hat{N}_{t-1}$
- CS-residual. Compute $\hat{x}_{t,CSres} = \hat{x}_{t,init} + CS(y_{t,res})$
- Estimate Support. Compute $\hat{N}_t = \text{threshold}(\hat{x}_{t,CSres})$
- Final LS. $\hat{x}_t = \text{restrictedLS}(y_t, \hat{N}_t)$ often improves estimate [Candes, Tao '06]

Kalman filtered CS-residual (KF-CS)

[Vaswani, ICIP'08]

- So far only used \hat{N}_{t-1} to improve accuracy of CS at t: did not use \hat{x}_{t-1}
- If a prior dynamic model for nonzero coefficients of x_t is available: do this by replacing initial LS by a KF for $(x_t)_T$
- A possible prior model: random-walk on $(x_t)_{N_t}$ starting with $x_0 = 0$

$$(x_t)_{N_{t-1}} = (x_{t-1})_{N_{t-1}} + \mathcal{N}(0, \sigma_s^2 I)$$

$$(x_t)_{N_t \setminus N_{t-1}} = \mathcal{N}(0, \sigma_s^2 I)$$

$$(x_t)_{N_t^c} = 0$$

• KF CS-residual:

- dimension-varying KF with current states' set being $T := \hat{N}_{t-1}$
- compute \hat{N}_t by thresholding output of CS on KF residual

KF-CS algorithm

Initialize: $\hat{N}_0 = \phi$, $\hat{x}_0 = 0$, $P_0 = 0$. For t > 0, do

• Initial KF. KF on $(x_t)_{\hat{N}_{t-1}}$ and compute KF residual, $y_{t,res}$

$$\hat{x}_{t,\text{init}} = \text{KF}(I, \sigma_{sys}^2 I_{\hat{N}_{t-1}}, A_{\hat{N}_{t-1}}, \sigma^2 I)(y_t, \hat{x}_{t-1}, P_{t-1})$$
$$y_{t,\text{res}} = y_t - A\hat{x}_{t,\text{init}}$$

- CS-residual. Compute $\hat{x}_{t,CSres} = CS(\tilde{y}_t) + \hat{x}_{t,init}$
- Estimate Support. Compute $\hat{N}_t = \text{threshold}(\hat{x}_{t,CSres})$
 - zero out elements of deleted set, $\hat{N}_{t-1} \setminus \hat{N}_t$, from \hat{x}_{t-1}, P_{t-1}
- Final KF. KF on $(x_t)_{\hat{N}_t}$

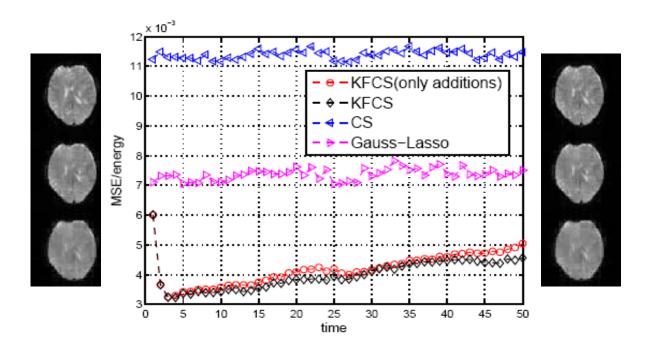
$$[\hat{x}_t, P_t] = KF(I, \sigma_{sys}^2 I_{\hat{N}_t}, A_{\hat{N}_t}, \sigma^2 I)(y_t, \hat{x}_{t-1}, P_{t-1})$$

Initial KF. Let $T = \hat{N}_{t-1}$

$$P_{t|t-1} = P_{t-1} + \hat{Q}_t$$
, where $\hat{Q}_t := \sigma_s^2 I_T$
 $K_t = P_{t|t-1} A' (A P_{t|t-1} A' + \sigma^2 I)^{-1}$, $P_t = (I - K_t A) P_{t|t-1}$
 $\hat{x}_{t,\text{init}} = (I - K_t A) \hat{x}_{t-1} + K_t y_t$
 $y_{t,\text{res}} = y_t - A \hat{x}_{t,\text{init}}$

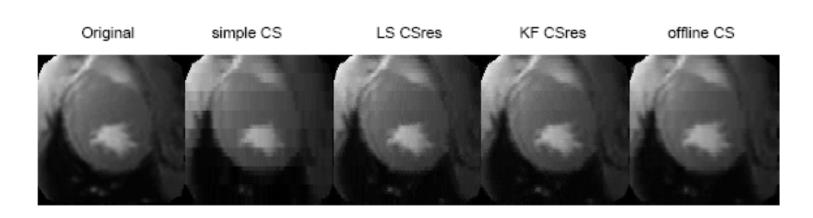
Final KF. Do the above but with $T = \hat{N}_t$

Brain fMRI sequence



- Variable density undersampling in kx-ky
- Use $\gamma = 2 (2 \log m)^{1/2} \sigma$ as suggested in [Candes-?]
- m = 4096, n = m/2, $\sigma^2 = 25$

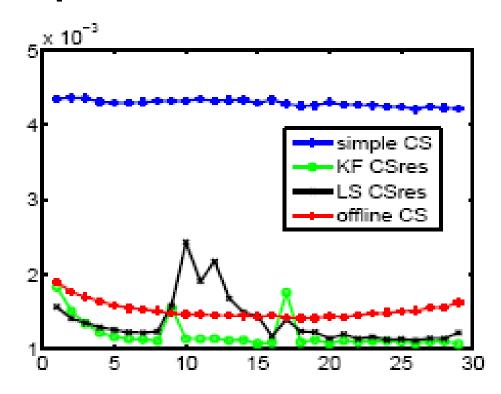
Cardiac sequence



Cardiac sequence: reconstructed last frame

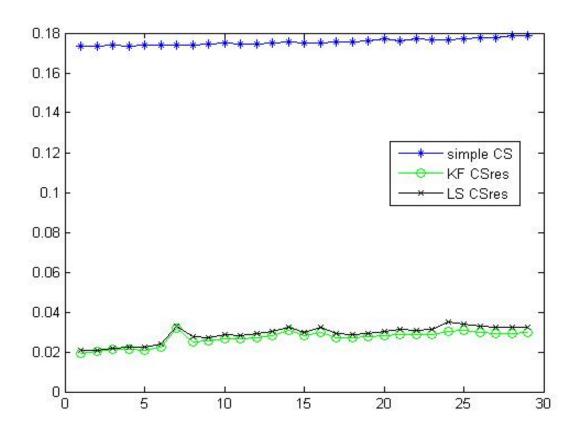
- variable density undersampling in ky, full resolution in kx
- select γ using a heuristic motivated by the error bound of [Tropp'06]
- m = 128 (one column at a time), n = m/2, σ^2 = 25

Cardiac sequence



- variable density undersampling in ky, full resolution in kx
- select γ using a heuristic motivated by the error bound of [Tropp'06]
- m = 128 (one column at a time), n = m/4, σ^2 = 25

Cardiac sequence



- Uniformly random sample in ky, full resolution in kx
- Use best possible γ for each method (γ = 0.05 for CS, γ = 20 for KF-CS, LS-CS)
- m = 128 (one column at a time), n = m/2, σ^2 = 25

8×10⁻⁴ simple CS Cardiac Gauss Lasso KF CSres LS CSres 6 Batch CS NSE\gnergy 20 25 30 10 15 KF CS-res Original Simple CS LS CS-res Batch CS

- Variable density undersampling in ky, full resolution in kx
- Use best possible γ for each method
 (γ = 0.05 for all)
- m = 128 (one column at a time), n = m/2, σ^2 = 25

Related Work

- Our Kalman filtered CS work first appeared in ICIP'08
- Works not using current observation to compute residual
 - k-t FOCUSS [Jung, Ye, ISBI'08]
 - Locally Competitive Algorithms for sparse coding [Rozell et al, ICIP'07]
- Very recent work
 - Recursive Lasso [Angelosante, Giannakis, ICASSP'09]
 - Dynamic 11 minimization [Asif, Romberg, CISS'09]
 - Analyzing LS and KF CS [Vaswani, ICASSP'09]
 - Modified-CS [Vaswani, Lu, ISIT'09]

Ongoing/Future Work

- Comparisons, use real MR scanner data, volume sequence reconstruction
- Bounding reconstruction error, Studying stability of LS and KF CS-residual
- Modified-CS [Vaswani, Lu, ISIT'09]. \hat{x}_t is the solution of

$$\min_{\beta} ||\beta_{T^c}||_1 \quad \text{s.t.} \quad y_t = A\beta$$

- an approach for provably exact reconstruction from noiseless measurements using partly known support, $T := \hat{N}_{t-1}$
- exact reconstruction if $\delta_{|T|+2|\Delta|} < 1/5$ (much weaker than CS)
- Combine Modified-CS with CS-residual for noisy/compressible cases

$$\min_{\beta} \gamma ||\beta_{T^c}||_1 + (1/2)||y_t - A\beta||_2^2$$

$$\min_{\beta} \gamma ||\beta_{T^c}||_1 + ||\beta_T - (\hat{x}_{t-1})_T||_{P_{t|t-1}}^2 + (1/2\sigma^2)||y_t - A\beta||_2^2$$