Kalman Filter Application to Electrical Impedance Tomography (EIT)

Samarjit Das

Department of Electrical and Computer Engineering Iowa State University

Electrical Impedance Tomography

- A novel medical imaging technique
- Makes use of large resistivity contrast (up to about 200:1) between a wide range of tissue types in the body
- Basically 'impedance imaging' of the interior of the body
- May be used to complement X-ray Tomography (CT), positron emission tomography etc.
- Cheaper, faster and harmless

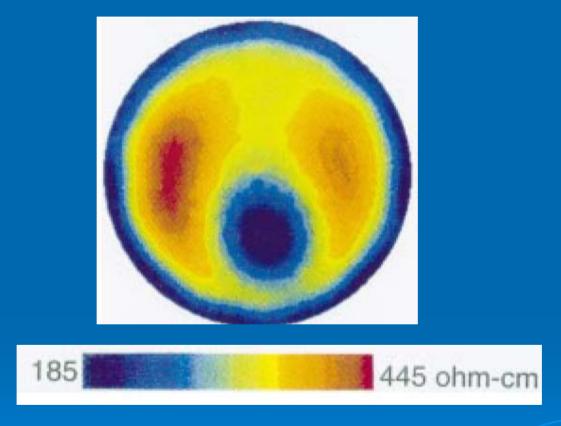
How does EIT work?

- Electrodes are placed in a transverse plan around the volume of the conductor
- Various Current Patterns are injected through electrodes
- Corresponding voltages between the electrodes are measured
- Construct impedance map or compute the impedance distribution of the cross-section of the volume using the boundary values (Voltages) at the surface

A Diagrammatic View

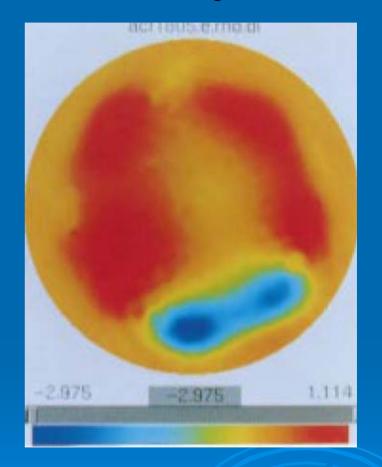
- Electrodes around the circumference of a Cylindrical Volume with artificial Lungs and Heart
- All in the same plane. Impedance map is computed for the corresponding cross-section of the volume

The Impedance Map



 Impedance Map of the cross-section i.e. the resistivity distribution over the cross-section computed from measurements at the boundary Or the Circumference

EIT with human body



 EIT used to track impedance variation inside Lungs and heart ventricles due to cardiac activity

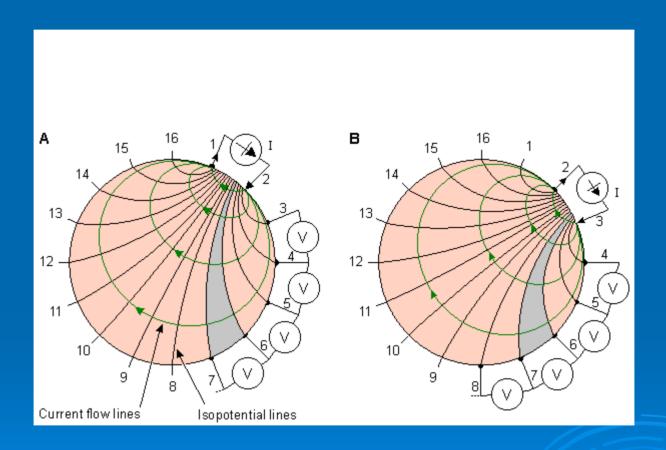
EIT comparison with MRI/CT imaging

- □ For creating an image, the energy signal should proceed linearly through the subject
- MRI/CT satisfies the above condition
- But in EIT current can't be forced to flow linearly. It takes several paths through the volume of interest
- Spatial resolution of EIT is lesser
- But EIT has good temporal resolution
- EIT can track fast impedance variation inside the body and hence need for a faster algorithm

EIT system design

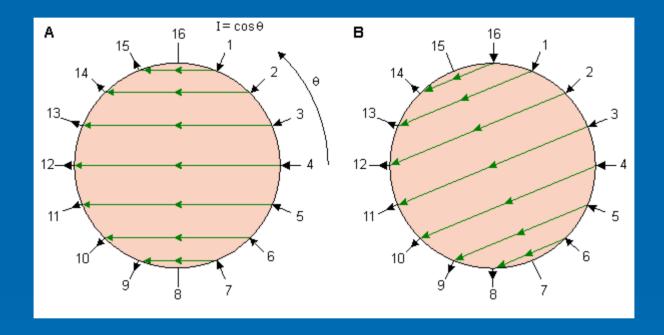
- Basic question: How to measure the impedance? i.e. the 'Reconstruction Problem'
- How to fed the current patterns and how to measure the voltages?
- How to choose the current patterns?
- Is it possible to create a homogeneous current distribution?
- How to mathematically relate the measured boundary values (Voltages) with the cross-sectional impedance distribution?

The current patterns and Voltage measurements



The Neighboring method

The current patterns and Voltage measurements (Adaptive method)



- Current injected through all 16 electrodes simultaneously.
- Voltages are measured w.r.t a common grounded electrode.
- New current pattern generated by rotating the distribution with one Electrode increment.
- Total 8*15=120 voltage measurements

Reconstruction: A mathematical Perspective

- Determination of impedance distribution from voltage values measured at the boundary
- Condition: There's NO source inside the volume
- $lue{}$ Consider the volume space with cross-section as Ω
- Basic equation: $\nabla \cdot (\sigma \nabla u) = 0$ in Ω
- \square u=u(x), x=(x1,x2) in the cross-section and

$$\sigma = \sigma(x)$$

 Solution for conductivity will give us the impedance distribution

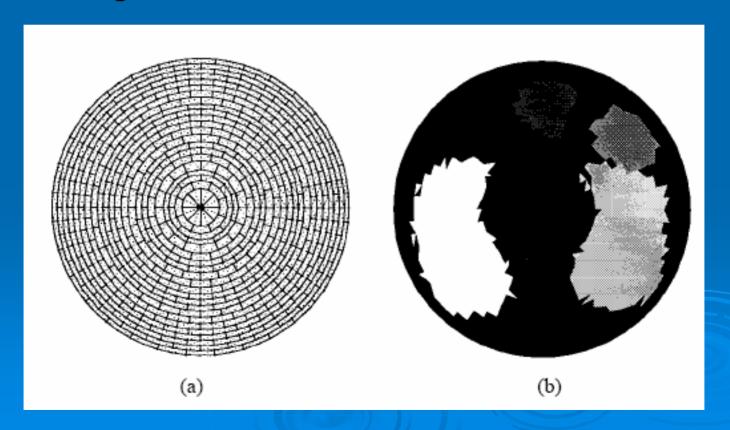
Computation of Impedance Distribution

- Computation is done by relating measured set of voltages with the impedance distribution in the crosssection
- A linearized problem formulation
- \Box Let ρ be the impedance distribution
- $lue{}$ Since we have only a finite number of measurements so we'll be able to recover only limited number of degrees of freedom of $\ensuremath{\rho}$
- \blacksquare Introduction of Finite Element Method (FEM) discretization of N elements and Consider $\rho \in R^N$

FEM discretization and ROI

FEM: nodes and grid elements

ROI: Region Of Interest



Formulation of State Space model

- Let U be the vector containing the voltage measurements corresponding to all current patterns, where U=U(\rho)
- lacktriangle Let 'Uo' be voltage measurements corresponding to a distribution ho o
- \Box Linearization of mapping U at ρ o is

$$U(\rho) = U_0 + J(\rho_0)(\rho - \rho_0)$$

□ $J = J(\rho)$ is computed from FEM discretization of associated PDEs (Beyond our scope)

State-space model (Contd..)

- L voltage measurements corresponding to each current pattern
- □ Ik, K-th current pattern: Ik is L dimensional
- For total K current patterns, U is KL dimensional
- We can rewrite the mapping U as,

$$U = \begin{pmatrix} U_1 \\ \vdots \\ U_K \end{pmatrix} = \begin{pmatrix} U_{0,1} \\ \vdots \\ U_{0,K} \end{pmatrix} + \begin{pmatrix} J_1 \\ \vdots \\ J_K \end{pmatrix} (\rho - \rho_0)$$

Uo,k is L-D, Jk is (LxN)-D, K-th block corresponds to current pattern Ik where N is the number of FEM elements

The time varying model

- Consider at time t current pattern is lk(t) and corresponding voltage measurement U(t)
- $\rho = \rho(t)$ is considered as the state that evolves with time (State Equation Formulation)
- Observation equation:

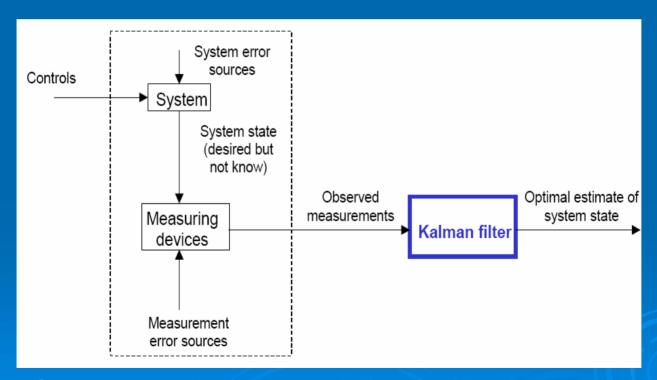
$$U(t) = U_{0,k(t)} + J_{k(t)}(\rho(t) - \rho_0) + w(t)$$

 \Box State Equation : $\rho(t+1) = F(t)\rho(t) + v(t)$

Now, we are all set to use the 'Kalman Filter'

The Kalman Filter: Basics

- Optimal recursive data processing algorithm
- Typical Kalman Filter application



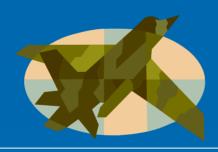
State cannot be measured directly. Has to be estimated Optimally from measurements

What Kalman Filter does?

- ☐ Generates <u>optimal</u> estimate of desired quantities given the set of measurements
- ☐ Optimal: For linear system and white Gaussian errors, Kalman filter is "best" estimate based on all previous measurements
- ☐ Of all the possible filters, Kalman Filter minimizes the variance of estimation error i.e. the difference the original state and the estimated state
- ☐ Recursive : Doesn't need to store all previous measurements and reprocess all data each time step

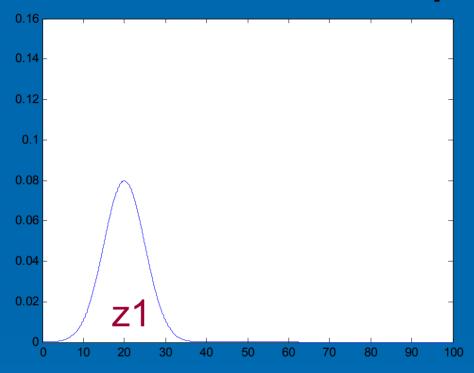
- Simple example to motivate the workings of the Kalman Filter
- Theoretical Justification to come later –first the very basic concept
- Important: Prediction and Correction

□ A simple estimation problem

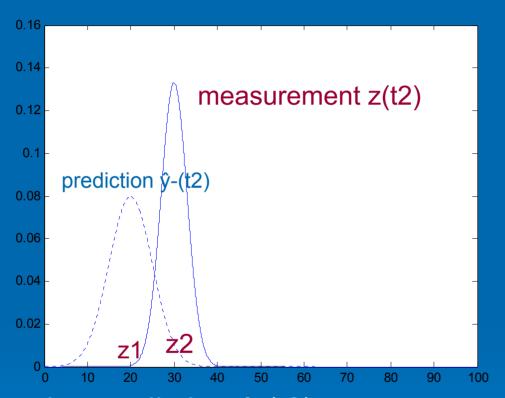


У

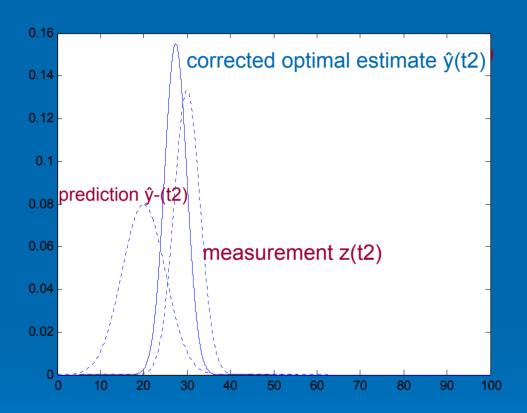
- Lost on the 1-dimensional line
- Position: y(t)
- Assume Gaussian distributed measurements



Sextant Measurement at t1: Mean = z1 and Variance = σ_{z1}^2 Optimal estimate of position is: $\hat{y}(t1) = z1$ Variance of error in estimate: $\sigma_X^2(t1) = \sigma_{z1}^2$ Aircraft in same position at time t2 - <u>Predicted</u> position is z1



So we have the prediction \hat{y} -(t2) GPS Measurement at t2: Mean = z_2 and Variance = $\sigma_{z_2}^2$ Need to <u>correct</u> the prediction due to measurement to get \hat{y} (t2) Closer to more trusted measurement – linear interpolation?



- Corrected mean is the new optimal estimate of position
- New variance is smaller than either of the previous two variances

Make prediction based on previous data - ŷ-, σ-

Take measurement – zk, σz

Optimal estimate (ŷ) = Prediction + K* (Measurement - Prediction)

Variance of estimate = Variance of prediction *(1 - K)

(To be deduced soon!!)

It turns out that for the simple problem,

$$K = \sigma_{z1}^2 / (\sigma_{z1}^2 + \sigma_{z2}^2)$$

$$1/\sigma^2 = 1/\sigma_{z1}^2 + 1/\sigma_{z2}^2$$

Where, σ^2 is the variance of the estimate

Just like merging of two Gaussians...

(Kalman Filter will give us that as well!)

So far...

- Initial conditions $(\hat{y}_{k-1} \text{ and } \sigma_{k-1})$
- Prediction (ŷ_k, σ_k)
 - Use initial conditions and model (eg. constant velocity) to make prediction
- Measurement (z_k)
 - Take measurement
- Correction (\hat{y}_k, σ_k)
 - Use measurement to correct prediction by 'blending' prediction and residual – always a case of merging only two Gaussians
 - Optimal estimate with smaller variance

We'll just go ahead with a bunch of equations.

State Process:

$$x_{k+1} = \Phi x_k + w_k$$

Measurement Process:

$$z_k = Hx_k + v_k$$

(the control input neglected)

The squared error function,

$$f(e_k) = (x_k - \hat{x}_k)^2$$

MSE(Mean squared Error) Function

$$\epsilon(t) = E(e_k^2)$$

Covariance of two noise models,

$$Q = E \left[w_k w_k^T \right]$$
$$R = E \left[v_k v_k^T \right]$$

Error covariance matrix at k-th instant

$$P_k = E\left[e_k e_k^T\right] = E\left[\left(x_k - \hat{x}_k\right)\left(x_k - \hat{x}_k\right)^T\right]$$

Pk: Trace is the sum of MSEs

Suppose we have a prior estimate of a state at k-th instant so,

$$\hat{x}_k = \hat{x}'_k + K_k (z_k - H\hat{x}'_k)$$

Or,

$$\hat{x}_k = \hat{x}_k' + K_k (Hx_k + v_k - H\hat{x}_k')$$

KF design: Find Kk that will give optimal performance i.e. minimum MSE

How to find Kk for optimal Filter (KF)?

Solution: Minimize Trace of Pk (Why?)

Where,

$$P_k = (I - K_k H) P'_k (I - K_k H)^T + K_k R K_k^T$$

Finally, Kalman Gain (K_k) is given by,

$$K_k = P_k' H^T \left(H P_k' H^T + R \right)^{-1}$$

Mathematical treatment of the equations will give us the other update equations,

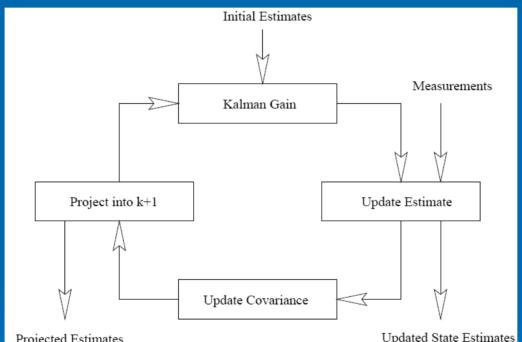
$$P_k = (I - K_k H) P'_k$$

$$\hat{x}'_{k+1} = \Phi \hat{x}_k$$

$$P_{k+1} = \Phi P_k \Phi^T + Q$$

The Complete KF

The recursive Algorithm,



110 Cotto Limitates	
Description	Equation
Kalman Gain	$K_k = P_k' H^T \left(H P_k' H^T + R \right)^{-1}$
Update Estimate	$\hat{x}_k = \hat{x}_k' + K_k (z_k - H \hat{x}_k')$
Update Covariance	$P_k = (I - K_k H) P_k'$
Project into $k+1$	$\hat{x}_{k+1}' = \Phi \hat{x}_k \ P_{k+1} = \Phi P_k \Phi^T + Q$
	$P_{k+1} = \Phi P_k \Phi^T + Q$

Back to EIT Reconstruction Problem!!

- We can apply the KF recursive algorithm for estimating the states that are evolved with time
- But we need to have the state-space representation in place for KF processing,
- And we have them!!

State process:

$$\rho(t+1) = F(t)\rho(t) + v(t)$$

Measurement process:

$$U(t) = U_{0,k(t)} + J_{k(t)}(\rho(t) - \rho_0) + w(t)$$

EIT reconstruction with KF

Important: $\rho = \rho$ (t) i.e. the impedance distribution is modeled as state evolved with time. It takes transition from one state to the other with a new current pattern at each instant of time. Transition matrix: F(t)

We have everything in place. Corresponding to our designed KF here we have,

$$F \rightarrow \phi$$

 $J_{k(t)} \rightarrow H$, $X \rightarrow \rho$, $Z \rightarrow U$, R & Q etc...

EIT reconstruction with KF

■ So, estimation of impedance distribution [\(\rho\) (t)], is given by,

$$\hat{\rho}(t+1) = \hat{\rho}_1(t+1) + \mathbf{K}_k c(t+1)$$

- subscript k indicates (t+1)th time instant
- Kk can be computed using the Kalman Gain Formula

Measurement residual: e(t) is given by,

$$e(t) = U_t - U_{0,k(t)} - J_{k(t)}(\hat{\rho}_1(t) - \rho_0)$$

The conventional Reconstruction Algorithm

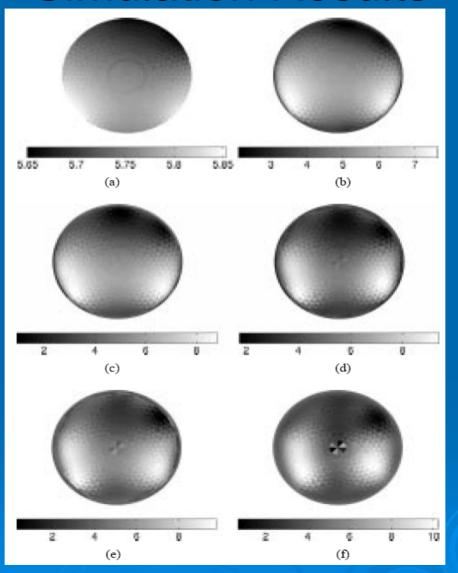
- Called the NOSER algorithm
- Does not generate impedance images with each current pattern
- Uses a full set of current patterns and Voltage measurements for reconstruction of each distribution
- Performs one step of the regularized Gauss-Newton iteration of associated non-linear least square problem,

Comparison of conventional vs. KF based reconstruction

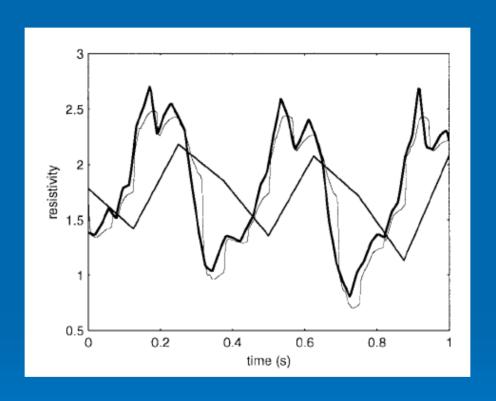
- KF based reconstruction is able to track the time evolution of impedance distribution
- Hence, KF based approach can depict the fast impedance variation inside the body (e.g., Cardiac activity and Lungs)
- KF based algorithm is dynamical and faster. For 32 electrodes, all the 31 current patterns is used for a conventional image reconstruction.
- KF based approach reconstructs after each current pattern and hence 31 time faster
- Useful in sports medicine.(180 Heart beats/min)

Parameter selection for Simulation: Some Design Issues

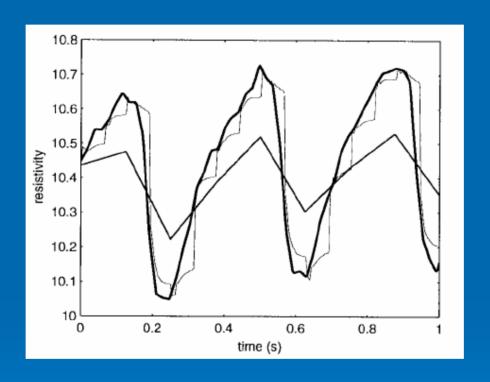
- □ F(t) = I (the unit matrix), R=0.2 * I , Q= 0.8* I
- Initial covariance of the estimation error is considered to be 0.1 * I
- Lower the dimension of state vector the better
- Grouping the FEM elements together by preintegration for constructing ROIs and hence lesser dimensional state space
- ROI for lungs, ventricles of heart. Thus dimension of state vector goes down to 3 or 4. Easy to solve.
- We can have average impedance distribution of Lung region (ROI) and can track the variation with cardiac cycle.
- Trigonometric current patterns across the electrodes



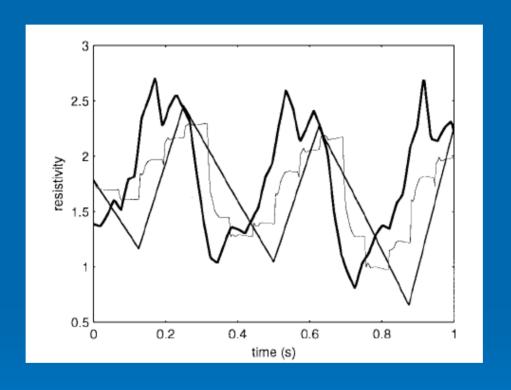
(a) To (e) with KF and (f) with the conventional approach



Result from Left Ventricle with 5 ROI parameters and 31 current patterns



Result from Right Lung with 5 ROI parameters and 31 current patterns



Result from Left Ventricle with 496 FEM parameters and 31 current patterns

Future works: A few suggestions

- F(t) = I may not be valid all the time. Appropriate choice of F(t) should be done depending on system under consideration
- With proper modeling we can study the dynamics of blood circulation among various organs
- Take into account of Non-linearity. Use of Extended Kalman Filter (EKF)
- Introduce optimal current pattern for better spatial resolution

Acknowledgement

- M. Vauhkonen, P.A. Karjalainen, and J.P. Kaipio, "A Kalman fillter approach to track fast impedance changes in electrical impedance tomography," IEEE Trans Biomed Eng, 1998.
- Introduction to Kalman Filters, Michael Williams, 2003
- Tutorial: Kalman Filter, Toney Lacey
- □ EIT web: http://butler.cc.tut.fi/~malmivuo/bem/bembook/27/27.htm
- EIT, Margaret Cheney et all. Society for Industrial and Applied Mathematics, 1999

Thank You!

Questions ??