Digital Image Processing

Instructor: Namrata Vaswani http://www.ece.iastate.edu/~namrata

Outline

• Difference from 1D signal processing

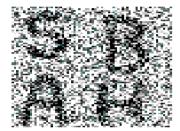
• Sub-fields and types of problems

• Applications

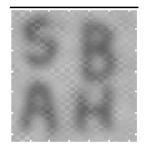
Useful Background

Differences from 1D Signal Processing

- Take care of spatial relationships, e.g. spatial frequency, notion of shape
- Too much information req. "feature" extraction
- Noise assumptions for 1D signals don't always model image noise well
- No standard statistical models to categorize images, every problem is different ⁽³⁾
- 3D scene → 2D images, can be occlusions, many problems are ill-posed


Sub-Fields

- Compression & Communications
 - Lossy compression, remove high frequency, JPEG
 - Transmit: varying bandwidth requirements, delay sensitive, tolerates errors
- Image Processing: image acquisition (to retain "most" information) & processing to improve image quality
- Tomographic reconstruction
- Image Analysis: Estimate/detect (inference) from images
- Pattern Recognition: only detection/classification problems
- Computer Vision: 2D images \rightarrow 3D scene estimation


Image Processing

- Image Restoration
 - Deblurring
 - Denoising
- Filtering
- Image enhancement
 - e.g. contrast enhancement: histogram equalization
- Feature extraction
 - edges, texture, PCA, motion, local histogram, filtered o/p (e.g. Gabor), wavelet...
- Image Acquisition Issues

Image Proc: Denoising

Image Proc: Deblurring

Blurred image

Restored image

PSF

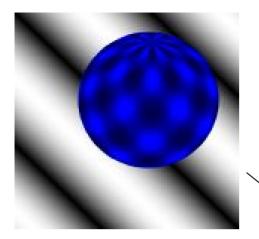
De-blurring: Deconvolution operation Can be blind (PSF not known) or not-blind

Image Proc: Acquisition

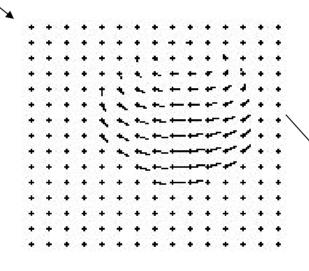
- Sensors, e.g. CCD
 - Higher resolution (improving sampling rate)
 - Higher fidelity (more quantization bits, low noise)
 - Improving speed of acquisition
 - Low power devices
 - Camera design (projective geometry, lens physics)
 - Panoramic cameras with 360° field of view
- Image interpolation e.g. digital zoom
- Decimation

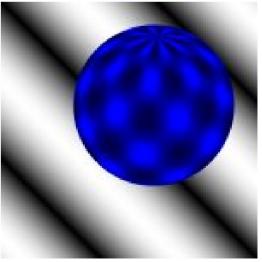
Image Proc: Feature extraction

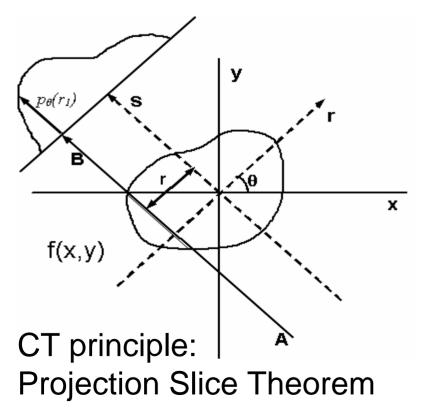
- Intensity
- Edges threshold spatial gradient
- Texture repeated basic "primitives" & spatial relation, view at different scales
- Motion Threshold frame difference
- Motion Optical flow (where did pixel (i,j) move)
- Shape, Local histogram, PCA, image transforms


Image Proc: Textures

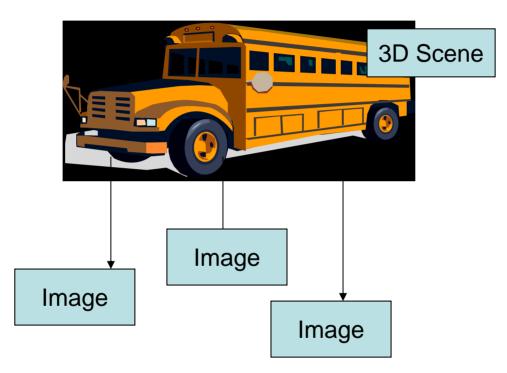
Coarse texture




Fine texture


Optical Flow

Tomographic Reconstruction


• Getting the image of a cross section from projections at different angles, e.g. CT, PET

CT reconstruction of a Brain cross-section

Image Analysis/ Comp Vision

One image - Segment, Recognition, Edge detect & get contour Two images – Registration, Optical flow, Get 3D structure (stereo) Time sequence - Tracking, Structure from Motion, Change Detection

Image Analysis

• Segmentation

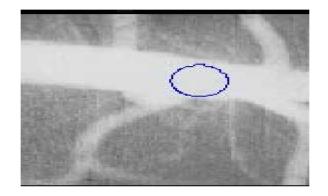
- Estimate outer contour (boundary) of the object from the image
- Or: classify image regions as foreground/background

• Registration

- Estimate a global transformation (Affine, Similarity, Euclidean) relating 2 images
- taken from different views, different modalities or different times

Image Analysis (contd.)

- Shape geometric information after removing scale, translation, rotation
- Recognition / Classification / Detection
 - e.g. Faces, Objects, Vehicles, Activity (video)
 - Use intensity, shape, texture, motion,...
- Tracking Estimate from a time seq. of images
 - Global motion or
 - Global motion & Local deformation (shape change)
 - Use all info from past and use a prior statistical models for "state" change
 - Change detection change in the system model


Image Analysis (contd.)

• Representing Shape

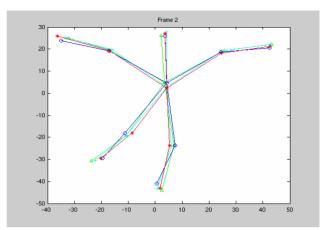
 Landmarks – points of high curvature or intensity or motion blobs or of "interest"

- Continuous curve parametric finite dim.
 representation e.g. B-spline, angle repr.
- Continuous curve infinite dim.
 representation level set method

Image Analysis: Segmentation


 From Sethian's website: <u>http://math.berkeley.edu/~sethian/level_set.html</u>

Image Analysis: Tracking


• Fish :

- "Feature"- Image intensity,
- Shape repr.: Level set method
- Initialiazation: Segmentation
- Group of People
 - "Feature" Motion detection
 - Shape repr: Landmark shape
 - Also do change detection

- Human actions
 - "Feature": local PCA
 - Shape: Landmark
- Leaf (CONDENSATION algorithm):
 - "Feature": edges
 - Shape repr: B-spline
- Beating Heart: 3D image sequence

Pattern Recognition

- Change detection in an image sequence
 - Detecting abnormal patterns/shapes
 - Detecting changes in motion patterns
- Classification, retrieval, recognition

 Faces, objects, activities, handwriting,...
- Shape analysis, matching
 - Learning statistical models for shapes of groups of points or of continuous contours, their dynamics over time
 - Matching: shape classification

Recognition

• Faces: AT&T database

• Objects: COIL database

Activity recognition, Abnormality detection

Computer Vision

- 2D images \rightarrow 3D scene reconstruction
- Camera models perspective, orthographic, affine,...
- 3D reconstruction from set of 2D images using
 - images from a single moving camera (structure from motion)
 - or multiple static cameras (stereo)
 - to get 3D coordinates of scene points
- Tracking in 3D estimating 3D object location as a function of time

Applications: Medical Imaging

- Reconstructing an image from projections e.g. CT scan, PET, MRI
- Computer Aided Detection (CAD), e.g. detecting a tumor
- Segmentation e.g. arteries, brain grey matter, tumor
- **Registration** of images from diff modalities or viewpoints
- **Tracking:** use in image-guided surgery
- **Deblurring, Denoising** e.g. ultrasound is very noisy.

More Applications

• Defense

- Automated navigation of UAVs (Unmanned Air Vehicles)
- Video stabilization
- Target segmentation, recognition, tracking
- Compression & transmission

Surveillance / Security

- Detecting "abnormal" activity in images
- Building normalcy models: statistical models
- Requires feature extraction, tracking moving objects
- Face recognition identification of criminals, passport

Still More Applications

- **Robotics** robot navigation, autonomous vehicles
- Visualization real estate, site monitoring for surveillance
 - 3D reconstruction from a set of 2D images
 - Rendering displaying the 3D object from different views
 - More...

Cell phones

- Very lossy compression, Small error Transmission, low power

Movies/Entertainment/Games...

 graphics (image synthesis), image analysis is the starting point to build models for synthesizing new images

Even More Applications

- Video Conferencing
 - Object oriented compression MPEG 7
 - Requires object segmentation and tracking
- Art/Archaeology restoring old paintings, writings
 Image restoration, contrast enhancement
- **Remote sensing** analyzing aerial imagery
- Meteorology e.g. hurricanes, optical flow tracking, building models
- **Document Analysis** e.g. handwriting recognition, digit recognition
- VLSI testing defect analysis

Useful Background

- Probability & Statistics
- Signal Processing
- Linear Algebra
- Multivariable Calculus
- Good programming skills
 - C++/ Visual C++/Java for industry
 - MATLAB for graduate school
- Image Processing class
 - If you know some of above 5, very easy to pickup