
Edge Detection & Boundary
Tracing

EE 528 Digital Image Processing

References

A.K. Jain, Chapter 9
All details for edge detection given in this chapter

Milan Sonka’s class notes on boundary
tracing

Other webpages listed where needed

Edge Detection Methods

Discrete approx. of gradient, & threshold the
gradient norm image

Edge: large gradient magnitude
Second derivative, & zero crossing detect

Edge: max or min of gradient along gradient direction
Weak edges (gradual variation) detected better, less
chance of multiple edge responses

Derivative: enhances noise, 2nd derivative: worse
Band-pass filtering: some smoothing followed by
taking the first or second derivative, e.g. LoG
Compass operators

Edges in 1D

Taken from http://www.pages.drexel.edu/~weg22/edge.html

http://www.pages.drexel.edu/~weg22/edge.html

Edge detection operators

First derivative: Sobel, Roberts, Prewitts operators
Smooth in one direction, differentiate in the other
Apply in x and y directions, and take norm of the result
Arctan(G_y/G_x) = gradient direction (perpendicular to edge directn)

Second derivative + smoothing: Marr-Hildreth operator or LoG
Gaussian prefiltering followed by computing Laplacian
Works better when grey level transitions are smooth
An approximation to LoG is the Mexican hat (difference of
Gaussians of different variance)

Compass: directional first derivative masks (Sobel or Prewitts)

Canny’s edge detector: most commonly used.

Examples

First derivative method:
misses some edges

Laplacian:
more sensitive to noise

LoG edge detection

Zero crossings always lie on closed contours and so
the output from the zero crossing detector is usually
a binary image with single pixel thickness lines
showing the positions of the zero crossing points.

Often occur at `edges' in images, but also occur
anywhere where both x and y gradients change sign

e.g. occur where roughly uniform intensity (very
small image gradient which increases &
decreases)

LoG with increasing sigma

Detecting zero crossings

Simplest: threshold the LoG image, i.e. mark
all points with LoG magnitude below a
threshold as zero

Problem: multiple edge responses
Choose points where LoG magnitude smaller
than all its 4 neighbors

Risk of missing some edge points
Zero crossing: LoG sign change in at least
one direction

Canny’s edge detector

1983, MS student at MIT

Designed an operator that minimizes
probability of missing an edge, probability of
false detection of edges, good localization

Restricted solution to linear shift-invariant
operators

Main Idea of Canny

Smooth the image using a Gaussian kernel: reduce
false alarms
Take gradient & compute gradient magnitude &
gradient direction (quantify direction to multiples of
45 degrees)
Perform non-maximal suppression: localization

Suppress a point if its gradient magnitude is smaller than
either of its two neighbors along the gradient direction

Hysteresis: two thresholds TL, TH
Suppress all points with magnitude < TH
If a point has magnitude > TL and is linking two points with
magnitude > TH, then keep it : reduce misses

Applying Canny

Some edges missing

(before hysteresis step)

Taken from http://www.pages.drexel.edu/~weg22/edge.html

Compass Operators

Compute magnitude of directional derivative
in 4 directions – 0, 45, 90, 135 degree
Maximum of the derivative values gives
gradient magnitude
Threshold gradient magnitude

Alternatively, if only want to look for 45
degree edges: can do that.

Boundary Tracing & Edge Linking

Boundary Tracing

Given a “segmented” image (an image with
foreground pixels labeled 1 and background pixels
labeled zero), trace either boundary of the
foreground

May need to trace inner boundary (outermost pixels of
foreground) or outer boundary (innermost pixels of
background): bwtraceboundary command in MATLAB

Or if foreground, background labeled 1, -1, may use a zero
level set searching method to get subpixel coordinates of
boundary: contour command in MATLAB

Segmentation: discussed in next handout, simplest
way to segment is to threshold intensity values

Boundary Tracing Algorithm links

http://www.mathworks.com/access/helpdesk_
r13/help/toolbox/images/enhanc11.html

http://www.icaen.uiowa.edu/~dip/LECTURE/
Segmentation2.html#tracing

http://www.imageprocessingplace.com/DIP/di
p_downloads/tutorials/contour_tracing_Abeer
_George_Ghuneim/index.html

http://www.mathworks.com/access/helpdesk_r13/help/toolbox/images/enhanc11.html
http://www.mathworks.com/access/helpdesk_r13/help/toolbox/images/enhanc11.html
http://www.icaen.uiowa.edu/~dip/LECTURE/Segmentation2.html#tracing
http://www.icaen.uiowa.edu/~dip/LECTURE/Segmentation2.html#tracing
http://www.imageprocessingplace.com/DIP/dip_downloads/tutorials/contour_tracing_Abeer_George_Ghuneim/index.html
http://www.imageprocessingplace.com/DIP/dip_downloads/tutorials/contour_tracing_Abeer_George_Ghuneim/index.html
http://www.imageprocessingplace.com/DIP/dip_downloads/tutorials/contour_tracing_Abeer_George_Ghuneim/index.html

MATLAB functions

contour: gives you the contour location in
sub-pixel coordinates. Need to have object &
background labeled as 1, -1 (not 1,0)

Inner boundary: gives the locations of the
outermost pixels of the object

bwtraceboundary
bwboundaries (for multiple objects)

4 connected versus 8 connected

4 connected neighbors

8 connected neighbors

Outer Boundary tracing

Edge Linking
Goal: take edge map, convert to a linked boundary
representation

Can be closed or open boundary
Convert the edge map with gradient magnitude and
gradient directions into a weighted graph
Use dynamic programming (based on Bellman’s
optimality principle) to find the shortest path from
origin to destination

Much faster than brute force optimization
Idea explained in class
Also read pages 359-362 of AK Jain.

Main idea of Dynamic Programming

Given an objective function S(x1,…xN) where x1,...xN are the
vertices and S is the sum of edge weights when traversing in
the sequence x1, x2,…xN

Find φ(xN) = maxx1,…x{N-1} S(x1,…xN). The argument
maximizing this gives you the path

S can be split as:
S(x1,…xN) = S(x1,…x{N-1}) + f(x_{N-1},x_N)

Whenever the above holds, the max can be simplified as
φ(xN) = maxx{N-1}[f(x{N-1},xN) + maxx1,…x{N-2} S(x1,…x{N-1})]

= maxx{N-1}[f(x{N-1},xN) + φ(x{N-1})]
This can be implemented as a recursive algorithm

Details in class or in the book

	Edge Detection & Boundary Tracing
	References
	Edge Detection Methods
	Edges in 1D
	Edge detection operators
	Examples
	LoG edge detection
	LoG with increasing sigma
	Detecting zero crossings
	Canny’s edge detector
	Main Idea of Canny
	Applying Canny
	Compass Operators
	Boundary Tracing & Edge Linking
	Boundary Tracing
	Boundary Tracing Algorithm links
	MATLAB functions
	4 connected versus 8 connected
	Outer Boundary tracing
	Edge Linking
	Main idea of Dynamic Programming

