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Most notes are based on Chapter IV-B and Chapter V of Poor’s Introduction to Signal

Detection and Estimation book [1].

1 Jointly Gaussian random variables
1. The n x 1 random vector X is jointly Gaussian if and only if the scalar
u'' X
is Gaussian distributed for all n x 1 vectors u

2. The random vector X is jointly Gaussian if and only if its characteristic function,

Cx(u) := E[e™" ] can be written as
OX(U) — eiuTue—uTZu/Q
where p = E[X] and ¥ = cov(X).

e Proof: X is j G implies that V = v’ X is G with mean u”y and variance u” Xu.
Thus its characteristic function, Cy (t) = /" re=*v"3u/2 Byt Oy (t) = E[e™V] =
Ele™" X]. If we set t = 1, then this is E[e™" X] which is equal to Cx(u). Thus,
Cx(u) = Cy(1) = e re—u">u/2,

e Proof (other side): we are given that the charac function of X, Cx (u) = E[e™"X] =
et me=u"u/2 Congider V = uTX. Thus, Cy (t) = E[eV] = Cx (tu) = e e~ tu"2u/2
Also, E[V] = u”pu, var(V) = uTSu. Thus V is G.

3. The random vector X is jointly Gaussian if and only if its joint pdf can be written as
Fel@) = — b (XTE T X2 (1)
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e Proof: follows by computing the characteristic function from the pdf and vice

versa

4. The random vector X is j G if and only if it can be written as an affine function of

1.1.d. standard Gaussian r.v’s.

e Proof: if X = AZ + a where Z ~ N(0, ), then easy to show that X has joint
pdf given by (1) and thus it is j G.

e Proof (other side): if X is j G, then it has the joint pdf given by (1). Then
can show that Z := X7V2(X — p) ~ N(0,1), i.e. it is ii.d. standard G. Thus,
X =XY2Z 4 41, ie. it is an affine function of Z.

5. The random vector X is j G if and only if it can be written as an affine function of

jointly Gaussian r.v’s.

e Proof: Suppose X is an affine function of a j Gr.v. Y,ie. X = BY +b. Since Y
is j G, by 4, it can be written as Y = AZ + a where Z ~ N(0,1) (i.i.d. standard
Gaussian). Thus, X = BAZ + (Ba + b), i.e. it is an affine function of Z, and
thus, by 4, X is j G.

e Proof (other side): X is j G. So by 4, it can be written as X = BZ + b. But
Z~N(0,I)ie. ZisajGr.v.

Properties
1. If Xy, X, are j G, then the conditional distribution of X; given X, is also j G

2. If the elements of a j G r.v. X are pairwise uncorrelated (i.e. non-diagonal elements

of their covariance matrix are zero), then they are also mutually independent.

3. Any subset of X is also j G.

2 Bayesian Minimum Mean Squared Error (MMSE)

estimation

1. X is the unknown, Y is the observation. We assume that X itself is a random variable
with a prior distribution that is known. We are also given the conditional distribution
of Y given X.

2. Bias of a Bayesian estimator X (Y) is defined as
E[X(Y)] - E[X] (2)
where E[.] means we take expectation over all random variables (here X, Y).
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3. Bayesian MSE of an estimator X (V) is

E[|lX - X(Y)I (3)

4. Claim: E[X|Y] is the minimum MSE (MMSE) estimator of X from Y. Proof:
(a) We try to show that
E[||X — E[X|Y]|I*] < E[IX — X(V)]] (4)

(b) To do this, add and subtract E[X|Y] from RHS, expand and show that the cross

term is zero. To show cross term is zero, use law of iterated expectations. Thus,
E[|IX - X(WV)IIF] = E[IX - EX|Y]+EX|Y] - X(V)|]

— E[|X — E[X|Y]|]?] + E[IE[X|Y] — X(¥)[]] + 2cross  (5)

where
cross = E[E[X|Y] - X(Y)T(X —E[X|V])]
= Ey[E[E[X[Y] - X (V)" (X - E[X[Y])|Y]
= Ey[(E[X[Y] - X(Y)"E[(X - E[X|Y])|Y]
= Ey[BX|Y] - X(YV)"EX|Y] - E[X|Y])] =0 (6)

The second row uses law of iterated expectations, the third row follows because
E[X|Y] and X (Y) are constants given Y. The last row follows because E[X|Y] is

a constant given Y.

(¢) Using the above and since E[||E[X|Y] — X(Y)||2] > 0, the result follows.

5. Claim: Variance of the error of E[X|Y] is smallest in any direction, i.e. for any unit

vector, c,
TE[(X —E[X[Y])()e < "E[(X = X(Y))()"]e (7)
Proof:

(a) Consider Z := ¢"X. By the previous result, its MMSE estimator is E[Z|Y] =
¢"E[X]|Y]. Thus,
E[(c"X — "E[X|Y])’] <E[(Z - Z(Y))] (8)
(b) Using (c’v)? = cPvv’c and using Z = ¢’ X, we get

A

Elc" (X —E[X[Y])(.)"d <E[(c" X — Z(Y))?] 9)



(¢) The above is true for all estimators of Z, Z(Y). In particular, it is true if we
consider the class of estimators that can be written as Z(Y) = ¢ X (V). Thus,

E["(X —EX|Y])()d < E["(X = X(¥Y)()'] (10)
This finishes the proof.

6. By letting ¢ = ¢; (e; is a vector with a one at the i location and zero everywhere
else), we see that E[X;|Y] is the MMSE of X; from Y.

7. Claim: E[X|Y] is unbiased, i.e. E[E[X|Y]] — E[X] = 0.
(a) Proof: This follows because E[E[X|Y]] = E[X].

8. Read Chapter IV-B of Poor’s book.

Linear MMSE estimation

1. We call this linear MMSE estimation, but that is a misnomer, we actually look for the
minimum MSE estimator among all affine functions of the observation, i.e. among all

functions of the form HY + c.
2. Let the set of affine estimators of X from Y be
H:={X(Y): X(Y)=HY +¢}
The linear MMSE estimator XLMMSE(Y) is defined as the solution of

min [ X — X (V)| (11)

X(Y)eH

for a matrix H and a vector c.
3. Orthogonality Principle 1: X (V) € H is the linear MMSE of X from Y if and only if
E[(X — X (Y)ZT]|=0forall ZeH (12)
Proof (one side):

(a) Suppose X, (V) € H satisfies (12), but it is not the LMMSE, i.e. there exists an
Xo(Y) # X (V) such that X,(Y) € H and

E[|X = XoW)|*] S E[IX - X (V)] (13)

(b) We can write the LHS as E[|| X — X, (Y)||2] = E[||X =X, (Y)+X.(Y)-X,(Y)|?] =
E[| X — X, (Y)|]?2] + E[| XL(Y) — Xo(Y)||?] + 2cross where

cross = E[(X,(Y) — Xo(Y) (X — X, (Y))] (14)



(c) Since X (Y) € H and Xo(Y) € H, thus (X.(Y) — Xo(Y)) € H. Thus by (12),
E[(X — X, (V)(X(Y) = Xo(Y))"] = 0.

(d) Using trace(AB) = trace(BA) and the fact that trace is a linear operator, we can
see that for any two n dimensional vectors Xy, X,

E[X] X1] = Eltrace(X] X,)] = E[trace(X, X7 )] = trace(E[X;X]]) (15)

() Using (15), cross = trace(E[(X — X (V) (X (Y) — XO(Y))T]) thus cross = 0.
(f) Thus, E[|X — Xo(Y)[*] = E[IX — XL (¥)[*] + E[IX.(Y) = Xo(V)IP] = E[| X -
X(Y)|?] and this is a contradiction to (13) unless Xo(Y) = X (V).
Proof (other side):

(a) Suppose X, (Y) is the LMMSE but it does not satisfy (12), i.e. there exists a
Zy € M for which E[(X — X, (Y))ZT] # 0.
(b) Define another estimator, X, = X1 + BZ,.

(c) Let us try to find B to minimize the MSE, E[|| X — X, — BZ||?]. If we differentiate
this and set to zero, we get B = E[(X — X)ZT|E[ZoZT]~!. Thus, we consider
the estimator X() = XL + BminZO-

(d) Consider E[|| X — Xo|?] and simplify it:

E[|X - Xl?] = E[|X - X1 — BuwZol?]
= E[|X — X.||}| + E[Z] BE, BuinZo) — 2E[ZI BE, (X — X1)] (16)

(e) Using (15), we can rewrite the second term of (16) as

E[Z! Bl BuinZy = trace(E[BuimZoZl BL. ])
= trace(BuinE[Z0Z1 | BL. ]

min

= trace(E[(X — X)Z]E[ZoZ5 ] "E[(X — X)Z5]") (17)
(f) Using (15) we can also rewrite the third term of (16) as

E[ZIBY (X — X;)] = trace(E[(X — X.)ZI BT ])

min min

— trace(E[(X — X1)Zl|BL,)

= trace(E[(X — X)) ZL|E[Zo 211 'E[(X — X)zT])7)18)
(g) Substituting the last two equations into (16),
E[IX - Xo’] = E[IX — X¢|] - trace(E[(X — X1)Z3 [E[Z0Z5 ] 'E[(X — X)Z5]1") (19)

The second term is the trace of a positive semi-definite matrix and hence it is
non-negative. Thus, E[||X — Xo||?] < E[||X — X.||?], i.e. X} is not the LMMSE.
This is a contradiction.



4. Orthogonality Principle 2: X, (Y) € #H is the linear MMSE of X from Y if and only if
E[(X — X,(Y))] =0 and E[(X — X, (Y))YT]=0 (20)
Proof (one side): follows easily from the first one.

(a) Suppose X, (Y) is the LMMSE. Then by orthogonality principle 1,
E[(X — X (Y)Z"] =0 forallZ e H

(b) If we set H = 0 in H, then we get E[(X — X(Y))c"] = 0. Since ¢ is a constant,
this means that E[(X — X, (Y))] = 0.

(c) If we set H =1, ¢ =0, in H, then we get E[(X — X, (Y))Y7] = 0.
Proof (other side): follows directly from first one

(a) Suppose E[(X — X (Y))] = 0 and E[(X — X, (Y))YT] = 0. Thus, E[(X —
X (Y)YTHT] = 0.

(b) Using, E[(X — X.(Y))] = 0 we get E[(X — X (Y))cT] = 0.

(¢) Combining the above two, we get E[(X—X,(Y))(YTH +c")] = E[(X—X,(Y))(HY +
c)f] = 0.

(d) Thus, E[(X — X.(Y))Z"] = 0 for all Z € H. By orthogonality principle 1, X, (Y')
is the linear MMSE.

5. Wiener-Hopf equations: using the orthogonality principle 2, we can derive the Weiner-
Hopf equations to compute an LMMSE estimate.

(a) The LMMSE estimate is of the form X, = H;Y + ¢;. Using the ortho principle,

this satisfies

E[(X — HLY —¢p)] =0, and
E[(X — HLY —c)YT] =0 (21)

(b) Using the first equation of (21)
cp, =E[(X — HY)] =E[X] — H,E[Y] (22)
Using the second equation of (21) and above,

E[(X — HLY —cr)Y'] =E[(X - E[X]) - HL(Y —E[Y])Y"]=0  (23)



(¢) Thus,
E(X - EX])Y"] = HE[(Y - E[Y]))Y"] (24)
Since cov(X,Y) := E[(X — E[X])(Y — E[Y])T] = E[(X — E[X])Y7], thus, we get
Hy, = cov(X,Y)cov(Y,Y) ™ (25)
and so
cr, = E[X] — cov(X,Y)cov(Y,Y) 'E[Y] (26)

6. Special cases:

(a) If the sequence Y7, Y5, ... Y, is wide sense stationary, then cov(Y,Y) is a Toeplitz
matrix. This allows for efficient matrix inversion: O(n?) cost compared to O(n?)

for any general matrix.

(b) f Y = [V1,Y,,... Y] and X = Yj,4, then X, Y are jointly wide sense stationary.

In this case, the Levinson algorithm can be used to find the solution efficiently.

(c) Non-causal Wiener filter: estimate X; using {Y;}2°
WSS

when they are jointly

—0o0)

e Due to joint WSS assumption, the problem can be converted into frequency
domain, and one gets an expression for the squared magnitude of the filter’s

frequency response.

e Since the filter can be non-causal, one can just pick a zero phase filter.
(d) Causal Wiener: estimate X; using {Y;}.___ when they are jointly WSS

e Can design a causal Wiener filter also in the frequency domain (see Chapter
V of Poor’s book or see DSP texts).

o If X;’s and Y}’s satisfy the linear dynamic model (model used by Kalman
filter) and are jointly WSS, then the Kalman filter update exactly gives the

causal Wiener solution.
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