
Sparse Reconstruction / Compressive Sensing

Namrata Vaswani

Department of Electrical and Computer Engineering
Iowa State University

Namrata Vaswani Sparse Reconstruction / Compressive Sensing 1/ 20



The problem

◮ Given y := Ax where A is a fat matrix, find x .
◮ underdetermined system, without any other info, has infinite

solutions
◮ Key applications where this occurs: Computed Tomography

(CT) or MRI
◮ CT: acquire radon transform of cross-section of interest
◮ typical set up: obtain line integrals of the cross-section along a

set of parallel lines at a given angle, and repeated for a number
of angles from 0 to π), common set up: 22 angles, 256 parallel
lines per angle

◮ by Fourier slice theorem, can use radon transform to compute
the DFT along radial lines in the 2D-DFT plane

◮ Projection MRI is similar, directly acquire DFT samples along
radial lines

◮ parallel lines is most common type of CT, other geometries
also used.

◮ Given 22x256 data points of 2D-DFT of the image, need to
compute the 256x256 image
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Limitation of zero-filling

◮ A traditional solution: zero filling + I-DFT
◮ set the unknown DFT coeff’s to zero, take I-DFT
◮ not good: leads to spatial aliasing

◮ Zero-filling is the minimum energy (2-norm) solution, i.e. it solves
minx ||x ||2 s.t. y = Ax . Reason

◮ clearly, min energy solution in DFT domain is to set all
unknown coefficients to zero, i.e. zero-fill

◮ (energy in signal) = (energy in DFT)*2π, so min energy
solution in DFT domain is also the min energy solution

◮ The min energy solution will not be sparse because 2-norm is not
sparsity promoting

◮ In fact it will not be sparse in any other ortho basis either
because ||x ||2 = ||Φx ||2 for any orthonormal Φ. Thus min
energy solution is also min energy solution in Φ basis and thus
is not sparse in Φ basis either

◮ But most natural images, including medical images, are
approximately sparse (or are sparse in some basis)
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Sparsity in natural signals/images

◮ Most natural images, including medical images, are
approximately sparse (or are sparse in some basis)

◮ e.g. angiograms are sparse
◮ brain images are well-approx by piecewise constant functions

(gradient is sparse): sparse in TV norm
◮ brain, cardiac, larynx images are approx. piecewise smooth:

wavelet sparse

◮ Sparsity is what lossy data compression relies on: JPEG-2000
uses wavelet sparsity, JPEG uses DCT sparsity

◮ But first acquire all the data, then compress (throw away
data)

◮ In MRI or CT, we are just acquiring less data to begin with -
can we still achieve exact/accurate reconstruction?
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Use sparsity as a regularizer

◮ Min energy solution minx ||x ||2 s.t. y = Ax is not sparse, but
is easy to compute x̂ = A′(AA′)−1y

◮ Can we try to find the min sparsity solution, i.e. find
minx ||x ||0 s.t. y = Ax

◮ Claim: If true signal, x0, is exactly S-sparse, this will have a
unique solution that is EXACTLY equal to x0 if
spark(A) > 2S

◮ spark(A) = smallest number of columns of A that are linearly
dependent.

◮ in other words, any set of (spark-1) columns are always linearly
independent

◮ proof in class

◮ Even when x is approx-sparse this will give a good solution

◮ But finding the solution requires a combinatorial search:
O(

∑S
k=1

(
m

k

)
) = O(mS)
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Practical solutions [Chen,Donoho’95] [Mallat,Zhang’93]

◮ Basis Pursuit: replace ℓ0 norm by ℓ1 norm: closest norm to ℓ0

that is convex

min
x

||x ||1 s.t.y = Ax

◮ Greedy algorithms: Matching Pursuit, Orthogonal MP

◮ Key idea: all these methods “work” if columns of A are
sufficiently “incoherent”

◮ “work”: give exact reconstruction for exactly sparse signals
and zero noise, give small error recon for approx. sparse
(compressible) signals or noisy measurements
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Compressive Sensing

◮ name: instead of capturing entire signal/image and then
compressing, can we just acquire less data?

◮ i.e. can we compressively sense?

◮ MRI (or CT): data acquired one line of Fourier projections at
a time (or random transform samples at one angle at a time)

◮ if need less data: faster scan time

◮ new technologies that use CS idea:
◮ single-pixel camera,
◮ A-to-D: take random samples in time: works when signal is

Fourier sparse
◮ imaging by random convolution
◮ decoding “sparse” channel transmission errors.

◮ Main contribution of CS: theoretical results
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General form of Compressive Sensing

◮ Assume that an N-length signal, z , is S-sparse in the basis Φ,
i.e. z = Φx and x is S-sparse.

◮ We sense
y := Ψz = ΨΦ

︸︷︷︸
Ax

◮ It is assumed that Ψ is “incoherent w.r.t. Φ”
◮ or that A := ΨΦ is “incoherent”

◮ Find x , and hence z = Φx , by solving

min
x

||x ||1 s.t. y = Ax

◮ A random Gaussian matrix, Ψ, is “incoherent” w.h.p for
S-sparse signals if it contains O(S log N) rows

◮ And it is also incoherent w.r.t. any orthogonal basis, Φ w.h.p.
This is because if Ψ is r-G, then ΨΦ is also r-G (φ any
orthonormal matrix).

◮ Same property for random Bernoulli.
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Quantifying “incoherence”

◮ Rows of A need to be “dense”, i.e. need to be computing a
“global transform” of x .

◮ Mutual coherence parameter, µ := maxi 6=j |A
′
iAj |/||Ai ||2||Aj ||2

◮ spark(A) = smallest number of columns of A that are linearly
dependent.

◮ Or, any set of (spark(A) − 1) columns of A are always linearly
independent.

◮ RIP, ROP

◮ many newer approaches...
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Quantifying “incoherence”: RIP

◮ A K × N matrix, A satisfies the S-Restricted Isometry
Property if constant δS defined below is positive.

◮ Let AT , T ⊂ {1, 2, . . .N} be the sub-matrix obtained by
extracting the columns of A corresponding to the indices in T .
Then δS is the smallest real number s.t.

(1 − δS)||c ||2 ≤ ||AT c ||2 ≤ (1 + δS)||c ||2

for all subsets T ⊂ {1, 2, . . .N} of size |T | ≤ S and for all
c ∈ R

|T |.

◮ In other words, every set of S or less columns of A has
eigenvalues b/w 1 ± δS

◮ Or that is every set of S or less columns of A approximately
orthogonal

◮ Or that, A is approximately orthogonal for any S-sparse vector,
c .
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Examples of RIP

◮ If A is a random Gaussian, random Bernoulli, or Partial
Fourier matrix with about O(S log N) rows, it will satisfy
RIP(S) w.h.p.

◮ Partial Fourier * Wavelet: somewhat “incoherent”
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Use for spectral estimation and comparison with MUSIC

◮ Given a periodic signal with period N that is a sparse sum of
S sinusoids, i.e.

x [n] =
∑

k

X [k]e j2πkn/N

where the DFT vector, X , is a sparse vector.

◮ In other words, x[n] does not contain sinusoids at arbitrary
frequencies (as allowed by MUSIC), but only contains
harmonics of 2π/N and the fundamental period N is known.

◮ In matrix form, x = F ∗X where F is the DFT matrix and
F−1 = F ∗.
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◮ Suppose we only receive samples of x [n] at random times, i.e.
we receive y = Hx where H is an “undersampling matrix”
(exactly one 1 in each row and at most one 1 in each column)

◮ With random time samples it is not possible to compute
covariance of x [n] := [x [n], x [n − 1], . . . x [n − M]]′, so cannot
use MUSIC or the other standard spectral estimation methods.

◮ But can use CS. We are given y = HF ∗X and we know X is
sparse. Also, A := HF ∗ is the conjugate of the partial Fourier
matrix and thus satisfies RIP w.h.p.

◮ If have O(S log N) random samples, we can find X exactly by
solving

min
X

||X ||1 s.t. y = HF ∗X
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Quantifying “incoherence”: ROP

◮ θS1,S2
: measures the angle b/w subspaces spanned by AT1

, AT2
for

disjoint sets, T1, T2 of sizes less than/equal to S1, S2 respectively

◮ θS1,S2 is the smallest real number such that

|c1′A′
T1AT2c2| < θS1,S2 ||c1|| ||c2||

for all c1, c2 and all sets T1 with |T1| ≤ S1 and all sets T2
with |T2| ≤ S2

◮ In other words

θS1,S2 = min
T1,T2:|T1|≤S1,|T2|≤S2

min
c1,c2

|c1′A′
T1AT2c2|

||c1|| ||c2||

◮ Can show that δS is non-decreasing in S , θ is non-decreasing
in S1, S2

◮ Also θS1,S2 ≤ δS1+S2

◮ Also, ‖AT1

′AT2
‖ ≤ θ|T1|,|T2|
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Theoretical Results

◮ If x is S-sparse, y := Ax and if δS + θS ,2S < 1, then basis
pursuit exactly recovers x

◮ If x is S-sparse, y = Ax + w with ||w || ≤ ǫ, and
δ2S < (sqrt2 − 1), then solution of basis-pursuit-noisy, x̂

satisfies
||x − x̂ || ≤ C1(δ2S)ǫ
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MP and OMP
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Applications

DSP applications

◮ Fourier sparse signals
◮ Random sample in time
◮ Random demodulator + integrator + uniform sample with low

rate A-to-D

◮ N length signal that is sparse in any given basis Φ
◮ Circularly convolve with an N-tap all-pass filter with random

phase
◮ Random sample in time or use random demodulator

architecture
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Papers to Read

◮ Decoding by Linear Programming (CS without noise, sparse
signals)

◮ Dantzig Selector (CS with noise)

◮ Near Optimal Signal Recovery (CS for compressible signals)

◮ Applications of interest for DSP
◮ Beyond Nyquist:... Tropp et al
◮ Sparse MRI: ... Lustig et al
◮ Single pixel camera: Rice, Baranuik’s group
◮ Compressive sampling by random convolution : Romberg
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Sparse Recon. with Partial Support Knowledge

◮ Modified-CS (our group’s work)

◮ Weighted ℓ1

◮ von-Borries et al

Namrata Vaswani Sparse Reconstruction / Compressive Sensing 19/ 20



Treating Outliers as Sparse Vectors

◮ Dense Error Correction via ell-1 minimization

◮ “Robust” PCA

◮ Recursive “Robust” PCA (our group’s work)
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