Sparse Reconstruction / Compressive Sensing

Namrata Vaswani

Department of Electrical and Computer Engineering Iowa State University

 \rightarrow \pm \rightarrow

 $\left\{ \begin{array}{c} 1 \end{array} \right.$

 $2Q$

э

The problem

- Given $y := Ax$ where A is a fat matrix, find x.
	- \triangleright underdetermined system, without any other info, has infinite solutions
- \triangleright Key applications where this occurs: Computed Tomography (CT) or MRI
	- ► CT: acquire radon transform of cross-section of interest
	- \triangleright typical set up: obtain line integrals of the cross-section along a set of parallel lines at a given angle, and repeated for a number of angles from 0 to π), common set up: 22 angles, 256 parallel lines per angle
	- ▶ by Fourier slice theorem, can use radon transform to compute the DFT along radial lines in the 2D-DFT plane
	- ▶ Projection MRI is similar, directly acquire DFT samples along radial lines
	- \triangleright parallel lines is most common type of CT, other geometries also used.

► Given 22x256 data points of 2D-DFT of the image, need to compute the 256x256 image イロメ イ部メ イヨメ イヨメー

 $2Q$

Limitation of zero-filling

- \triangleright A traditional solution: zero filling $+$ I-DFT
	- ▶ set the unknown DFT coeff's to zero, take I-DFT
	- \triangleright not good: leads to spatial aliasing
- ▶ Zero-filling is the minimum energy (2-norm) solution, i.e. it solves $\min_{x} ||x||_2$ s.t. $y = Ax$. Reason
	- \triangleright clearly, min energy solution in DFT domain is to set all unknown coefficients to zero, i.e. zero-fill
	- (energy in signal) = (energy in DFT)*2 π , so min energy solution in DFT domain is also the min energy solution
- ▶ The min energy solution will not be sparse because 2-norm is not sparsity promoting
	- \triangleright In fact it will not be sparse in any other ortho basis either because $||x||_2 = ||\Phi x||_2$ for any orthonormal Φ. Thus min energy solution is also min energy solution in Φ basis and thus is not sparse in Φ basis either
- \triangleright But most natural images, including medical images, are approximately sparse (or are sparse in some basis) \Rightarrow

Sparsity in natural signals/images

- \triangleright Most natural images, including medical images, are approximately sparse (or are sparse in some basis)
	- \blacktriangleright e.g. angiograms are sparse
	- \triangleright brain images are well-approx by piecewise constant functions (gradient is sparse): sparse in TV norm
	- ▶ brain, cardiac, larynx images are approx. piecewise smooth: wavelet sparse
- ▶ Sparsity is what lossy data compression relies on: JPEG-2000 uses wavelet sparsity, JPEG uses DCT sparsity
- \triangleright But first acquire all the data, then compress (throw away data)
- \triangleright In MRI or CT, we are just acquiring less data to begin with can we still achieve exact/accurate reconstruction?

マーロー マーティング

Use sparsity as a regularizer

- \triangleright Min energy solution min_x $||x||_2$ *s.t.* $y = Ax$ is not sparse, but is easy to compute $\hat{x} = A^\prime(AA^\prime)^{-1}y$
- \triangleright Can we try to find the min sparsity solution, i.e. find $\min_{x} ||x||_0$ s.t. $y = Ax$
- ► Claim: If true signal, x_0 , is exactly S-sparse, this will have a unique solution that is EXACTLY equal to x_0 if $spark(A) > 2S$
	- ▶ spark(A) = smallest number of columns of A that are linearly dependent.
	- in other words, any set of (spark-1) columns are always linearly independent
- \triangleright proof in class
- Even when x is approx-sparse this will give a good solution

▶ But finding the solution requires a combinatorial search: $O(\sum_{k=1}^{S} \binom{m}{k}) = O(m^S)$

イロメ イ母 トイチ トイチャー

 $2Q$

 \triangleright Basis Pursuit: replace ℓ_0 norm by ℓ_1 norm: closest norm to ℓ_0 that is convex

$$
\min_{x} ||x||_1 \ s.t.y = Ax
$$

- ▶ Greedy algorithms: Matching Pursuit, Orthogonal MP
- \triangleright Key idea: all these methods "work" if columns of A are sufficiently "incoherent"
- \triangleright "work": give exact reconstruction for exactly sparse signals and zero noise, give small error recon for approx. sparse (compressible) signals or noisy measurements

A + + = + + = +

- \triangleright name: instead of capturing entire signal/image and then compressing, can we just acquire less data?
- \blacktriangleright i.e. can we compressively sense?
- \triangleright MRI (or CT): data acquired one line of Fourier projections at a time (or random transform samples at one angle at a time)
- \blacktriangleright if need less data: faster scan time
- \triangleright new technologies that use CS idea:
	- \triangleright single-pixel camera,
	- \triangleright A-to-D: take random samples in time: works when signal is Fourier sparse
	- \triangleright imaging by random convolution
	- ▶ decoding "sparse" channel transmission errors.
- \triangleright Main contribution of CS : theoretical results

 4 and 3 and 2 and 3 and 3 and 3 and 3

General form of Compressive Sensing

 \triangleright Assume that an N-length signal, z, is S-sparse in the basis Φ , i.e. $z = \Phi x$ and x is S-sparse.

▶ We sense

$$
y := \Psi z = \underbrace{\Psi \Phi}_{\sim} Ax
$$

- \blacktriangleright It is assumed that Ψ is "incoherent w.r.t. Φ "
	- \triangleright or that $A := \Psi \Phi$ is "incoherent"
- \blacktriangleright Find x, and hence $z = \Phi x$, by solving

 $\min_{x} ||x||_1$ s.t. $y = Ax$

- ◮ A random Gaussian matrix, Ψ, is "incoherent" w.h.p for S-sparse signals if it contains $O(S \log N)$ rows
- ► And it is also incoherent w.r.t. any orthogonal basis, Φ w.h.p. This is because if Ψ is r-G, then $\Psi\Phi$ is also r-G (ϕ any orthonormal matrix).
- ▶ Same property for random Bernoulli.

- ▶ Rows of A need to be "dense", i.e. need to be computing a "global transform" of x .
- \blacktriangleright Mutual coherence parameter, $\mu := \max_{i \neq j} |A'_i A_j| / ||A_i||_2 ||A_j||_2$
- \triangleright spark(A) = smallest number of columns of A that are linearly dependent.
- ► Or, any set of $(spark(A) 1)$ columns of A are always linearly independent.
- ► RIP, ROP
- \blacktriangleright many newer approaches...

A + + = + + = +

Quantifying "incoherence": RIP

- \triangleright A K \times N matrix, A satisfies the S-Restricted Isometry Property if constant δ_S defined below is positive.
- ► Let A_T , $T \subset \{1, 2, \ldots N\}$ be the sub-matrix obtained by extracting the columns of A corresponding to the indices in T. Then δ s is the smallest real number s.t.

$$
(1 - \delta_{\mathcal{S}})||c||^2 \leq ||A_{\mathcal{T}}c||^2 \leq (1 + \delta_{\mathcal{S}})||c||^2
$$

for all subsets $T \subset \{1, 2, \ldots N\}$ of size $|T| \leq S$ and for all $c \in \mathbb{R}^{|{\mathcal{T}}|}$.

- In other words, every set of S or less columns of A has eigenvalues b/w $1 \pm \delta_S$
- \triangleright Or that is every set of S or less columns of A approximately orthogonal
- \triangleright Or that, A is approximately orthogonal for any S-sparse vector, c.

 \mathcal{A} and \mathcal{A} is a set of \mathbb{R} is a set of \mathbb{R} is a set of \mathbb{R} is a set of \mathbb{R}

 \equiv

- \triangleright If A is a random Gaussian, random Bernoulli, or Partial Fourier matrix with about $O(S \log N)$ rows, it will satisfy RIP(S) w.h.p.
- ▶ Partial Fourier * Wavelet: somewhat "incoherent"

A BAY A BA

 $2Q$

Use for spectral estimation and comparison with MUSIC

 \triangleright Given a periodic signal with period N that is a sparse sum of S sinusoids, i.e.

$$
x[n] = \sum_{k} X[k] e^{j2\pi kn/N}
$$

where the DFT vector, X , is a sparse vector.

- In other words, $x[n]$ does not contain sinusoids at arbitrary frequencies (as allowed by MUSIC), but only contains harmonics of $2\pi/N$ and the fundamental period N is known.
- In matrix form, $x = F^*X$ where F is the DFT matrix and $F^{-1} = F^*$.

A + + = + + = +

- ► Suppose we only receive samples of $x[n]$ at random times, i.e. we receive $y = Hx$ where H is an "undersampling matrix" (exactly one 1 in each row and at most one 1 in each column)
- \triangleright With random time samples it is not possible to compute covariance of $\underline{x}[n] := [x[n], x[n-1], \ldots x[n-M]]'$, so cannot use MUSIC or the other standard spectral estimation methods.
- ► But can use CS. We are given $y = HF^*X$ and we know X is sparse. Also, $A := HF^*$ is the conjugate of the partial Fourier matrix and thus satisfies RIP w.h.p.
- If have $O(S \log N)$ random samples, we can find X exactly by solving

$$
\min_{X} ||X||_1 \text{ s.t. } y = HF^*X
$$

 4 and 3 and 2 and 3 and 3 and 3 and 3

Quantifying "incoherence": ROP

- $\blacktriangleright \theta_{S_1,S_2}$: measures the angle b/w subspaces spanned by A_{T_1} , A_{T_2} for disjoint sets, T_1 , T_2 of sizes less than/equal to S_1 , S_2 respectively
- $\triangleright \theta_{51,52}$ is the smallest real number such that

$$
|c1'A_{T1}'A_{T2}c2| < \theta_{51,52} ||c1|| ||c2||
$$

for all c1, c2 and all sets T1 with $|T1| < 51$ and all sets T2 with $|T2| < 52$

 \blacktriangleright In other words

$$
\theta_{S1,S2} = \min_{\substack{\tau_1, \tau_2: |\tau_1| \leq S1, |\tau_2| \leq S2}} \min_{\substack{c_1, c_2 \\ |c_2|, |c_3|}} \frac{|c_1' A'_{\tau_1} A_{\tau_2} c_2|}{||c_1|| ||c_2||}
$$

- \triangleright Can show that δ s is non-decreasing in S, θ is non-decreasing in S1, S2
- Also $\theta_{51,52} \leq \delta_{51+52}$
- Also, $||A_{T_1}A_{T_2}|| \leq \theta_{|T_1|,|T_2|}$

- If x is S-sparse, $y := Ax$ and if $\delta_S + \theta_{S,2S} < 1$, then basis pursuit exactly recovers x
- If x is S-sparse, $y = Ax + w$ with $||w|| \leq \epsilon$, and δ_{25} < (sqrt2 – 1), then solution of basis-pursuit-noisy, \hat{x} satisfies

 $||x - \hat{x}|| < C_1(\delta_2 s) \epsilon$

A + + = + + = +

MP and OMP

メロトメ 御 トメ 君 トメ 君 トッ 君

DSP applications

- \blacktriangleright Fourier sparse signals
	- \blacktriangleright Random sample in time
	- ightharpoonup Random demodulator $+$ integrator $+$ uniform sample with low rate A-to-D
- \triangleright N length signal that is sparse in any given basis Φ
	- \triangleright Circularly convolve with an N-tap all-pass filter with random phase
	- ▶ Random sample in time or use random demodulator architecture

A + + = + + = +

- ▶ Decoding by Linear Programming (CS without noise, sparse signals)
- ▶ Dantzig Selector (CS with noise)
- ▶ Near Optimal Signal Recovery (CS for compressible signals)
- \blacktriangleright Applications of interest for DSP
	- \triangleright Beyond Nyquist:... Tropp et al
	- \triangleright Sparse MRI: ... Lustig et al
	- ► Single pixel camera: Rice, Baranuik's group
	- \triangleright Compressive sampling by random convolution : Romberg

イタン イラン イラン

- ▶ Modified-CS (our group's work)
- \blacktriangleright Weighted ℓ_1
- \triangleright von-Borries et al.

 \rightarrow \equiv \rightarrow

 \sim

 $2Q$

э

- \triangleright Dense Error Correction via ell-1 minimization
- ► "Robust" PCA
- ▶ Recursive "Robust" PCA (our group's work)

 $2Q$

÷