BAYESIAN INFERENCE

x — observable random variable;
0 — “true state of nature”;

p(x|0) or pyje(x|0) — data model, likelihood [the same as the
data model in the non-Bayesian approach, which we denoted

as p(z; 0)];

7(6) or (@) — prior distribution on 6 (epistemic probability),
our knowledge about the true state of nature.

The Bayesian approach implies assigning a prior distribution on
parameter 6 and then applying the Bayes’ rule. Note that 0 is
often not really random.

Inference is based on the posterior distribution of 6:

colx, 0
p9|$(9‘$) — P ,0( ) Ocpxﬁ(xae)
/pw,g(:c,ﬁ) d9

NN 7

~~

does not depend on 6

and, therefore,
p(0]x) o< p(x|0)m(0).

p(z,0)
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Note:
e p(f|x) is also an epistemic probability.

e |t is important to master the use of .
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Conjugate Priors
If F' is a class of measurement models and P a class of
prior distributions, then P is conjugate for F if w(0) € P
and p(z|0) € F implies p(f|x) € P. It is useful to choose
conjugate priors: they are computationally convenient as they
allow finding analytically tractable posteriors.

Important special case: If ' = exponential family —
distributions in F' have natural conjugate priors. Consider

p(z;|0) = h(x;) g(0) exp[p(0) t(x;)], i=1,2,...,N.

For (conditionally) independent, identically distributed (i.i.d.)
x; (given 0), the likelihood function is

N

p(@|0) = | [T b - l9(0)]" exple(0) t(x)]

1=1

where & = [z, 29, ...,2n] and the sufficient statistic ¢(x) =
> o u(x;). Consider the following prior pdf/pmf:

m(6) oc g(0)" expep(9)" v].

Then, the posterior pdf/pmf is

p(0]2) o [9(0)]" " exp{¢(0)" [t(z) + v]}
and hence 7(#) is indeed the conjugate prior for p(x | 6).
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Sequential Bayesian ldea

Suppose that we have observed z; and x5 where x; comes
first, e.g. the subscript is a time index. We wish to do inference
about 6. Then, if we treat x; as a fixed (known) quantity, we
have:

p(x2,0| 1) = p(a2|0,21) - p(0|21). (1)
where

p(x2 | x1,6) =new, updated likelihood for 6 based on x5

and
p(0 | x1) =new, updated prior for 6.

Clearly, (1) implies

p(0|z1,29) x p(x2|0,21) p(O|21). (2)

Conditionally independent observations x; and x,. In the
special case where x; and x5 are conditionally independent
given 6, we have

p(r1,m2|0) = p(x1|0) - p(w2|0) (3)

and, consequently (and clearly),

p(w2|x1,0) = p(x2]0). (4)
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[A rather long way to get from (3) to (4) would be as follows:
p(z2 | z1,0) x p(x2,21|6) = p(z2|0) - p(z1]6) x p(z2|0)

— it is a good practice for familiarizing with the o notation.]

Substituting (4) into (1) and (2) yields

p(z2,0|x1) = plaz|0) - p@fz1)  (5)

ordinary likelihood based on x5 new prior

and
p(0|z1,2) o p(2]0) - p(0|21). (6)

A Side Comment (Exercise). Make sure that you understand
the following:

p(0|z1,2) o< p(0, 1, 22)
o< p(0,z1|z2)

x p(0, x| x1).
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A Bit About Prediction

We continue with the scenario described on the last two pages.
Suppose that we have observed x; and wish to predict x5. For
this purpose, we use the posterior predictive distribution:

p(z2| 1) (7)

A good way to think of this predictive distribution is as follows.
Given x1, we have [see (1)]:

p($2, 0 \ $1) = p(ﬂ?2 \ 9,331) 'p(<9 | $1)-

Let us marginalize this pdf with respect to the unknown
parameter 6 (i.e. integrate 6 out):

Pay |z, (T2 | T1) = /p($2,9|£€1)d9 = /p(x2|6,a:1)-p(9]x1)d<9.

Conditionally independent observations x; and x5. In the
special case where x1 and x5 are conditionally independent
given 0, i.e.

p(z1,22]0) =p(z1]0)p(z210) <& p(ra|z1,0) = p(22]0)

we have:

pla2] 1) = / p(2]6) - p(6| 21) db. (8)
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The First (Ever) Bayesian Model: Binomial
Measurements

Suppose that, given 8, 1 and x> are independent, coming from
z; |0 ~ Bin(n;,0), i = 1,2, i.e. the likelihood is

p(x1,22|0) = (”1)9901(1 — gy ("2) 02(1 — 0)">~2,

L1 L2
We pick a conjugate prior pdf for 6:
m(0) = Beta(a, 8) oc 271 (1 — 9)F~1

see the table of distributions. Therefore, the posterior pdf of 6
IS

p(0|z1,22) o p(w1,z2]0)7(0)
x Qritreta—l (1 _ 9)n1+n2—w1—w2+6—1 , i<0,1)(9)

which we recognize as the kernel of the Beta(xy + 2 + o, 8+
ny — x1 + no — xo) pdf, see the table of distributions. Hence,

p(0|x1,22) = Beta(xy + 22 + a, 8+ ny — x1 + no — Ta).
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How about the posterior pdf p(z; |#) based only on 217 Now,

p(8] 1) o play | 8) 7(6) o 67+ (1— )=~y (6)

which is the kernel of the Beta(z; 4+ «, 8 + n1 — x1) pdf, i.e.
p(0|x1) = Beta(xy + o, 8+ ny — z1).

Since, given 0, x1 and zo are independent, we use (6) and
verify its validity:

12

plas]0) - p(0]22) = (20721 — oy

a+§\+n1
F(le —I_ Q _|_ 6 —I_ TLl B Zlfl) 9:1:1—|—a—1 (1 . (9)5+n1—:c1—1
['(z1 4+ a)['(B 4+ n1 — 1)
pr1tarata—1 (1 _ 9)n1+n2—$1—w2+ﬁ—1

L2

X

7

keep track of 6 kernel OfBeta(w1+x;—r|—a,B+n1—x1+n2—m2)
for 6 € (0,1), which is exactly the posterior pdf p(6|x1,x2).

Therefore, we can either do our inference “in sequential
steps” or “in batch” — both yield the same answer!
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How about predicting x5 based on x1? Since, given 6, z; and
x4y are independent, we apply (8):

/0 p(x2|0) - p(@]|x1)dd

B (Zi) "T(z 33)?(@12)— 1)

1
) / 9$1+:U2—|—a—1 (1 _ (9)5+n1—$1+n2—€v2—1 db
0

N\ 7

—~
['(z1tzo+a)l'(B+ng—z1+ng—x9)
I'(a+B+n1+ng)

B 712) ['(a+ B+ ny)

B (xg T(w1+ )T (B +n1 — 1)
['(x1+ 22+ a)[(B+n1 —x1 +ng — x2)
. INa+ 6+ ny+ ns)

= p(z2|z1)

which is the desired predictive pmf of x5 given x;.

Comments:

e Here, we have used the fact that the Beta(a, ) pdf of
a random variable 6 (say) has the following form (see the
distribution table):

INCGENC)
['(a)L'(B)

\ 4

normalizing constant

po(0) = 6271 (1 —6)P!
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implying that fol 1. (1—0)°~1do = %};%)
e Bayes used a special case of the above model.

e Laplace computed posterior probabilities under a special
case of this model. In particular, he considered a single
observation x; (the number of girls born in Paris over a
certain time interval in the 18th century) coming from

x1|0 ~ Bin(nl, , 0 ) )
prob. that a newborn child is a girl

and set the following prior pdf:
7(6) = uniform(0,1) = Beta(1,1).
Here is the measurement:
x1 = 241,945
and nq = 241,945 + 251, 527. Laplace computed

P[0 > 0.5]| 2] ~ 10~*2,
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An Example of Bayesian Inference: DC-level
Estimation in AWGN with Known Variance

See Ch. 2.6 in

A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin, Bayesian
Data Analysis, Second ed. New York: Chapman & Hall, 2004.

Single Observation. Let us choose the data model: p(z |0) =
N (0,0%) where o is assumed known. Hence, the likelihood
for one measurement is

p<x|9>=¢;r7-exp[—2%2<x—e>2] (9)

Viewed as a function of 6 (as usual), the likelihood has the
form:

2 2
p(x|0) O eXp[—ZOQ(O —2:138—#:1:2}
keep track of 6 ~

quadratic in ¢
1

-~

kernel of the Gaussian pdf with mean x and variance o2

1 x0
X exp(——20292—|—§>

kernel of the Gaussian pdf with mean x and variance o

2
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Then, according to the results from p. 3,

m(6) oc exp( A 6’22 exp( B 0)
g(0)" exp[v(0)]

which can be reparametrized as (where we assume that A is
negative):

1
2—7_02

m(6) x exp [— (0 — ,uo)2]

and we conclude that 7(0) = N (uo,73) is a conjugate prior
for the model (9). Here, g and 73 are hyperparameters,
considered known. (Of course, we could also go on and put a
prior on the hyperparameters, which would lead to a hierarchical
Bayesian model.)

We now compute the posterior pdf by collecting the terms
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containing 6 and 6%:

p(0lz) o< p(z|6)m(0)

-1 22 =220+ 6% 0% — 2u00 + u3
X exp_—i-( 5 + 2 )}
-1 (18 +0%)0% = 2(x7E + poo?)0
SR T Y o278 }
-1 ot +TE o7 + oo
N rTa)
WO_/ . ~ 0 J/
1/7‘12 1

implying that p(@ | x) is a Gaussian pdf with mean and variance

2 2
b = Ty + Hoo
o2+ 7'3
2 ‘7273
7_1 — 5 R
o —I—TO

We will generalize the above expressions to multiple
measurements.

Comments on the Single Observation Case:

e The posterior mean is a weighted average of the observation
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and the prior mean:

1 1
—_ x —_
TG + oo o2 T 7z Mo

H1 = 5 5 — T 1 1
0% + T} ?+T_§

likelihood precision - x + prior precision - ,uo

likelihood precision + prior precision

e We will show that the posterior mean is the (Bayesian)
MMSE estimate of 6.

e Here, the weights are given by precisions 2 and 1. (The

inverse of the variance of a Gaussian distribution |s called
precision. )

o As the likelihood precision - increases (i.e. 02 — 0),

m1 — L.

e As the prior precision % increases (i.e. 75 — 0),

0

M1 — KO-

e The posterior mean is the data “shrunk” towards the prior

mean:

0.2

Mlzaf—m'(x—ﬂo)

EE 527, Detection and Estimation Theory, # 4 14



or the prior mean adjusted towards the observed data:

2
70

O—2_|_7_3 ) (:C_/'LO)

p1 = fo +

e Posterior precision is the sum of the prior and data precisions:

1_0‘2—|—Tg_1 1

2 52,2
Ty 0T} o
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Multiple I.1.D. Observations. Consider now N (conditionally)
i.i.d. observations x1,xs2,...,xN (given 0):

p(0|x) oc 7(0)p(z|0)

X exp[—21 0 — 11p)° Hexp{ — 6)?

where & = [z, z2,...,2n]|!. This posterior pdf depends on x
only through the sample mean

| N
O
i=1
I.e. T Is the sufficient statistic for this model. Note that

F|0 ~  N(6,0%/N)

our new likelihood
(using sufficiency)

Hence

p(0|x) =Y p(0|F) o 7(0) p(T|0) = N(un,73)  (10)
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with

G (11
N = 11
' e
0
1 N 1
- = St (12)
TN o) 7'0

see also Example 10.2 in Kay-I.

Comments:

e If IV is large, the influence of the prior disappears and the
posterior distribution effectively depends only on T and 2.

o If 7§ = o, the prior has the same weight as adding one
more observation with value py.

e When 78 — oo with N fixed or as N — oo with 7q fixed,

we have )

_ _ o
p(0]7) — N (7. %) (13)
which is a good general approximation whenever our prior

iIs vague about 6 or the number of observations N is
large. In this scenario, the influence of the prior disappears.
Furthermore,

x T4 — 00 corresponds to

7(0) x 1 (14)
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and leads to the posterior pdf proportional to the
likelihood:

p(0|x) =p(0|z) x p(x|b) .
likelihood

The prior choice (14) does not describe a valid probability

density since
/ 1 = 0.

Hence, (14) is an improper prior. However, we can still
use it because the posterior pdf in (13) is proper.

If 72 is large, we obtain a noninformative prior:

0.4
1

— Informative
Non-informative

0.3

0.2

()

0.1

0.0

=10 -5 0 5 10
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Recall:

p(OY)

The posterior mean and precision are

HN =

1
2
TN

Non-informative Prior

S —— Posterior
© —— Likelihood
— —— Prior

=2}

o

S

3 |

(S

= / \__
o
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0.2

0.4

0.3

0.1

0.0

Informative Prior

|
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Sufficiency and Bayesian Maodels

Since we have just applied sufficiency to simplify our Bayesian
calculations, perhaps it is a good idea to formally state and
prove the following (Kolmogorov's) result:

Theorem 1. [f a statistic T'(X) is sufficient for a parameter
0, then

p(0|T(z)) = p(f]|x).

Proof. (A rough proof) Utilize the factorization theorem:

p(0|x) o 7(0)p(x|0) =n(0)g(T(x),0)n(x)

[

For true Bayesians, the statement

p(0|x) =p(0|T(x))

is the definition of sufficient statistics T'(x) for 6. Note that
the factorization theorem applies to the posterior p(6|x) the
same way as it does to the likelihood p(x | 9).
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(Back to) DC-level Estimation in AWGN with
Known Variance: Predictive Distribution

Suppose that we have collected N (conditionally) i.i.d.
observations x1,x9,...,xxN (given ) according to the DC
model described earlier. We wish to predict the next
observation, denoted by x,. Recall that

1 N
T = — xI;
g2

is a sufficient statistic for estimating 6 based on x1, s, ..., 2N
and that

p(9|x1,ZC2,..-,ZCN) :p(0|f)
Assume that z, is conditionally independent of x1,22,..., 2N
(given 0) and, therefore, along the lines of (8), we get:

Do, 224 | T) = /?x*w(x*w)v. po|(9]7) . (15)

Pgry.0 | E(x*vﬁ ‘ E)

[The fact that x, is conditionally independent of x1, x2,..., N
also implies that

P(24|0,7) = p(x, | 0) (16)
which is analogous to (4).]
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Let us focus on the integrand (and drop the subscripts, for
simplicity):

p(x«, 0|T) = p(x.|0)- p(0|T)
N(@,O‘Q) N(UN77]2\[)

Now

p(r.017) o exp| - y(e, 0] exp [ -

1

oz i =77

which we recognize as a kernel of a bivariate Gaussian pdf,
see p. 27 in handout # 1. Hence, p(z,,0|T) is a bivariate
Gaussian pdf. Now, integrating 6 out (i.e. marginalizing with
respect to ) in (15) is easy [see p. 26 in handout # 1] — we
know that the posterior predictive pdf must be Gaussian and
we just need to find its mean

Ex*,0|§[X* ‘f] E9|E[ \Ex*|9,§[X* ‘Hafl ]

~~

E,, ¢lX«|0]=0 see also (16)

— E9|§[9] = UN-
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and its variance [where we use (16) again]:

vary, 07X« |T] = Egzlvary, o(X«[0)]

-~

2

o

+varg | z(E 2, | o(Xx | 0)]

0

= 0%+ 712\,
see the probability review in handout # 1. Therefore

(.| Z) = N(un,0° + 7x).

EE 527, Detection and Estimation Theory, # 4
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Proper vs. Improper Priors

A prior w(6) is called proper if it is a valid probability
distribution:

w(0) >0 V0, /7r(«9) do = 1.
A prior 7(6) is called improper if
w(6) >0 V0, /7‘(‘(9) df = oo.

If a prior is proper, so is the posterior

p(0|x) oc7(0) p(z | 0)

(and everything is fine).

If a prior is improper, the posterior may or may not be proper.
For many common problems, popular improper noninformative
priors (e.g. Jeffreys' priors, to be discussed later in this handout)
lead to proper posteriors, assuming that there is enough data.
But, this has to be checked!

Regarding “propriety,” all that we really care about is that the
posterior is proper, making it a valid pdf/pmf (which is clearly
key to Bayesian inference)!

EE 527, Detection and Estimation Theory, # 4 24



Example: Estimating the Variance of a
Gaussian Distribution with Known Mean

See also Ch. 2.7 in

A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin, Bayesian
Data Analysis, Second ed. New York: Chapman & Hall, 2004.

Data model: p(z|o?) = N(u,0?) where o? > 0 is now the
parameter of interest and u is assumed known.

For (conditionally) i.id. zi,z2,...,zn (given o°), the
likelihood function is

p@|o?) = (2r0?) N exp | - 2%2 i(w - ]

N
= (210 N2 exp ( — _v)
207

where

>

(%

1 N
N 2w —n)?
1=1

Is a sufficient statistic. The above likelihood function is in the
exponential-family form:

N

p(@|o?) = | [T h@:)| - 9] explo(?) ()], o® =0

1=1
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where

o) = (o272
t(x) = v
o —

and hence the conjugate prior is

m(0?) o g(o?)" exp[g(c”) V]

N
2 2 2
x (07) n/ -exp( 5 2y), o” > 0.

What does this distribution /ook like? By looking up the table
of distributions in Appendix A of

A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin, Bayesian
Data Analysis, Second ed. New York: Chapman & Hall, 2004

we see that it “looks like” (and therefore is) an inverse gamma
pdf:
m(0?) o (%) exp(=B/0®), 0% >0

where a and 3 are assumed known (and are sometimes referred
to as the hyperparameters). (Note that this distribution is used
as a prior distribution for the variance parameter in Example
10.3 of Kay-l.) For ease of interpretation, we reparametrize
this prior pdf as a scaled inverted ? distribution with scale

EE 527, Detection and Estimation Theory, # 4 26



of and vy degrees of freedom; here of and vy are known
hyperparameters. In other words, we take the prior distribution
of o2 to be the distribution of

0'8 140)

X

where X is a XEO random variable (see the underlined part of
the distribution table handout). We use the following notation
for this distribution

2

0? ~ Inv-x2(vg, 08) o (02)_(U0/2+1> exp (_V20 020), % > 0.
o

Note: From the table of distributions, we also obtain the
following facts:

e the prior mean is 031y /(vg — 2) and

e when vq is large, the prior variance behaves like o /v
(implying that large vq yields high prior precision).
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Finally,

p(o*|z) o m(0?)p(z|o?)

o\ — (£+1) (_ Vo ‘70)
x (0?) exp (271
Nuv
2\—N/2 ( B _)
2
2= (F5+1) (_ YN "N)
x (07) exp P
with
vy =19+ N
and

s  Nv+uyyog
o = .
N —|— 140)
Therefore, p(c?|x) is also a scaled inverted x? distribution.

Now, the posterior mean (MMSE estimate, to be shown later)
IS

E[O‘2’$] _ O'ZZVVN _ NU—FV()O'(%.
v —2 N +vyyg—2

Comments:

e The MMSE estimate of 02 is a weighted average of the prior
“guess’ and a data estimate:

2
Nv + 10

E[o?|x] =
07| ] -
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where the weights are obtained using the prior and sample
degrees of freedom.

e Interpretation of the prior information: the chosen prior
provides information equivalent to 1y observations with
average variance equal to o3.

e As N — oo, 04 — v and E[0?|x] — v.

e Similarly, as vy — o0, 0%, — 04 and E [0? | ] — 0.
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Noninformative Priors

Although it may seem that picking a noninformative prior
distribution is easy, (e.g. just use a uniform), it is not quite
that straightforward.

Example. Estimating the Variance of a Gaussian
Distribution with Known Mean:

T1,%2,...,TN|O iid.  N(0,07)
(o) X i0,00)(0).

We assume a uniform prior (from zero to infinity) for o.
Question: What is the equivalent prior on 2?7

Reminder: Let 6 be a random variable with density p(6) and
let » = h(0) be a one-to-one transformation. Then the density
of ¢ satisfies

po(P) = pe(0) - |dO/de| = p(0) - W (9)| .

We now apply the above change-of-variables formula to our
problem: h(c) = 0%, /(o) = 20, yielding
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which is clearly not uniform. This implies that our prior belief
is that the variance ¢ is small.

Then, for a uniform prior on the variance o2, the equivalent
prior on o Is

(o) x 20, o >0

implying that we believe that the standard deviation o is large.

(Problems of this kind are the main reasons why R. A. Fisher,
the “father” of statistics, had a distaste for the Bayesian
approach.)

One way to visualize what is happening is to look at what
happens to intervals of equal measure.

In the case of 02 being uniform, an interval [a,a + 0.1] must
have the same prior measure as the interval [0.1,0.2]. When
we transform to o, the corresponding prior measure must have
intervals [\/a,v/a + 0.1] having equal measure. But, the length

of [v/a,v/a+ 0.1] is a decreasing function of a, which agrees
with the increasing density in o.
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1.0

0.6
I

.

0.2

0.0 0.2 0.4 0.6 0.8 1.0

Therefore, when talking about non-informative priors, we need
to think about scale.
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Jeffreys’ Priors

Can we pick a prior where the scale of the parameter does not
matter?

Jeffreys’ general principle states that any rule for determining
the prior density my(f) for parameter 6 should vyield an
equivalent result if applied to the transformed parameter
(¢ = h(0), say). Therefore, applying

mo(0) = {70(0)-|d0/ A}y -1 (4 = {mo(0)-10 () H y_ 10

should give the same answer as dealing directly with the
transformed model,

p(x,9) = my(9) p(x | ¢).

Jeffreys’ suggestion:

where Z(0) is the Fisher information. Why is this choice good?

EE 527, Detection and Estimation Theory, # 4 33



We now compute Z(¢) for ¢ = h(6) and h(:) one-to-one:

dlogpa: )
O ES ik
_ R dlogpa;| 2 1df )2
N X|9H | ‘ | ‘ ”9 h=1(¢)
= 70)[ H@ -
implying
7 = VIO [
H/(@ 0=h—1(¢)

computing Jeffrey’s prior

directly for ¢ applylng the usual Jacobian

transformation

Reminder: the “usual” Jacobian transformation applied to the
prior pdf/pmf is

(@) = {mo(0) - [d0/d@I}|,_), 1)

Example. Estimating the Variance of a Gaussian
Distribution with Known Mean: Recall that the Fisher
information for 02 is [see eq. (12) in handout # 2]

N
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Therefore, the Jeffreys' prior for o2 is

for o2 > 0. Alternative descriptions under different
parameterizations for the variance parameter are (for 0% > 0)

(o) x =, w(ogo?) o1 (uniform).
o

Example. Estimating the Mean of a Gaussian Distribution
with Known Variance: p(z;]|0) = N(0,0°%) for i =

1,2,...,n, where 02 is assumed known. Here
N
Z(0) = == const

and, therefore, the (clearly improper) Jeffreys' prior for 0 is

m(f) oc 1 (uniform).
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Multiparameter Models

So far, we have discussed Bayesian estimation for toy scenarios
with single parameters. In most real applications, we have
multiple parameters that need to be estimated.

e Classical DC-signal-in-AWGN-noise model: given p and o2,
x; are i.i.d. N'(u,0?); here, both p and o2 are unknown.

There are many more general examples: any signal-plus-noise
model where we do not know a signal parameter ( in the above
example) and a noise parameter (o2 in the above example).

Note: The noise variance o2 is often considered a nuisance

parameter. We are not interested in its value, but we need
to take care of it because it is not known (and hence is a
nuisance).

Consider the case with two parameters #; and 65 and assume
that only 6, is of interest. (Here, 61 and 65 could be vectors,
but we describe the scalar case for simplicity.) An example
of this would be the DC-signal-in-AWGN-noise model, where
91 — M and 02 20'2.

We wish to base our inference on p(6;|«), the marginal
posterior pdf/pmf which accounts for the uncertainty due to
the fact that 65 is unknown. First, we start with the joint
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posterior pdf/pmf:

p(61,02] ) o< p(x|61,02) (01, 02)

and then, in the continuous (pdf) case, integrate out the
nuisance parameter (also discussed in Ch. 10.7 in Kay-I):

p((91 ’ 213) = /p(@l, 92 | :13) d(92

or, equivalently,

p(6: | ) = / p(61] 62, ) p(0 | ) db>

which implies that the marginal posterior distribution of 6 can
be viewed as its conditional posterior distribution (conditioned
on the nuisance parameter, in addition to the data) averaged
over the marginal posterior pdf/pmf of the nuisance parameter.
Hence, the uncertainty due to the unknown 65 is taken into
account.

Posterior Predictive Distribution: Suppose that we wish to
predict data x, coming from the model p(x |6, 62). If , and
a are conditionally independent given 6; and 65, then, following
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analogous arguments as those used to derive (8), we obtain:

p(xs| ) /P(w* | 01, 02) - p(6, 02 | x) dO1 b

/p(a:* 1601,02) - (01|02, x) - p(O2 | ) db dbs.

The above integrals are often difficult to evaluate analytically
(and may be multidimensional if #; and 6; are vectors). We
typically need Monte Carlo methods to handle practical cases.
An EM algorithm may suffice if we just need to find the mode
of p(f1 | x). These approaches will be discussed in detail later.

The lack of analytical tractability is the reason why the Bayesian
methodology had been considered obscure or impractical in the
past. Sometimes, Bayesians made analytically tractable but
meaningless (or hard to justify) constructs, which had made
the Bayesian approach appear even more obscure.

But, analytical tractability is a double-edged sword. The advent
of computers and development of Monte Carlo methods seem
to have changed the balance in favor of the Bayesian approach,
which has suddenly become practical and much more flexible
than classical inference that still largely relies on analytical
tractability or hard-to-justify asymptotic results.

We now consider one of the rare (and therefore classical)
practical cases where analytical Bayesian computations are
possible.
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Example: DC-level Estimation in AWGN Noise
with Unknown Variance

See also Ch. 3.2 in

A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin, Bayesian
Data Analysis, Second ed. New York: Chapman & Hall, 2004

and Example 11.4 in Kay-I.

e We assume that p and o2 are a priori independent and use
the standard non-informative Jeffreys’ priors for each:

1 1

7, 0%) = m(p)  7(0%) o 1 — = —

o

for 02 > 0. Recall that our data model corresponds to a DC

level in additive white Gaussian noise, i.e. xz-|,u,02 are 1.i.d.
N(p,0?) fori=1,2,...,N.

The product of the above prior pdf and the likelihood is
proportional to the posterior pdf:

1 1
P, 0 ) o 5 (0?) N exp { — NS+ N (T - )]}
where
1 & 1 &
2 ==\ 2 = _ '
' = ;Zl(xz T)?, T = N ;:1 T
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which are the sufficient statistics. The above posterior pdf is
proper provided that N > 2.

Conditional Posterior Pdf of u

The conditional posterior density of 1 given o2 is proportional

to the joint posterior density with o2 held constant:

2

,LL\JQ,:UNN(E,%)

which agrees (as it must) with (13) — the case of estimating
the DC level in AWGN noise with known variance.

Marginal Posterior Pdf of o2

The marginal posterior density of o2 is a scaled inverted y?:

0% |z ~ Inv-x3(N — 1, 5%).
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We now derive this result:

p(p,0* | x)
p(p \32, )

V%)
X

N
keep track of the terms

containing 1 and o

(%) V2t exp { = L [Ns? + N(@ - )?]}

p(o?|x) =

—7)2
(02)71/2 - exp[— 437

= Inv-x?(N — 1, 225 s?)

= Inv-x* (N —1, 5 7],\;1(% — 5)2)

i.e. the following holds for o2 | x:

N _
Zz‘:1(f’7i - 55)2 2
) ~ XN-1-
I _

coming from p(c? | z)

Therefore, we have managed to compute

pwﬂwz/mpmnﬂ@mL

— 00
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algebraically rather than by performing the actual integration.

Note: This is a Bayesian trick for “integrating” 1 out without
actually performing the integration! The key to this trick is
that p(u | o2, ) is known exactly (e.g. it belongs to a family of
pdfs/pmfs that appear in our table of distributions).

Marginal Posterior Pdf of u

p(u| ) = / " o, 0% | @) do?

NS

keep track of the terms
containing 1 and o

/OOO <(02)N/21 eXp{ — %ﬂ [N52 + N (T — M)Z]}> do2.

Make a substitution:
A(p)

202
where A(u) = Ns? + N (T — p)?. Then

z =

do® _ A(w)
dz 222
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and

N

p(] @) o A(u) V2. / N2 e (—2) d
0

N 7

unnormalized ?gramma integral
1 (b —T)* }—N/Q
N—-1 s2/(N-1)

x [Ns2 + N7 — 1) V/2 [1 n

82
ﬂN”(“‘f’N—J

i.e. this is the pdf of the (scaled) t distribution with N — 1
degrees of freedom and parameters

2 Y (w —®)

Z (mean) and N1  N(N-1) (scale).
Equivalently,
N _
d _ > iz (@i —T)?
ple =7+ T \/ NEN—l) :

standard ¢t RV with
N — 1 degrees of freedom

For HW, apply our Bayesian trick here and compute p(u| )
without performing the integral [~ p(u, 02| x) do?.
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How do We Summarize the Obtained Posterior
Distributions?

We can compute moments: means, variances (covariance
matrices) of the posterior distributions, or perhaps its mode,
median etc.

We can try to make “interval inferences” based on the
posterior distributions = credible sets, also known as Bayesian
confidence intervals.

Let A be some subset of the parameter space for . Then, A
is a 100 ¢ % credible set for 6 if

P{le Alx} =c.
The most common approach to credible intervals (i.e. scalar

credible sets) are central credible intervals. A central credible
interval |11, 7| satisfies

1_ Tl 1_ oo
o= [ sel@ds, = [ pelw)as

— 00

where 71 and 7, are 150 and 1 — 150 quantiles of the posterior

pdf, see also the figure in the example to follow. An alternative
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is the 100 ¢ % highest posterior density (HPD) region, which
is defined as the smallest region of the parameter space with
probability c.

Example:

Central Credibility Interval HPD Region

p(oly)
000 005 010 015 020 025 0.30
p(ely)

Central interval: (1.313, 6.102); length = 4.7809.
HPD interval: (1.006, 5.571); length = 4.565.

The central interval is usually easier to determine as it involves
only finding quantiles of the posterior distribution.

Example: Go back to the example on pp. 39-43. A 95% (say)
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HPD credible region for 11 based on

82
=t (v 57 )
plple) =tn-_1(p|T N _1

coincides with the common 95% confidence interval based on
the classical ¢ test, taught in STAT 101. However, the Bayesian
interpretation is very different.

There are a couple of problems with the HPD approach to
constructing credible sets:

e the HPD approach may yield multiple disconnected regions
(if the posterior distribution is not unimodal), e.g.

Disjoint HPD Region

e the HPD approach is not invariant to parameter
transformations. A related point is that what may look like
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a “flat” /noninformative distribution for model parameters
under one parametrization may look “non-flat” under
another parametrization. We have seen such an example
earlier in this handout, but let us give another example with
focus on HPD credible-region computation.

Suppose that 0 < # < 1 is a parameter of interest, but
that we are equally interested in v = 1/(1 — #). Now, if a
posterior density p(6 | x) is, say,

20, 0<O<1
0, otherwise

p(612) = {

the corresponding cdf is

0, 0 <0
PO|lz)=< 0%, 0<0<1
1, 0>1

implying that, for example, a 95% HPD credible set for 0 is
(1/0.05,1). Now, despite the fact that v = 1/(1 —0) is a
monotone function of @, the interval

(1 - \l/m,oo) (17)

is not an HPD credible set for ~. Clearly, (17) is a 95%
credible set for ~, but it is not HPD. To see this, we find
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the cdf P(vy|x): fort > 1,

P(t|z) = P[fy<t]:P[—§t}

Therefore, v | x has the pdf

2(1-23)%, fory>1
— R -
pv|@) { 0, otherwise

and HPD intervals for v|a must be two-sided, which is in
contrast with (17).
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Bayesian MMSE Estimation

Suppose that we need to provide a point estimate of the
parameter of interest. How do we do that in the Bayesian
setting? Here, we first consider the most popular squared-error
loss scenario and later, we will discuss the general scenario
(for an arbitrary loss). For simplicity, we focus on the scalar
parameter case.

[f we are true Bayesians, we should construct our estimator
0 = O(x) based on the posterior distribution p(6|x). Hence,
a truly Bayesian approach to solving the above problem is, say,
to obtain # by minimizing the posterior expected squared loss:

p<5\w>=/ G0  p0|z)do

squared-error loss

P

with respect to 0. This is easy to do: decompose p(0|x) as

pl2) = [ (5-Eojaldlal + Eojald|a) - 0) p(o]a)ds

[ (2-Eojalo12) pi6]2) o

NS 7
~

(6—E g [0 | X))?

+/(«9—E9|m[¢9|w]>2p(6’|w)d9
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and the optimal 0 follows:

Eg|z0|x] = argminp(é\] x).
0

Hence, the posterior mean of the parameter 6 minimizes its
posterior expected squared loss.

Mean-square error measures.
1. Classical: MSE(9) = [(6 — 6)%p(x;0)dx.

2. “Bayesnan MSE (Preposterior not truly Bayesjan):
BMSE(9) = [ [( 9 0)2p(x|0)m(0)dxdd = E o[MSE(0)].

The preposterior MSE (BMSE) is obtained by averaging
the squared-error loss over both the noise and parameter
realizations. It is computable before the data has been
collected, hence the name preposterior.

e The classical MSE generally depends on true 6. Therefore,
classical MMSE “estimates” usually depend on 6
— classical MMSE estimates do not exist.

e The preposterior BMSE does not depend on 6
— Bayesian MMSE estimates exist.
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Which 6 minimizes BMSE? Since

AN

BMSE(6) = E . ¢[(0 — 0)?] = Ew{ E g[(0 — 5)2|wl}

o(0 | )

and, for every given x, we know that 8 = E |20 | ] minimizes

,0(§|:1:) then, clearly, the MMSE estimator is the posterior
mean of 0:

§:E9|m[9|m]
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Linear MMSE Estimation:
Gaussian Vector Case (Theorem 10.2 in Kay-I)

The MMSE estimate for a parameter vector:
0 =Eq.0]| x|

The Bayesian MMSE estimator is tractable if & and 0 are
jointly Gaussian.

Theorem 2. Assume that

(]l er anl)

Then, the posterior pdf p(@ |x) is also Gaussian, with the first
two moments given by

EO|X =z] = py+ CouCop(® — i)
C¢9|a: = Cgo — CO:L'CQ_;;};C:DO

Proof. See Appendix 10 A in Kay-l and p. 26 in handout # 1.
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Gaussian Linear Model (Theorem 10.3 in Kay-I)

Theorem 3. Assume that
xr=HO + w

where H is a known matrix and w ~ N (0,CY,), independent
of the parameter 6. Here, we assume that C, is known. If the

prior pdf for @ is w(0) = N (e, Co) [where p, and Cy are
known|, then the posterior pdf p(0 | x) is also Gaussian, with

E@X=x] = p,+CoH' (HC,H" +C,) (x— Hp,)
Colz = Co—CoH'(HCo,H" +C,) 'HC,.

Proof. Insert

cC.,. = HC,H' +C,
Cgm — CQHT

into Theorem 2. O

Recall the matrix inversion lemma:

(A+ BCD) ' =A"1'—A"'B(C'+DA'B)"'DA™!
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and use it as follows:

(A+BCD)'BC=A"'BC - A"'B(C™'+ DA 'B)"'DA™'BC
= A'B(C'+ DA By (C'+DA'B)C
—~A'B(C'+DA'B)"'DAT'BC
= A'B(C'4+DA'B)!

implying (C, + HCo,H")"'HC} = CJH(C,' +
H'C'H)" ! or, equivalently,

CoH'(C,+HC,H") '=(C,'+H'Cc'H)'H" C_'.

We can use this formula and the matrix inversion lemma to
rewrite the results of Theorem 3:

E0X =z] = p,
+(Cy'+ H'C,'H) ' H' C ' (x — Hp,)
= (C,'+H'C,'H) 'H'C,'z
+C,'+H " lH)'Cc,  p,
= (H'C,'H+C,") ' (H'C,lz+Cy'p,)
Co. = (H'CLH+C,;H)™

These expressions are computationally simpler than those in
Theorem 3.
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Gaussian Linear Model (cont.)

Let us derive the posterior pdf p(@ | x) in Theorem 3 using our
‘o< approach”:
p(@|x) o p(x|8)m(0)
x exp|—3(x — Ho)'C_'(x — HO)]
exp[—4 (8 — 126)"C (0 — pr,)]
x exp(-30"H'"C,'HO+z"C,_ HO)
cexp(—20'C, 0+ plC,0)
= exp[-30"(H'C,'H+C,")6
+(@"CL H + 1y Cy ) 6)
x N((HTCL'H +C; ) (HTCla + Cy' ),

(HT'C'H + C;l)—l).

Remarkably simple!
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Comments:

e DC-level estimation in AWGN with known variance
introduced on p. 11 is a special case of this result, see
also Example 10.2 in Kay-l and the discussion on p. 58.

e Let us examine the posterior mean:

Ef|lz] = ( H'C,/H + C;' )
Iikelihooarprecision prior precision
H'C,' C,’ .
£ w L + Co Hg )

data-dependent term  prior-dependent term

e Noninformative (flat) prior on 8 and white noise. Consider
the Jeffreys’ noninformative (flat) prior on 6:

@) x1 — C,'=0
and white noise:

Cw= afv .
Then, p(0 | x) simplifies to

p(6]2) =N (
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— (central, typically) credible sets constructed based on
this posterior pdf are exactly the same as classical confidence
regions for linear least squares, which are based on

(H"H)"'H" 2|0 ~ p(0,0% (H " H)™ ).

(The classical confidence intervals will be discussed later, in
the detection part.)

e Prediction: Now, let us practice prediction for this model.
Say we wish to predict a z, coming from the following
model:

T, = hf@ + w,.
Suppose that w, ~ N(0,0?) independent from w, implying
that p(z,|0,2) = p(z,|0) = N(h16,6%). Then, our
posterior predictive pdf is

P, | ) = / ple.|0,2) plO|z) dO

N (rTe,02)  N(6pap.Crap)

where
Ouar = (H'CL'H+C,N) ' (H'CLlz+C.'p,)
Cuar = (H'CJH+C,H™!

implying

p(ZU* | CIZ) = N(hfb\MAp, thMAph* + U2>.

EE 527, Detection and Estimation Theory, # 4 Y4



Gaussian Linear Model — Example

(Example 10.2 in Kay-l). DC-level estimation in white
Gaussian noise with known variance — the same as the example
on pp. 16-19 of this handout (except for the notation, which

is now the same as in Kay-I).

r=1A+w.

The additive noise w follows a AV (0, 0*I) distribution and the
prioron A is chosen to be N'(j14,0%). Then, applying Theorem

3 yields the MMSE estimate of A:

A=E[AIX = 2] = (171/0® + 1/0%) 7 (172 /0? + pa/o?)

same as (11)

— 1 N -
where T = < ) ._ , x[i] is the sample mean and

1
T 14 0%/(03N)

0%
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Application: Signal Waveform Estimation

Sensor array signal processing model:
x(t) = A(0)s(t) + w(t)

where the dimension of (%) is the number of sensors, t is time,
0 is direction, s(t) is the vector of signal waveforms, and e(t)
IS noise.

Suppose we wish to estimate s(t), assuming everything else is
known! For notational simplicity, we will use A = A(90).

Let w(t) ~ N.(0,0°I) and let us assign a prior pdf on the
signals s(t) ~ N.(0, P). Then, the MMSE estimates of s(t)
are:

3(t) = PA"(APAY + 521 1x(1).

The MMSE estimate outperforms (in the BMSE sense) the
“usual” LS estimate:

Sis(t) = (AT A LAz (1)

since it exploits additional information provided by the prior
distribution. Of course, this holds only if the assumed model is
correct.
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Cost Functions for Bayesian Estimation
and the Corresponding “Optimal”’ Estimators

Define the estimation error ¢ = § — 6 and assign a loss (cost)

L(e). We may choose § to minimize the Bayes (preposterior)
risk:

Egoll(e)] = ExolL(0 —0)

but this is equivalent to minimizing the posterior expected loss:

ar =/L<9—5>p<9|w>d9

for each x, which is what true Bayesians would do. The
proof is the same as before (trivially extending the case of the
squared-error loss):

AN AN

B oL(0 — 0)] = Bo{By | o[L(0 — B)]}.

-~

p(0| )

Here are a few popular loss functions:

1. L(e) = € (the popular squared-error loss, accurate),

2. L(e) = |¢| (robust to outliers),

_J 0, [e<A/2
3. L(e) = { 1l > A2 (0-1 loss, tractable).
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corresponding to:

1. MMSE. E [0|x], the posterior mean (which we proved earlier
in this handout).

2. Posterior median. the optimal 0 satisfies:

—~

/0 p(9|flﬁ)d9=/jop(9|a:)d6

—00 0

(HW: check this).

3. MAP (maximum a posteriori) estimator. the optimal
0 satisfies: R

arg maxpy | (0 | )

also known as the posterior mode.

As an example, we now show the result in 3.

MAP Estimation:

6+ /2

Bo{Boull@]} =Bo{1= [ pojal0) s},

—A/2

~

To minimize this expression, we maximize fgjﬁ//j Po|=(0|x)do

with respect to 6. For very small A, maximizing the above
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AN

expression is equivalent to maximizing pg | (0 | ) with respect
to 6.

The loss function for the vector case:

NN EEN,
o={ JZal

so (as usual)
p(0 | ) o< p(z | 6) 7(6)
and, consequently,

Oniap = arg maxg|log p(x | @) + log m(0)]

Note that logp(a | @) is the log-likelihood function. Thus, for
a flat prior

m(0) x 1
we have MAP = ML.
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Example: Wiener Filter

Estimate noise-corrupted signal s[n|:
z[n] = 0[n] + w|n].

Given z[0], z[1],...,z[N — 1], write

z=0+w

where

N < O I IO B 1
_a:[Ni—l]]T_7 _9[N5—1]_7 w[N-—1]

Assume

0 ~ N(0,Cy) (prior pdf), w ~ N(0,C,).

Then, the MAP (posterior mode) = MMSE (posterior mean)
= median Bayesian estimator is

0=(Cl+C;H) N Cla+C;10)=Cy(Co+C,) 'z
(18)
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which follows from our general Gaussian linear model results.

If x[n] is a wide-sense stationary (WSS) process, we obtain the
well-known frequency-domain result:

PQ ((,LJ)

o) = B) + Pu)

X(w) (19)

where Py(w) and P,(w), w € (—m,w) are the PSDs of the
random processes 6[n] and w[n|, n =0,1,..., and X (w) is the
DTFT of z[n|, n=0,1,...,N — 1.

Proof. The proof is standard: Cy,C, are Toplitz,
asymptotically circulant, eigenvalues are PSDs etc., see e.g.
Ch. 12.7 in Kay-l or Ch. 2.4 in Kay-Il. In particular, for large
N (i.e. asymptotically), we can approximate Cy and C', with
circulant matrices 6’g and éw. The eigenvectors of circulant
matrices of size N are the following DFT vectors:

u; = N—L/2 11, exp(jw;), exp(j2w;), . - . ,exp(j(N — 1)wi)]T

where 1 =0,1,..., N —1, w; = 2mi /N, and the cclrresponding
eigenvalues are Py(w;) (for Cy) and P, (w;) (for Cy,). Let us
construct the eigenvector matrix:

U = [ul,ug,...,uN]
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and

P@ = diag{Pg(wo),Pg(wl),...,Pg(wN_l)}
P, = diag{Py(wo), Pu(w1),..., Pu(wn-1)}.

Note that U is orthonormal: UUY = U"U = I: it is also the
DFT matrix, i.e. Uz = DFT(x). Finally, we can approximate
(18) as

Q

0 vrP,UTUP U +UP U 2 =
DFT(0) = U0 = Py(Py+ P,) ' DFT(x)

diagonal matrix

and (19) follows (at least for w = w; = 2mwi/N,i =
0,1,...,N—1). O
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Example: MAP Denoising for Eddy-Current Data
Note: Continuation of the example on p. 53 of handout # 3.

For fixed A = [a, b, c,d]!, we compute the joint MAP estimates
of the signal amplitudes o = [vg, a1, ..., ax_1]! and phases
B =80, P1,.-.,Bx—1]7 by maximizing

K
Zlog[pxw(xk |0k) - palar; a,b) - ps(Br; ¢, d)].
k=1

Here are the MAP “denoising” steps:

e Estimate the model parameter vector A from a “training”
defect region (using the ML method, say),

e Apply the MAP algorithm to the whole image by replacing
A with its ML estimate obtained from the training region.

The MAP filter enhances the signals that have similar amplitude
and phase distributions to the “training” defect signal and
suppresses other signals.

The above procedure is an example of empirical Bayesian
estimation =—> a somewhat successful combination of classical
and Bayesian methods:

e model parameters A estimated using classical (ML) method,

e signal amplitudes and phases o and (3 estimated using
Bayesian (MAP) method.
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corresponding empirical MAP estimates (right).
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MAP Computation

0 = arg mgin V(0)

where
V(0) = —logp(0|x).

Newton-Raphson lteration:

9t — g) _ f-1g.

where
‘ 9 0-6"
v
' 0000 |g_g"
Comments:

e Newton Raphson is not guaranteed to converge but

e its convergence is very fast in the neighborhood of the MAP
estimate.

Upon convergence (which we denote as i — 00), we have

oV (6)

= — -~ = O 2
Joo =700 10-6" =B, (20
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Posterior Approximation Around the MAP
Estimate

Expanding (in Taylor series) the posterior distribution p(8 | x)

around the MAP estimate gMAP and keeping the first three
terms vyields:

log p(6 | ) ~ log p(Oriar | )

~ 0”log p(0 | )
lig—-0 I .
ik ( ar) 00 00" 0=0\1sp

(6 — Oyiap). (21)

The second term in the Taylor-series expansion vanishes because
the log posterior pdf/pmf has zero derivative at the MAP
estimate, see (20).

If the number of observations is large, theAposterior distribution
p(0|x) will be unimodal. Furthermore, if @ysp is in the interior
of the parameter space ® (preferably far from the boundary of
®), we can use the following approximation for the posterior
distribution:

p(@|x) ~ N(§MAP, {82 lgiggeTl ~ |9 HMAJ _1) :

This approximation follows by looking at (21) as a function of
0 and observing that log p(@uap | ) does not depend on 6.
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We may obtain another (simpler, but typically poorer)
approximation by replacing the covariance matrix of the above
Gaussian distribution with the (classical, non-Bayesian) CRB

evaluated at Oy ap.

If p(@|x) has multiple modes (and we can find them all),
we can use a Gaussian mixture (or perhaps a more general
t-distribution mixture) to approximate p(0 | x).
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A Bit More on Asymptotic Normality and
Consistency for Bayesian Models

Assume that the observations z1,xs,..., 2, are conditionally
i.i.d. (given @), following

L1, X2y e+ oy Tn 7 ?TRUE(xz

the true distribution of the data

As before, we also have
p(x | 0) — data model, likelihood;
7(6) — prior distribution on 6.

Define

First, note that we may not be modeling the data correctly.
Here, modeling the data correctly means that prrug(z) =
p(x | 0p) for some 6y. For simplicity, we consider the case of a
scalar parameter 6, but the results can be generalized.
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Recall the definition of the Kullback-Leibler distance D(p || q)
from one pmf (p) to another (p):

and apply it to measure the distance between prgyg(z) and
p(x | 0) (for the case where these distributions are discrete, i.e.
pmfs):

PTRUE (ZU )

p(x|0)

H(0) = ZPTRUE(x) log

If the data is modeled correctly, then prrue(x) = p(x|6y) and,
consequently, H () is minimized at 6y, yielding H(6y) = 0.
In the following discussion, we assume that the data are
modeled correctly.

Theorem 4. [Convergence in discrete parameter space.]
If the parameter space © is finite and P{0 = 0y} > 0, then

P{0=0p|x} -1 as n— oo.

Proof. Consider the /og posterior odds:

o8 (50 121) = 1% () * Z ox (L) @2
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The second term in this expression is the sum of n conditionally

i.i.d. random variables (given 6 and 6y). Recall that
x1,To,...,T, are coming from prrus(-) = p(- | 6o).
Then (X,10)
DA
o {10( )}:—HH <0.
%0 |5\ (X1 60) ©

If 0 # 6, the second term in (22) is the sum of n i.i.d. random
variables with negative mean, which should diverge to —oc as
n — 00. As long as P{0 = 6y} = w(8y) > 0, making the first
term in (22) finite, the log posterior odds — —oo0 as n — oo.
Thus, if 8 # 6y, the posterior odds go to zero:

p(0]x)
p(bo | )

which implies p(6|x) — 0. As all the probabilities summed
over all values of & must add to one, we have

p(6o|x) — 1.

[

Theorem 5. [Convergence in continuous parameter
space.| If 6 is defined on a compact set (i.e. closed and
bounded) and A is a neighborhood of 0y (more precisely, A
is an open subset of the parameter space containing 6y) with
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prior probability w(0) satisfying [,_,7(0)df >0, then
P{e Alx} -1 as n— .

Proof. The proof is similar in spirit to the proof for the discrete
case. O

Technical details:

e In many popular continuous-parameter scenarios, the
parameter space is not a compact set: e.g. the parameter
space for the mean of a Gaussian random variable is
(—o00,00).  Luckily, for most problems of interest, the
compact-set assumption of Theorem 5 can be relaxed.

e Similarly, Theorem 4 can often be extended to allow for an
infinite discrete parameter space.

Theorem 6. [Asymptotic Normality of p(6|x)] Under
some regularity conditions (particularly that 6y is not on the
boundary of the parameter space) and under the conditional
I.I.d. measurement model from p. 71, as n — o0,

V1 (Briar — 60) — N(0,Z1(6p) ™)

where I1(6y) is the (classical, non-Bayesian) Fisher information
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of a single measurement (say x1):

I:(0) = Ep(mIO)Kdlogpd(@Xlle))Q|9}

Proof. See Appendix B in Gelman, Carlin, Stern, and Rubin. O

Here are some useful observations to help justify Theorem 6.
Consider (scalar version of) the Taylor-series expansion in (21):

logp(f|x) =~ logp(gMApm)

d2
+2(0 — Byap)?

102 ——|log p(eMAP | x)].

l\le—l

Now, study the behavior of

d*logp(f | x)
62

negative Hessian of the log posterior at § = —

d*logn(0) d*logp(x|H)

ez d6?
~ d’logm(0) z"”‘: d?log p(x; | 6)
dh? P dp?
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and, therefore,

d?*logp(0 | x) |9} ~ d’logm()

162 gz Tnh)

Ea:|0 [ -
implying that, as n grows,
negative Hessian of log posterior at 6 ~ nZ;(0).

To summarize: Asymptotically (i.e. for large number of
samples n), Bayesian (MAP, in particular) and classical
approaches give equivalent answers.
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MAP Estimator Computation for Multiple
(Subsets of) Parameters

Consider again the case of multiple (subsets of) parameters,
denoted by 0 and w, i.e. the (overall) vector of the unknown
parameters is [07, u”]T The joint posterior pdf for @ and w is

p(0,u|x)=p(u|6,z) p@|x).
We wish to estimate both 6 and wu.

Here is our first attempt at estimating 6 and u: maximize
the marginal posterior pdfs/pmfs

0 = arg mgxp(@ | )

and

u = arg mﬁxp(u | x)

which take into account the uncertainties about the other
parameter. This is perhaps the most desirable approach for
estimating @ and u. Note that we can do the two optimizations
(with respect to 8 and w) separately.

But, what if we cannot easily obtain these two marginal
posterior pdfs/pmfs? Suppose now that we can obtain p(@ | x)
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but p(u | ) is not easy to handle. Here is our second attempt
at estimating 0 and u:

1. First, find the marginal MAP estimate of 0:

0 = arg mgxp(@ | )

which, as desired, takes into account the uncertainty about
u (by integrating u out from the joint posterior).

2. Then, find the conditional MAP estimate of u by maximizing
p(u|0,x):

u = argm&xp(u 10=0,z).

Finally, what if we cannot easily obtain either of the two
marginal posterior pdfs/pmfs? Here is our third attempt at

estimating 6 and w: find the joint MAP estimate (0, u),

(6,%) = argmax p(0,u| x).
U

This estimation is sometimes done as follows: iterate between

1. finding the conditional MAP estimate of 8 by maximizing
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p(g | up7 w):

0,11 = arg max pp (6 | u,, )

and

2. finding the conditional MAP estimate of w by maximizing
p(’u, ‘ Hp—i—lvw):

Up+1 = AIGINAX Doy | o(u|Opi1,x)
known as the iterated conditional modes (ICM) algorithm.
This is just an application of the stepwise-ascent approach

to optimization — we have seen it before, e.g. in the ECM
algorithm.
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EM Algorithm for Computing the Marginal
MAP Estimator

Let us continue with the multiparameter model from the
previous page and assume that we wish to find the marginal
MAP estimate of 8. Denote the observed data by . We wish
to maximize

p(@|x) = /p(H,u | ) du.

but this may be difficult to do directly. However, if maximizing

p(6,u|x)=p(u|6,z)- p(0|x)

Is easy, we can treat u as the missing data and apply the EM
algorithm!

Now
logp(0 | z) =logp(0,u|x) —logp(u|0,x).

and let us take the expectation of this expression with respect
to p(u|0,,x):

1ng(e | 33) — Pp(u | Bp,w)[logp(97 U ‘ 33) ’ Hpa wl
Q(‘;\rep)
_Pp(u | ep,w)[logp(U ‘ 07 m) ‘ Hpa wl

H(e | 6p)
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Recall that our goal is to maximize log p(@ | &) with respect to
0. The key to the missing information principle is that H(6 | 8,)
is maximized (with respect to 8) by 8 = 8, which we showed
in handout emlecture, see (2) in handout emlecture. Hence,

finding a @ that maximizes Q(0 |0,,) will increase logp(0 | x):

logp(@p+1|x) —logp(6,|x)
— Q(Herl | Hp) — Q(gp | le
> (), since () is increased
+ ﬁ(ep | 910) - H(9p+1 | 9192 > 0.
> 0, by the fact that H(0|0,) < H(0,|0,)

EM Algorithm:

e Denote the estimate at the pth step by 0,,.

e E Step: Compute

Q(H ‘ Hp) — Ep(u|0p,m)[logp(Ua 0 ‘ CU) | 9p7 33]

— /1ng(u7 0 | CIE) pu|0p,ac(u ‘ pr 213) du.

We need to average the complete-data log-posterior function
over the conditional posterior distribution of uw given 6 =
0,.
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e M step: Maximize Q(0|0,) with respect to 0, yielding
Opi1.

Using similar arguments as in likelihood maximization, we can
show that p(@ | x) increases in each EM iteration step.

Example (from Ch. 12.3 in Gelman, Carlin, Stern, and
Rubin): Consider the classical DC-level estimation problem
where the measurements z; |, 0%, i = 1,2,..., N follow the
N (i, 0?) distribution with both p and o unknown.

Choose semi-conjugate priors, i.e. ;1 and o2 are independent a
priort:
m(p, o) =m(p) - m(o?)

not conjugate for ;1 and o

and
T‘-(/“L) — N(,LL(),T(?)
2 2
w(o7) 1/o
Jeffreys’ prior
Comments

(A “definition” of a semi-conjugate prior): If o2 were

known, the above 7(u) would be a conjugate prior for
p. Similarly, if 1 were known, the above 7(0?) would be a
conjugate prior for p. However, m(p,0?) = w(p) - w(0?) is
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not a conjugate prior for both ;1 and o2, hence the prefix
“semi.”

(Conjugate prior is obscure): A conjugate prior exists for p
and o2 under the above model, but it falls into the “obscure”
category that we mentioned earlier. For example, this
conjugate prior 7(u, o) does not allow a priori independence
of 1 and o?.

If o2 were known, our job would be really easy — the MAP
estimate of u for this case is given by

(23)

see equation (11) and Example 10.2 in Kay-I.

Since we assume that 1 and o2 are independent a priori, this
problem does not have a closed-form solution for the MAP
estimate of u. In most applications that come to mind, it
appears intuitively appealing to have ;1 and o2 independent a
priori.

We wish to find the marginal posterior mode (MAP estimate)
of u. Hence, u corresponds to 6 and o2 corresponds to the
missing data w.
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We now derive the EM algorithm for the above problem. The
joint posterior pdf is

prior pdf
1 _\
(s ) o< exp | = 5o (0 = o] - (%)

: (02)—1\7/2 - eXp [ — QL i_v: } (24)

\ .- 4

likelihood

Ve

This joint posterior pdf is key to all steps of our EM algorithm
derivation. First, write down the log of (24) as follows:

1
logp(p, 0% |2) = const —5— (1 = p10)°

: 272
not a function of u 0
N

1
53 (z; — p)* + const.
1

)

Why can we ignore terms in the above expression that do not
contain p? Because the maximization in the M step will be
with respect to u.

Now, we need the find the conditional posterior pdf of the
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“missing” o* given p and x, evaluated at = pi,,:

N
_ _ 1
p(02 | fop, T) X (02) N/2—-1 exp { 5.2 Z:Zl(xz — Np)ﬂ

(look up the table
of distributions)

is the kernel of Inv-y? (N, N Zivzl(wz — ,up)2>. (25)

We are now ready to derive the EM algorithm for this problem.

E Step: Conditional on p, and x, find the expectation of

log p(p, 0?|x) by averaging over o2:

QUit | 1p) = E po21, ) | log D11, %) | 1y, |

; s (1 o)
= cons —— (u —
—~ 278 A= Ho
not a function of u N — .
2

no o*, expectation disappears
N

1
1 2
9 Ep((72|,up,w) [p ‘ Hps CU} ’ Z(xz — :LL) .
1=1

Comments:

e We need to maximize the above expression with respect to
L.
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e Now, we need to evaluate E ;2 ) [ﬁ ‘ L, :B} But, (25)
implies that o2|u,, x is distributed as

where Z is a (central) x% random variable, see p. 27 of this
handout. Since the mean of any x%; random variable is N
(see the distribution table), we have:

which is intuitively appealing — this expression is simply an
inverse of the sample estimate of o2 (with the known mean
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o replaced by its latest estimate ). Finally

Q1] pp)
1 2
_2—73 (1 — o)
| N 4 N
A w?] S ) + couss
i=1 j=1 not a function of
Ly
= const, ~ 92 (1" =2 p o)
not a function of u
| N 1 N
2 2
-1 {NZ(xz’_,up)} [Nu _QM(Z%')}
1=1 ]:1
f_ 1 { 1 n N 2
= const — 35 | — ~ } v
0 %Zi:l(wz fip)?

o) (26)

M Step: Find p that maximizes Q(u | ) and choose it

to be ppy1:
1 N T
_ 7o Ho =+ & e (wi—pup)? v
Hp+1 = 1 i N (27)
T & iei(mi—pp)?
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which is very simple and intuitive. Compare (27) with (23)

and note that & STV (x; — 1,,)? estimates o2 based on i,
Our iteration (27) should converge to the marginal posterior
mode of p(u|x).
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Simulation from Hierarchical Models:
Composition Sampling

Consider the basic model with likelihood pg (x| €) and prior

7(@). To simulate N observations x;, i = 1,2,..., N from the
marginal pdf/pmf of x, do the following:

(i) draw 8; from (@) and
(ii) draw x; given 8 = 0, from p,|o(x | 0;).

Then, these x;, ¢+ = 1,2,..., N correspond to samples from
the marginal (pdf in this case):

p(x) = /pa:|6(33|0) To(0) dO

and

[ 23@ ] are draws from  pg o(x,0) = py | o(x| 6) me(6).

Similarly, to generate observations from the marginal pdf/pmf
of &, where the model is described by p,|o(x | 8), pe (0| ),
and mx(A) [in this model, we assume that « depends on A
only through 0 and hence pgigA(T|0,X) = pye(z|0) —
hierarchical structure]:
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(i) draw A; from w5 (),
(ii) draw 6; given A = X; from pg (0| A;),
(iii) draw x; given 8 = 0; from py | 4(x | 0;).

Then, x;, 1 =1,2,..., N are samples from

p(@) = [ [ perol@]6)po1a6]X) () dxdo

pCIZ,O,}\(w707>‘)

whereas 0;, 1 = 1,2,..., N are samples from

O FANCIEECNLS

p@,)\(QaA)
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A BRIEF INTRODUCTION TO
MONTE CARLO METHODS

Monte Carlo methods are useful when inference cannot be
performed analytically.

Basic idea: Draw a large number of samples distributed
according to some probability distribution and use them

to obtain estimates, confidence regions etc. of unknown
parameters. This part is based on STAT 515/601 notes by
Prof. Kaiser.

We first describe three important problems where Monte Carlo
methods are employed:

(*) Simulation-based inference,
(**) Monte Carlo integration, and
(***) Simulation from complex models

and then try to relate (*), (**) and (***).
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Simulation-Based Inference (*)

By simulation, we mean drawing “samples’ from probability
distributions. Simulation-based inference is largely confined to
the Bayesian analysis of models:

p(x | 0) — data model;
0 — “true state of nature”;
7 (@) — prior distribution on 6.

Inference is based on the posterior distribution of 6:

p(z|0) ()

p(6|z) = [p(x|0)7(9)dd

Note that p(@|x) is in the form of a probability density or
mass function.

For inference about @, we need to be able to compute the
posterior pdf or pmf p(8|x). Often, however, the integral (in
the continuous case)

/ P o | 9) mo(19) dD

cannot be computed in closed form. This makes analytical
analysis impossible or difficult. (We could resort to tractable
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MAP estimation, which does not require integration, as
discussed before. However, MAP approach provides only a
point estimate of 6.)

What if we could simulate M “samples” 9¥,,, m=1,2,..., M
of @|x from the distribution p(8|x)? We could then estimate
Eg;(0|z) as

M
~ 1
0 = i Z Y, ¥,, are samples from p(0|x)

m=1

and then similarly estimate var(@|x) and other desired
quantities (moments, confidence regions, etc.).

EE 527, Detection and Estimation Theory, # 4 93



Comments

e Once we have draws from p(@|x), we can easily estimate
the marginal posterior pdf/pmf py. . (0;|x) [of 0;, the ith
coordinate of 6] as shown below. If we have samples
I, ~ p(B|x) where

191,1 192,1 19M,1
v = : , Yo = : , Uy = =
| Vo | Unp

i 191710 i

then {¥,,;, m = 1,2,..., M} are samples from the
marginal pdfs/pmfs py |2(0;|x), i = 1,2,...,p. We can
then obtain histogram (or fancier kernel density estimates)
of pg,jx(0ilz), i =1,2,...,p.

o If {¥,,, m=1,2,..., M} arei.i.d., then

M

m=1

1 w.p. 1
0= 5 9, P / 0, po. 1 (6:]) dbs.

This is also true for non-independent ¥, as long as the
sequence {¥,,, m =1,2,...} is ergodic.
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Monte Carlo Integration (**)

Monte Carlo integration is useful for classical inference and
for computing Bayes factors in Bayesian settings. In these
applications, we wish to compute integrals of the form:

L= /p(ac 10) 7(0) de.

We could generate samples ¥ of @ from 7(8), and compute a
Monte-Carlo estimate of this integral:

M
1
7 Z p(x|%m), U, = samples from 7(0).

m=1

L=

Key observation: The accuracy of L depends on M, but is
independent of dim(@) (i.e. the dimensionality of integration).
And, by the law of large numbers

lim L= L.

M — o0

We can extend the above idea and modify the Monte Carlo
estimate of L to

(i) improve var(L) or
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(ii) simplify implementation

or both. For example, for any distribution p(@) having the same
support as p(@|x) «x p(x|0)w(0) (i.e. is nonzero wherever
p(x|0) () is nonzero), we have

— | (| 0yn(0) 20
L= [ p(a|0)r() La e

Now, we can generate samples ¥ from p(@) and use the
following Monte-Carlo estimate:

21 (@] 9m) T(9m)
PN =7 2 7 56,

where 9,,, m = 1,2,..., M are samples from p(@). This is
called importance sampling. The trick is to find a good proposal
distribution p(0#). Good p(0) are those that match the behavior
of p(x|0) w(0), see more details later. We should choose p(1})
to have heavy tails so that it serves as an “envelope” to

p(0|x) o p(x|0) 7(6).
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Simulation from Complex Models (***)

Suppose that we have a model for dependent random variables
X1, Xo,...X,, that is written only in terms of the conditional
density (or mass) functions

p(ZE1|$2,--->ZEn)
p(xQ | L1, L3, - - - axn)
p(iﬂi | Llyeoo sy Lj—1,Li41y- - - ,SL‘n)
p(Tn| X1, s Tp1).

This is called a conditionally-specified model, and such models
are common, particularly in image analysis and spatial statistics.
For example, Markov fields and their variations (hidden Markov
models, Markov processes etc) are conditionally specified.

Our goal might be to draw samples from the joint pdf or pmf
p(x1,...,2,]0), given that we know only the above conditional
forms.
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An Example of Conditionally-Specified Complex
Models: Markov Random Field Models

Most people are familiar with the standard Markov assumption
in time — given the entire past, the present depends only
on the most immediate past. What does this imply about
the joint distribution of variables in a one-dimensional random
field? How would we extend this concept to two (or more)
dimensions?

One-Dimensional Example: Consider a one-dimensional
random field (process) { X1, X5,..., Xx} and denote

e p(x) = marginal density (or mass function) of X,
e p(x1,T2) = joint density (or mass function) of X; and X,

e p(xi|re) = conditional density (or mass function) of X;
given Xo.

The following is always true:

p($1,$2, SR 73777,) — p(xl)p(kaEl) o p(xn ‘ L1, L2y .. - 737]\7—1)

which becomes (using the Markov property)

p(z1, T2, . .. ,ZUN) = p(ﬂfl)p(l’z\xl) " 'p(CBN | CUN—l)-
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Note also that the Markov property implies that

Now

p(zi[{z;, j #i})
B p(x1,x2,...,TN)
p(T1, .. i1, Tix1,- -, TN)
_ plz1) p(xa|2r) - plwg | 251)
- pz1) p(za|zr) - p(zi1 | Ti2)
p(Tit1|Ti) p(Tito|Tit1) - -plan | TN—1)
.p($i+1\ﬂ3z‘—1)p($i+2\3¢z‘+1) oplen | N=1)
. p(%‘ | lez'—l)p(%ﬂ | il?z)
; p(Tit1]|Ti-1)

p(%‘ﬂ | ;)

Ve

_ p(ilfz' | $¢—1)p(9€¢+1 | L, sz‘—J
p($i+1\$i—1)

_ p(xs, x-1) .P(SI%‘—LCE@;%H) _ 1
\p(xi—l) PN (i1, 25) y p(xiy1]|Tio1)
p(ib”irb’z'—l) p(Ti41 r;z',ﬂ%—l)

_ p(iliz'—la L, 37@'—|—1)
p(xi—la ﬂfz‘+1)

— p(%\%‘—h fl?z‘+1)

which will become immediately clear once we master graphical
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models.

Thus, the typical Markov property in one dimension (e.g. time)
implies that the conditional distribution of x; given all other
random-field variables (i.e. z;, 7 =1,2,...,i—1,¢+1,...,N
in the above example) depends only on the adjacent values
Li—1 and Lit1-

It is the structure of such full conditional distributions that
are of concern in studying Markov random fields. Consider a
collection of random observations {X(s;) : ¢ = 1,2,...N}
where s;,7 = 1,2,... N denote (generally known) spatial
locations at which these observations have been collected.
The collection {X(s;) : i =1,2,... N} constitutes a Markov
random field if, for each + = 1,2..., N, the full conditional
density or mass functions satisfy

p(x(si) [{z(s;) : j #i}) = p(x(s:) [ {2(s;) : j € Ni}) (28)

where {N; :i=1,2,..., N} are neighborhoods. For example,
we can choose N, to be the set of measurements collected at
locations within a specified distance from the ith location s;
(excluding s;).

Comments:

e Equation (28) does not imply that there is no spatial
dependence between the random-field values at s; and other
locations that are outside its neighborhood; rather, it implies
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that, given the random-field values from its neighborhood,
there is no functional dependence on the values at other
locations outside the neighborhood.

e Neighborhoods must be symmetric, i.e. if s; € N; then
S; € ./\/}
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A Common Framework for (*), (**), and (***)

The problem (*) is to sample from the joint posterior
distribution

p(@|x) =p(61,02,...,0,|x).
The problem (**) is to evaluate an integral

L(A\) = / p(x|0)m(0) === db.
®
The problem (***) is to simulate data from a joint pdf/pmf

p(x1,...,2,]0)

which is unknown but the full conditional pdfs/pmfs are known.

First, problems (*) and (**) are often similar since

02— P@O)7(®
/ (2]9) n(9) d®

NN 7
~~

looks like L()

and the difficulty may arise from an unknown denominator.

The problems in (*) and (**) can sometimes be put into (or
related to) the form (***). For example, in many Bayesian
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models, it may be impossible to obtain a closed-form expression
for the posterior pdf/pmf p(@|x), but is possible to get the
full conditional posterior pdfs/pmfs:

p(9k|w7{93‘7#k})7 k:1727°'°7p-

Hence, in some cases, the problems (*), (**), and (***) may
all reduce to generating samples from a joint distribution when
all we know are the full conditional pdfs/pmfs. This is not
always true, but is true often enough to make Gibbs sampling
popular.
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Simulation From a Joint Distribution
Using Conditionals

To illustrate the basic idea consider a simple bivariate case:
two random variables 7 and x5 with specified conditional
pdfs/pmfs:  p |z, (z1|r2) and pu, iz (22|71).  Given these
conditionals, we wish to draw samples from the joint pdf/pmf
p(x1,2).

If there exists a joint distribution p(z1,22), then the
conditionals pg, |z, (71|z2) and pg, |, (22|71) are said to be
compatible. Essentially, we need the existence of marginals
Py (1) and py,(x2) so that

p(T1,22)
Pz, (371) .

p(T1,22)
pr(x2)

px1|m2(xl‘x2) — and px2|m1<x2‘[£1) —

Assume that p(z1, T2), P, (1), Py (T2), Pary |2 (T1|T2), Pagjey (T2]71)

all exist, but all we know are the conditionals. If p,, |,,(21|72)
and pg, |5, (72|71) are compatible and easy to simulate from,
can we use them to generate samples from the joint pdf/pmf

p<xl7 332)?
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First, note that

p(leixz)
po(@1) — / Do (wien) pglea) dzs (29)
Pay(za) — / Dot (23]21) poy (@) dzy.  (30)

Now, substitute (30) into (29) to get

Pz (T1) = /p:c1|:c2(5131|332) /pq;zm(zvglt)pxl(t)dtd:cg
= [ [ perea(@sle) page walt)dzs s, 1)

-~
Q(xlat)

_ / a(21, 1) pas (£) d. (31)

Note:
e ¢(-,-) is not necessarily a joint density or mass function.

To solve for p,,, consider (in general)

T (h,x) = /q(a:,t) h(t) dt
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an integral transformation of a function A(-) and a value z,
where this transformation is defined by the function q(z,t)
which is determined entirely by the conditional specifications

pxﬂxg("’) and pm2|a:1('|'):

Q<x7t) — /px1|x2(w‘x2)px2|x1<x2|t> de-

Then, the marginal density p,,(-) is defined by a function that
results in 7 being a fixed-point transformation [see (31)]:

pxl(az) — T(pfm? .CIZ)

Now, consider a given value x1 =—> we wish to evaluate the
unknown py,(x1). Theoretically, we could start with an initial
guess, say h0)(.), for p,,(-) and compute

A () = T (RO, 2q) = /q(:z:l,t) RO (t) dt

and repeat (i.e. apply successive substitution)

A (z) = T(hW, xy)

At () = T(h™, zy).
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When A" +D (1) = h{™)(2;) we have reached a fixed-point
solution of the transformation and would take

Pay (z1) = KT (1) = K™ (24).

A drawback of successive substitution (to find fixed-point
solutions to transformation problems) is that it does not
guarantee a unique solution (the same is true for the EM
algorithm). (Notice similarity with the EM algorithm, which is
also a fixed-point method!)

Here, we simply assume a unique solution.

Finally, recall the discussion on p. 89 and note that

o Given Dy |z, (71]72) and pg,(z2), if we

* draw one value x5, from p,,(x2) and then
+ use that result to make one draw from p,, 1., (z1]75),
say i,

then we have one draw (z, x5) from the joint p(x1,x2) and
thus also from the marginals p,,(z1) and p.,(x2).

We are now ready to derive the Gibbs sampler for the bivariate
case.
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THE GIBBS SAMPLER

For a nice tutorial, see

G. Casella and E.l. George, “Explaining the Gibbs sampler,”
American Statistician, vol. 46, pp. 167-174, Aug. 1992

which is posted on WEBCTT.

The Bivariate Case: Gibbs Sampler as a Substitution
Algorithm

Our goal is to draw samples from the joint distribution p(z1, z2)
given only its conditionals py, |4, (21|72) and pyyq, (T2]21).

Assume

1) Pyiie (1| 22) and p,. .. (22| 1) are compatible and
1]z2 2|z
(ii) the fixed-point solution to 7 (h,x) is unique

where
T(h o) = / oz, 1) h(t) dt
and

oz, t) = / Dot (]22) Dy o (]2 .

[Here, we have two h functions since we wish to approximate
the marginal distributions for both the marginals of z; and
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x9. Without loss of generality, we focus on the estimation
of py,(x1).] Then, an iterative algorithm (Gibbs sampler)
to generate observations from the joint pdf/pmf p(xq,x2) is
developed as follows. Consider again the equations

pxl(xl) — /px1|x2($1|x2)px2(x2) de

pCUQ(xQ) — /p$2|$1(x2|x1)p$1($1)dx1°

considered as a draw

Suppose that we start with a value z{"

from some approximation to p,,(-), denoted by ﬁ;; (). Given

xéo), we generate a value xgl) from px1|x2(:€1|xéo))

have a draw from

. Thus, we

P@) = [ Doyl Y (w2) d
I.e. we have
a:éo) from f)(wg)()
azgl) from ]’chll)()

Then, complete one “cycle” (in terms of the superscript index)

by generating a value 3351) from px2|x1(az2\azgl)) which will be a

EE 527, Detection and Estimation Theory, # 4 109



value from
ﬁ(xlg)(xﬂ = /p2(£132|331)]3(x11)(x1) dx.
At the end of one “cycle,” we have

atgl) from mll)()
:zjgl) from ﬁ%)()

(0)

We start over with :vél) replacing x5 ’. Repeating the process

k times, we end up with

a:gk) from ;byj)()

:cgk) from ﬁg;)()

Now,
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Why? Because at each step we have used the transformations

it (1) = /pxm(a:l\a:g) /px2|x1(a:2|t)]3f£)(t)dtd:c2

\ 7
~~”~

17&2)(1”2)

— //p:c1|a;2 5131|£C2 px2|x1($2‘t) ( )dtde

_ / 01, ) BB (1) dt = TP, ).

Similarly,

Py (@2) = T(BL), x2)
(for which we need a different h function). At each step, we
have used the transformations whose fixed-point solutions give
Pz (z1) and p,,(x2) and we have used these in a successive-

substitution manner.

Thus, if we apply the above substitution a large number of
times K, we will end up with one pair of values (x},x5)
generated from p(x1,x2). Consequently, x} is a draw from
P, (x1) and x| a draw from p,.,(x2).

If we repeat the entire procedure N times (with different

starting values), we end up with N i.i.d. pairs (z1,22;),1 =
1,....N.

Note: Although we have independence between pairs, we will
not (and should not, in general) have independence within a
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pair (i.e. if we have independence within a pair, we do not need
Gibbs sampling).

Thus, the joint empirical distribution of (z1;,22,) (i.e.
histogram) should converge (as N — oo) to a joint distribution
having marginals p,,(-) and p.,(-) and conditionals p,,|4,(:|")

and px2|x1<"'>-

Summary of the Gibbs Sampling Algorithm: To obtain one
observation [i.e. one pair (x1,x3) from the joint distribution

p(xla x2)]:

(i) Start with initial value x( ).

(ii) Generate azgl) from px1|x2(x1\azé0));

(ili) Generate a;gl) from pw2|$1(:132\a;§1));

(iv) Return to step (ii) with a:él) in place of :Uéo);

(v) Repeat a large number of times.
Comments:

(i) To generate N i.i.d. samples, apply the algorithm N times
with different starting values:

:r;éo 1), x§°’2>, . xéO’N).
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(ii) To generate N dependent (but, under mild conditions,
ergodic) samples, use the algorithm with one starting value

a:éo) and keep all values after K cycles:

{0, aB0),

K+N K+N
L1 y Lo (5’75 i )5’7( " ))}

c ey ) 2
Under ergodic theorems, this provides good results for
a histogram (empirical distribution) of p,, (), ps,(:), and
p(x1,x2) and Monte Carlo estimation of various quantities.

(ili) The sequence in comment (ii) forms a Markov Chain;

hence, Gibbs sampling is one type of Markov Chain Monte
Carlo (MCMC) methods.
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Gibbs Sampling in Higher Dimensions

Gibbs sampling in p dimensions (p > 2) is a direct extension of
the bivariate algorithm. Suppose that we wish to sample from
a joint distribution p(zx1,...,x,) but have available only the
conditionals

pxink:k?gi}(:Ei‘{ZEk  k 757,}), 1= 1,...,]9.

Note that these are full conditional pdfs/pmfs. A Gibbs sampler

for generating one sample from p(x1,...,x,) is
(i) Obtain starting values x( ) ]()0)1,
(i1) Draw :1:2(9) from pxp|$1,x2’m,wp_1(xp|a:( ) o 2(90)1)
(iii) Draw ", from
Paprforsansan (@121 5,2, g, 25
(iv) Draw a;z(j )2 from
Py slerean sy (@o-alzt s @)y )y all);

EE 527, Detection and Estimation Theory, # 4 114



(v) Continue sequentially until one full cycle results in

w0 = (o), 2O

(vi) Return to step (ii) with (%) replaced by (1);

(vii) Repeat steps (ii)—(vi) a large number of times K.

We then have one observation z(® = [z®, ... 21T from
p(x1,. .., 2p).
Comments:

e Again, we may wish to either repeat this entire process using
different starting values (i.i.d. samples) or depend (rely) on
ergodicity and keep all values after a given point.

e |f we rely on ergodicity, a major issue is how large k should
be so that *) may be reliably considered as a value from
the joint distribution.

x In MCMC terminology, the value of K after which
(k) k > K are “reliable” defines the “burn-in" period.

e Compromise between ‘pure” i.i.d. and ergodic samples:
Compute the sample autocorrelation of x(®). If this
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autocorrelation at lag [ and larger is negligible, then we
can generate almost i.i.d. samples by keeping only every [th
draw in the chain after convergence.

t+1 t+1

e Clearly, we can also cycle angr) — a:'ng) — e —
(t41)
p

(t+1) (t+1)
:Cp—l — Lp

20D, (D)

(t+1)
p—1 —S ..

, or pick up any other cycling order. This is
a trivial observation.

, say, rather than x — T C—
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A Toy Example: Drawing Samples from
a Bivariate Gaussian Pdf

Suppose that we wish to sample from

px,y(x,y)ZN(lglﬂli f])

x eXp{_Q(li,OQ)[x y][—lp —10”51}

1
2(1—p

X exp{— 2)-(x2+y2—2pl‘y>}

using the Gibbs sampler, see also p. 27 in handout # 1 for a
general pdf expression for a bivariate Gaussian pdf. We need
conditional pdfs px |y (x|y) and py|x(y|z), which easily follow:

1 2
_ (22— 9 }
px|y(®|y) o exp 202 (z* = 2pyx)
= N(py,1-p%
and, by symmetry,
pyix(ylz) = N(pz,1-p%.

Let us start from, say, (zg,y9) = (10,10) and run a few
iterations for p = 0.6.
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first 20 iterations first 100 iterations

w[1:20]
y[1:100]
20 02 4 6 8 1D

1] 2 4 ] E 10 -2 1] 2 4 ] ] 10
x[1:20] x[1:100]
101-1000 iterations 900 1id samples

y[101:1000]
Il
1]

x[101:1000] x1

Why might Gibbs work (as it apparently does in this
example)?

A fixed-point argument (certainly not a proof):

/pX(fE)pY|X(y|33)de = py(y)

/ / px(2) py x| 2) pxy (@ | 9) dady = px ().

Remember: Gibbs does not always work; later, we will give an
example where Gibbs does not work.
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Bayesian Example: Gibbs Sampler for the
Gaussian Semi-Conjugate Model

Simple DC-level-in-AWGN measurement model:

Lq ‘ lu70_2 NN(N702)

2

with parameters ;1 and o2. Clearly, given 1 and o2, z;, i =

1,2,...,N arei.id.

Consider the semi-conjugate prior:

7T(,u) — N(/Lo,Tg)

(0% = Inv-x3(v, 03).
The joint posterior distribution is
2 1 2
pla.o®@) o exp |~ (1= )’
70

2
(2~ (0/2+1) | (_ VO"O)

(0?)™N/? - exp [— 2%2 > (@i = u)ﬂ-

)
I
[

To implement the Gibbs sampler for simulating from this joint
posterior pdf, we need the full conditional pdfs: p(u|o?, x)
and p(o? | p, ).
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The full conditional posterior pdf for i is

ufficien _ _
p(plo®x) " =""p(u|o*T) < p(u, T | 0?)
_ 9
xp(T|u, o)
4 \g ) ()
N(u,"—]\?) N(Moﬂ'g)
1N ,_ 5 1 2}}
xexp{ =5 |5 @ =+ (= po
{ 1'NT§+02 5 2N7‘3§+02,u0 }
X exp<{ — — —
b 2L o278 H o218
T B S
2 (727'3 N7'02—|—02
OCN(/’LN7T]2V)

where

021'4—73#0
UN = N 1
o2 T 72
5 1
N T N | 1
2T
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The full conditional posterior pdf for o is

_(N—|2—1/0+1)

p(o®|p,®) o (o)

expd = L[S+ o]}

1=1

o Inv-x?(vn, o%)

where
vy = UVg+ N
| N
o () = e {Z(ajz —p)? + V()O'Z]
i=1

Now, we are ready to describe the Gibbs sampler for simulating
from p, 02|z under the above model:

(a) start with a guess for o2, (¢2)(©):

(b) draw p1) from a Gaussian distribution
N (e ((07)®), T ((02)®)) , where

N 1
@@L T 7zH0

pn((0) ) = o
(02)(O) T 72
1
X((@*)W) =

S\ A
(62)(0) ™ 8
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(c) next, draw (o2)(®) from Inv-x2(vy, 0% (u)), where

N

1
TN () = UN {Z(f’% —p )+ yoa(ﬂ 5
1=1

(d) iterate between (b) and (c) upon convergence.
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Grouping and Collapsing

Suppose that it is possible to sample from the conditional
distribution

pxp_l,a:p | $2,$3,...,$p_2(xp—17 Lp | L2y L3y .-y xp—Z)

directly. Then we can use grouped Gibbs, described below.

Suppose that it is possible to integrate out =, and that we can
sample from the conditional distributions

. TilT1,T2,y ..., LTp_ 1=1,2,...,p—1
Z 7 ,..', —_—
Pzx; | x1,29 Tp 2( z’ 1,42, y Lp 2)7 y & y P

directly. Then we can use collapsed Gibbs, described below.

Consider now the following three schemes:

Standard Gibbs: xgtﬂ) — xétﬂ) — = x<t_+11) — xz(,tﬂ).

p
Grouped Gibbs: aﬁgf’ﬂ) — xéﬂrl) s e xz(fj;) —
(:I:Z(ffll), asz(fﬂ)) where the last draw is from
(t+1) (¢t+1) (t+1)
pxp—laxp|$2:$3,---7$p—2(xp_17xp‘:CZ 79:3 7'”7xp—2 )

which we assumed we know how to do. Here is one
situation where this can happen. Suppose that it is possible
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to integrate out x, and that we can sample from the
conditional distribution

pacp_l | I1,$2,...,ij_2(ajp—1 | L1, L2y ... 7$p—2)

directly. Then, grouped Gibbs can be implemented as:

x§t+1) R x;tﬂ) s S ](3+31) _ ](3t+21)
using  full  conditionals; then  sample I(fjll)
t+1)  (t+1 t+1
from pxp_1|x1,x2,...,xp_2(wp— ‘ZC( )7 ; >7 7'%.1()_2))1
followed by drawing a:z(fL ) from the full conditional
(t+1)  (t+1) L)
p:cp|x1,x2,...,xp_1( p‘ y Lo ’ . p 1 )

Collapsed Gibbs: xgtH) o :Cétﬂ) — s = xz(gtjgl) — %(aHll)
using

Pz, | azl,azg,...,:cp_g(xi ‘ L1, L2y ... 7xp—2)7 1 = 17 27 IR 2 L.

It turns out that there is an ordering > (better than or as good
as) for these schemes in terms of their “convergence speed":

Collapsed Gibbs > Grouped Gibbs > Standard Gibbs

see Ch. 6 in

J.S. Liu, Monte Carlo Strategies in Scientific Computing. New
York: Springer-Verlag, 2001.
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Rao-Blackwellization

Suppose that we ran a two (block) component Gibbs sampler
and that we have (post burn-in) samples

(xgt),:vgt)), t=1,2,....T
from p(x1,z2).

Say we are interested in estimating

G = Ep(xl,xQ)[g(Xl)]Z//g(iﬁl)p(wh@)dwld@

— /g(fvl)P(xl)dfﬂl

and suppose that FE|g(X;i)| X2 = x3] can be computed
analytically.  Now, consider the following two competing
estimators of G:

T N T
Z ), G= fz 9(X:1 |20 .

G 7 4

simple MC average estimator Rao-Blackwellized estimator

It can be shown that, as expected from conditioning,

~

var(G) < Var(@).
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Say we wish to estimate the marginal posterior pdf p(zq)
assuming that we can compute p(x1|x2) analytically. Then,
apply the following mixture pdf estimator:

T

Pla) = 7 S pla |2,

t=1
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