A Praobability Review

Outline:
e A probability review.

Shorthand notation: RV stands for random variable.
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A Praobability Review

Reading:
e Go over handouts 2-5 in EE 420x notes.

Basic probability rules:

(1) Pr{2} =1, Pr{0} = 0, 0 < Pr{A} < 1,
Pr{ue,A;} =>0  Pr{A;} if A;inA; =0 for all i # j;
A; and A disjoint

(2) Pr{AuU B} = Pr{A} + Pr{B} — Pr{AnN B}, Pr{A°} =
1 —Pr{A};

(3) If A L B, then Pr{AN B} = Pr{A} - Pr{B};

(4)

Pr{A N B}

Pr{A| B} = —5

(conditional probability)

Pr{AN B} =Pr{A| B} -Pr{B} (chain rule);
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(5)
Pr{A} = Pr{A| B} Pr{Bi} +---+ Pr{A| B,} Pr{B,}
if By, By, ..., B, form a partition of the full space {2;
(6) Bayes' rule:

Pr{B| A} Pr{A}

Pr{A| B} = ——p
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Reminder: Independence, Correlation and
Covariance

For simplicity, we state all the definitions for pdfs; the
corresponding definitions for pmfs are analogous.

Two random variables X and Y are independent it

Fxy(@y) = fx(@) - fyr(y).

Correlation between real-valued random variables X and Y:

—+ o0 400
Exy{XY} = / / ry fxv(z,y)dzdy.
Covariance between real-valued random variables X and Y:

covx y(X,Y)=Exyv{(X —pux) (Y —uy)}

= [ e 0w S dedy
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where

+00
Uy = EX(X):/ r fx(x)dx

+00
fy = EY(Y):/ y fv(y) dy.

Uncorrelated random variables: Random variables X and Y
are uncorrelated if

Cx)y — COVX,y(X, Y) = 0. (1)
If X and Y are real-valued RVs, then (1) can be written as

Exv{XY}=Ex{X}Ey{Y}.

Mean Vector and Covariance Matrix:

Consider a random vector
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The mean of this random vector is defined as

M1 EXl;Xl]
px=| "7 | =Ex{X}= EXQE'XQ]
B HN | i EXNXN] i

Denote the covariance between X; and X, covx, x, (X, X&),
by ¢; ; hence, the variance of X; is ¢; ; = covx, x,(Xi, X;) =
vary, (X;) = 03(2, . The covariance matrix of X is defined as

~"~

more notation

Cl,l 01’2 Cl,N
Co 1 C2 2 RN « e Co N
Cx=| 7 77 . . \
i CN,]_ CN,2 « e “ e CN,N |

The above definitions apply to both real and complex vectors
X.

Covariance matrix of a real-valued random vector X :

Cx = Ex{(X-Ex[X])(X-Ex[X])7"}
= Ex[X X' -Ex[X](Ex[X])T.

For real-valued X, ¢; , = ci; and, therefore, Cx is a symmetric
matrix.
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Linear Transform of Random Vectors

Linear Transform. For real-valued Y, X, A,
Y=9g(X)=AX.
Mean Vector:
py =Ex{AX}=Apu,. (2)
Covariance Matrix:

Cy = EY{YYT}—Hyﬂg
= Ex{AXX"ATY — Ap, pnt AT
= A(Bx{X X"} - pynk)A”T
C'x
— ACx AT (3)
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Reminder: lterated Expectations

In general, we can find Exy|g(X,Y)| using iterated
expectations:

Exyg(X,Y)] =Ev{Ex|v[g(X,Y)|Y]} (4)

where E 1 | denotes the expectation with respect to fx|y(z |y)
and E denotes the expectation with respect to fy(y).

Proof.
+0o0
EY{EXW[Q(X,Y)IY]}:/_ Exvlg(X,Y)[y] fr(y) dy
+o00 +00
= [ (] swwnsavln ) fwdy
+0o0 +o0
= / / 9(x,y) fx)v(z|y)fy(y) dzdy

+00 +o0
-~ / 9(x,y) fxy(z,y) dz dy

[
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Reminder: Law of Conditional Variances

Define the conditional variance of X given Y = y to be the
variance of X with respect to fx|y(z|y), i.e.

vary |y (X |V = y) = By [(X = B [X [9])*|y]

= Ex v [X? 9] — (B [X | )

The random variable vary (X |Y) is a function of Y only,
taking values var(X |Y = y). Its expected value with respect
toY is

By {vary |y (X[ V)} = By {B v [X? Y] = (B [X | V])?}

LT By X2 = BB [X | V]))
= Ex[X]-E{(Exp[X]|Y])?}.

Since E x|y[X | Y] is a random variable (and a function of ¥’
only), it has variance:

Vafy{E XIY[X ‘ Y]} — EY{(EXIY[X ’ Y])Q} _ (EY{EXIY[X | Y]})Q

LS B (B [X | Y])?) — (B x v [X])?
— Ey{E X|Y[X | Y]2} _ (EX[X])2'
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Adding the above two expressions yields the /aw of conditional
variances:

Ey{vary |y (X | Y)} + vary {E yy [X | Y]} = varx(X). (5)

Note: (4) and (5) hold for both real- and complex-valued
random variables.
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Useful Expectation and Covariance ldentities
for Real-valued Random Variables and Vectors

EX7y[a/X—|—bY+C] — aEx[X]+bEy[Y]+C
vary y(a X +bY +¢) a? vary (X) + b? vary (Y)
+2ab-covyx y(X,Y)

where a,b, and c are constants and X and Y are random
variables. A vector/matrix version of the above identities:

covxy(AX +BY +¢) = Acovx(X) Al + Beovy(Y) B
+Acovx v(X,Y)B! + Beovx v (Y, X) A

where “I"" denotes a transpose and
covxy(X,Y) = Exy{(X -~ Ex[X]) (Y — Ey[Y])7}.

Useful properties of crosscovariance matrices:

C()\/')(,}f,z(‘X7 Y + Z) = COVX’Y(X, Y) + COVX’Z(X, Z)
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COVij(Y, X) = [COVij(X, Y)]T

o
covx(X) = covx(X,X)
vary(X) = covx(X,X).
o
covxy(AX +b,PY +q) = Acovxy(X,Y)PL.

(To refresh memory about covariance and its properties, see p.
12 of handout 5 in EE 420x notes. For random vectors, see
handout 7 in EE 420x notes, particularly pp. 1-15.)

Useful theorems:

(1) (handout 5 in EE 420x notes)

EX(X) :Ey[EX|Y(X‘Y)] shown on p. 8

Ex y[g(X) -nY) |yl =hy) - Ex|v[g(X)|y]
Exylg(X) h(Y)] =Ey{h(Y) -Ex y[g(X)|Y]}.

The vector version of (1) is the same — just put bold letters.
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(2)

vary(X) = Ey[vary | (X | V)] + vary (E x|y [X|Y]);

and the vector/matrix version is

SOV_};(XE :EY[COVX|Y(X‘Y)]

variance/covariance
matrix of X

+COVY(E X | Y[X‘Y]) shown on p. .

(3) Generalized law of conditional variances:

COVX,Y(X, Y) = EZ[COVX,Y | Z(X7 Y | Z)]
+covz(E x | 2 X Z],Ey | 2lY | Z]).

(4) Transformation:

one-to-one Yi=g(X1,..., Xn)
Y =g(X) — -

Y, = gn( X1, ..., X0)

then
() = Fx(hi(yr), - hnlyn)) - ||
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where h(-) is the unique inverse of g(-) and

oxy ., Oxu1
am 8?91 8yn
J p— |—T‘ — . H H
oy Oxy .. Oxp
891 8yn

Print and read the handout PROBABILITY DISTRIBUTIONS
from the Course readings section on WebCT. Bring it with you
to the midterm exams.
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Jointly Gaussian Real-valued RVs

Scalar Gaussian random variables:

1 (v — px)?
fx(x) = exp{— :
x() 271 o2 20%

Definition. Two real-valued RVs X and Y are jointly
Gaussian if their joint pdf is of the form

1

27TO'XO'Y\/1 — pi,y

fX,Y(xay) —

1 (37 — MX)2 (y — MY)Q
"eXPy — 2 ' 2 + 2
2(1—-0X30 Ox Oy

(v — px) (y — /LY)} }

OxO0y

—2pxy

(6)

This pdf is parameterized by px, jiy,0%,0%, and px.y. Here,

ox = /0% and oy = \/0Z.

Note: We will soon define a more general multivariate Gaussian
pdf.
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If X and Y are jointly Gaussian, contours of equal joint pdf
are ellipses defined by the quadratic equation

— const > 0.

(z— px)?  (y— py)? (2 — px) (y — py)
2 _2pX,Y
Oy Oy OxO0y

Examples: In the following examples, we plot contours of the
joint pdf fxy(z,y) for zero-mean jointly Gaussian RVs for
various values of ox, 0y, and px y.

ox =10y =1,pxy=0: 0=0° P(z,y)

S ofoe i

-5 0 5
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UX:LO'Y

=3, pxy =0.99: §=7L7°

O'X—lo'} 3PXY——O4 f = —81.65°
=N SR NS RIRRTI

If X and Y are jointly Gaussian,
Gaussian, e.g.

0064

004

002"

y —Ey|Y]

,J,ﬂfm I }
:.,,!,:}qm”" !l W," o

il i 0:3' "m .
o’!l"ﬁ"" 0“\

-5 -5

the conditional pdfs are

XY =y} ~ N (pxyox

Oy

B ([X], (13 )02 ).
(7)

If X and Y are jointly Gaussian and uncorrelated, i.e. px y = 0,

they are also independent.
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Gaussian Random Vectors

Real-valued Gaussian random vectors:

1 _
)N/z |Cx|1/2 €Xp [ o % (33 B “X)Tcxl(a’ — ,le)}-

fx(x) = 27

Complex-valued Gaussian random vectors:

fz(z) = 7TN’102| exp [_ (2 — N/Z)Hcgl (2 — Nz)]-

Notation for real- and complex-valued Gaussian random vectors:

X ~ Ny(px,Cx) [or simply N(py,Cx)] real
X ~ Ne(px,Cx) complex.

An affine transform of a Gaussian vector is also a Gaussian
random vector, i.e. if

Y=AX+b
then
Y ~ Ny (Apy +b ACx AD) real
Y ~ No(Apy +b, ACx A7) complex.
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The Gaussian random vector W ~ N.(0,0°1,) (where I,
denotes the identity matrix of size n) is called white; pdf
contours of a white Gaussian random vector are spheres
centered at the origin. Suppose that W(n|, n=20,1,..., N —
1 are independent, identically distributed (i.i.d.)  zero-
mean univariate Gaussian N(0,0%).  Then, for W =
(W1o], W[1],...,W[N — 1]]*,

fw(w) =N(w|0,0%1).
Suppose now that, for these Wn|,
Yin| =0+ Win|
where 6 is a constant. What is the joint pdf of Y[0], Y[1],...,
and Y|N — 1]? This pdf is the pdf of the vector ¥ =
[Y[O]a Y[”? s 7Y[N o 1]]T:
Y=10+W
where 1 is an N x 1 vector of ones. Now,

fr(y) =N(y|16,0°I).

Since 6 is a constant,

fy(y) = fY|9(y |16).
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Gaussian Random Vectors
A real-valued random vector X = [X1, Xo,..., X,,]7 with

e mean p and

e covariance matrix X with determinant |X| > 0 (i.e. X is
positive definite)

is a Gaussian random vector (or X1, Xo,..., X, are jointly
Gaussian RVs) if and only if its joint pdf is

x(@) = s eol-d @ - w5 @ - ) (8)

Verify that, for n = 2, this joint pdf reduces to the two-
dimensional pdf in (6).

Notation: We use X ~ N (u, X') to denote a Gaussian random
vector. Since X is positive definite, X' ~! is also positive definite
and, for x # pu,

(€ =)' 27z —p) >0
which means that the contours of the multivariate Gaussian
pdf in (8) are ellipsoids.

The Gaussian random vector X ~ AN(0,0°%I,) (where I,
denotes the identity matrix of size n) is called white —
contours of the pdf of a white Gaussian random vector are
spheres centered at the origin.
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Properties of Real-valued Gaussian Random
Vectors

Property 1: For a Gaussian random vector, “uncorrelation”
implies independence.

This is easy to verify by setting X; ; = 0 for all 2 # j in
the joint pdf, then X becomes diagonal and so does X~ !:
then, the joint pdf reduces to the product of marginal pdfs
fx;(xi) = N(ps, Zii) = N(pi,0%,). Clearly, this property
holds for blocks of RVs (subvectors) as well.

Property 2: A linear transform of a Gaussian random vector
X ~ N(px, Xx) yields a Gaussian random vector:

Y =AX ~ N(Apy, AXx AY).

It is easy to show that Ey Y] = A py and covy (YY) = Xy =
A Xy AT, So

Ev|Y|=Ex[AX]|=AEx[X]|=Auy
and

Dy = Ey[(Y —Ey[Y])(Y —Ey[Y])]
= Ex[(AX - Apy) (AX — Apy)"]
= AEX[(X — py) (X —py)']AT = AZx AT,
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Of course, if we use the definition of a Gaussian random vector
in (8), we cannot yet claim that Y is a Gaussian random
vector. (For a different definition of a Gaussian random vector,
we would be done right here.)

Proof. We need to verify that the joint pdf of Y indeed has
the right form. Here, we decide to take the equivalent (easier)
task and verify that the characteristic function of Y has the
right form.

Definition. Suppose X ~ fx(X). Then the characteristic
function of X is given by

Ox(w) =Exlexp(jw' X)]

where w is an n-dimensional real-valued vector and j = /—1.

+00 —|—oo
/ / x)exp(j w! x) da

proportional to the inverse multi-dimensional Fourier transform
of fx(x); therefore, we can find fx(x) by taking the Fourier
transform (with the appropriate proportionality factor):

Thus

—+ 00 —|—oo

w) exp(—jw’ ) dx

f
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Example: The characteristic function for X ~ N (u,0?) is
given by

By(w) = exp(—3w? 0% + ] pv) ©
and for a Gaussian random vector Z ~ N (u, X)),

Dy (w) =exp(— 3w’ Tw+jw' p). (10)

Now, go back to our proof: the characteristic function of
Y =AX is

Oy (w) = Eylexp(jw’Y)]
= Ex[exp(jw’ AX)]
= exp(—sw AXx Al w+jw’ Apy).

Thus
Y = AX ~N(Apy, AN AY).

xx (o[ 3])

Y:F 1]:{

Example: Let

Find the joint pdf of

1 0

Solution: From Property 2, we conclude that
1 1112 11 1 7 3
vew (ol of [ 3] of) -4 (ofs 2))
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Property 3: Marginals of a Gaussian random vector are
Gaussian, i.e. if X is a Gaussian random vector, then, for

any {i1,49,...,it} C{1,2,...,n},

is a Gaussian random vector. To show this, we use Property 2.

Here is an example with n =3 and Y = [ ?1 ] We set
3
X,
-fig][3
thus 5 5
Yw/\/( M1]7[ 1,1 1,3])
[ 13 231 233
Here _ i} _ _
X1 [
E x X2 — | M2
| X3 | | 43
and _ _ _ -
X1 211 212 213
COV x X5 = | 2a1 222 a3
- X3 | | Y31 232 233 |
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and note that

—t
-
-]

HEBRIL:

and
2n1 213 | _ |1
231 233 0

The converse of Property 3 does not hold in general; here is a
counterexample:

o O
)
o O =
_ O O

Example: Suppose X; ~ N(0,1) and

B 1, w.p.
XQ_{ —1, w.p.

DO [ =

are independent RVs and consider X3 = X; X5. Observe that

[ X3 NN(O,l) and

o fx, xs;(x1,23) is not a jointly Gaussian pdf.
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A fxl,xg(l’h 563)

[

Property 4: Conditionals of Gaussian random vectors are
Gaussian, i.e. if

X I 21,1 21,2
SRR E)
ol
then
{Xg | X1 — xl} ~ N(22712£11($1—M1)+M2, 22,2—22’121_,112172>

and

{X1| X9 =22} ~ N(21,22£21($2—H2)+M1, 21,1—21,222_,2122,1)-
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Example: Compare this result to the case of n =2 in (7):

In particular, having X = X5 and Y = X4,y = 1, this result
becomes:

2
o o
{X‘Y :y} NN( XQ’Y (y_MY)+MX,U)2<_—X§Y)
Oy Oy

where Oxy — COVX’y(X, Y),O-?( = COVX7)((X,X) = Varx(X),
and 02 = covy y(Y,Y) = vary(Y). Now, it is clear that

Ox)y

Px,y —
Ox Oy

where oy = \/o% > 0 and oy = /02 > 0.

Example: Suppose

(e
[ .
—_
—
=

1

f
W)
(g
o0

le - Q}a’ ?}%' : 2}21.
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From Property 4, it follows that /[t

i —
2 2 20
EXo[Xi =) = 1]<x_1)+ 2] z+1
52| |2
Z{X2|Xl:$}: 29 _ll 21]
R

0 8

Property 5: If X ~ A (u, X)) then

(2 — )P XY — p) ~x3 (Chi-square in your distr. table).
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Additive Gaussian Noise Channel

Consider a communication channel with input
2
X ~ N(:uX7TX)
and noise

W ~ N(0,0%)

where X and W are independent and the measurement Y is
Y =X+W.

Since X and W are independent, we have

fX,W(ﬂU, w) = fx(x) fw(x)

v [T )

What is fy | x(y|x)? Since

and

Y| X=z}=x+W ~N(z,0%)

we have

fy|X(y|5U) :NQJ‘I;UQ)-

EE 527, Detection and Estimation Theory, # 0b 30



How about fy(y)? Construct the joint pdf fx y(x,y) of X and

IR

v T B Al )

yielding

Therefore,

EE 527, Detection and Estimation Theory, # 0b 31



Complex Gaussian Distribution

Consider joint pdf of real and imaginary part of an n x 1

complex vector Z
Z=U+3V.

x-[Y]

The 2 n-variate Gaussian pdf of the (real!) vector X is

Assume

1 _
fX(:I:) = \/(2 7T)2”|EX] exXp [_% (Z — ﬂX)szl(z — “X)}
where
| 22%; v 2uv
Hx [“V]7 x [EVU EVV]
Therefore,
Pr{z € A} = fx(x)dx.
recA

EE 527, Detection and Estimation Theory, # 0b 32



Complex Gaussian Distribution (cont.)

Assume that Y'x has a special structure:
EUU = EVV and EUV = _EVU

[Note that Yy = XL, has to hold as well.] Then, we can
define a complex Gaussian pdf of Z as

1 _
fa(z) = Srgyosp [z = pa) "5 (= — )]
where
Kty = [,l,U +JH’V
Yz = Ez{(Z—py,)(Z - Nz)H} = 2Ly +J 2vu)

0 = E {(Z-p)(Z—p)"}
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