
A Probability Review

Outline:

• A probability review.

Shorthand notation: RV stands for random variable.
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A Probability Review

Reading:

• Go over handouts 2–5 in EE 420x notes.

Basic probability rules:

(1) Pr{Ω} = 1, Pr{∅} = 0, 0 ≤ Pr{A} ≤ 1;
Pr{∪∞i=1Ai} =

∑∞
i=1 Pr{Ai} if Ai ∩Aj︸ ︷︷ ︸

Ai and Aj disjoint

= ∅ for all i 6= j;

(2) Pr{A ∪ B} = Pr{A} + Pr{B} − Pr{A ∩ B}, Pr{Ac} =
1− Pr{A};

(3) If A ⊥⊥ B, then Pr{A ∩B} = Pr{A} · Pr{B};

(4)

Pr{A |B} =
Pr{A ∩B}

Pr{B}
(conditional probability)

or

Pr{A ∩B} = Pr{A |B} · Pr{B} (chain rule);
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(5)

Pr{A} = Pr{A |B1}Pr{B1}+ · · ·+ Pr{A |Bn}Pr{Bn}

if B1, B2, . . . , Bn form a partition of the full space Ω ;

(6) Bayes’ rule:

Pr{A |B} =
Pr{B |A}Pr{A}

Pr{B}
.
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Reminder: Independence, Correlation and
Covariance

For simplicity, we state all the definitions for pdfs; the
corresponding definitions for pmfs are analogous.

Two random variables X and Y are independent if

fX,Y (x, y) = fX(x) · fY (y).

Correlation between real-valued random variables X and Y :

E X,Y {X Y } =
∫ +∞

−∞

∫ +∞

−∞
x y fX,Y (x, y) dx dy.

Covariance between real-valued random variables X and Y :

covX,Y (X, Y ) = E X,Y {(X − µX) (Y − µY )}

=
∫ +∞

−∞

∫ +∞

−∞
(x− µX) (y − µY ) fX,Y (x, y) dx dy

EE 527, Detection and Estimation Theory, # 0b 4



where

µX = E X(X) =
∫ +∞

−∞
x fX(x) dx

µY = E Y (Y ) =
∫ +∞

−∞
y fY (y) dy.

Uncorrelated random variables: Random variables X and Y
are uncorrelated if

cX,Y = covX,Y (X, Y ) = 0. (1)

If X and Y are real-valued RVs, then (1) can be written as

E X,Y {X Y } = E X{X}E Y {Y }.

Mean Vector and Covariance Matrix:

Consider a random vector

X =


X1

X2
...

XN

 .
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The mean of this random vector is defined as

µX =


µ1

µ2
...

µN

 = E X{X} =


E X1[X1]
E X2[X2]

...
E XN

[XN ]

 .

Denote the covariance between Xi and Xk, covXi,Xk
(Xi, Xk),

by ci,k; hence, the variance of Xi is ci,i = covXi,Xk
(Xi, Xi) =

varXi
(Xi) = σ2

Xi︸ ︷︷ ︸
more notation

. The covariance matrix of X is defined as

CX =


c1,1 c1,2 · · · · · · c1,N

c2,1 c2,2 · · · · · · c2,N
... ... ... ... ...

cN,1 cN,2 · · · · · · cN,N

 .

The above definitions apply to both real and complex vectors
X.

Covariance matrix of a real-valued random vector X:

CX = E X{(X − E X[X]) (X − E X[X])T}
= E X[X XT ]− E X[X] (E X[X])T .

For real-valued X, ci,k = ck,i and, therefore, CX is a symmetric
matrix.
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Linear Transform of Random Vectors

Linear Transform. For real-valued Y ,X, A,

Y = g(X) = A X.

Mean Vector:

µY = E X{A X} = A µX. (2)

Covariance Matrix:

CY = E Y {Y Y T} − µY µT
Y

= E X{A X XT AT} −A µX µT
X AT

= A
(

E X{X XT} − µX µT
X︸ ︷︷ ︸

CX

)
AT

= A CX AT . (3)
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Reminder: Iterated Expectations

In general, we can find E X,Y [g(X, Y )] using iterated
expectations:

E X,Y [g(X, Y )] = E Y {E X | Y [g(X, Y ) |Y ]} (4)

where E X | Y denotes the expectation with respect to fX|Y (x | y)
and E Y denotes the expectation with respect to fY (y).

Proof.

E Y {E X | Y [g(X, Y ) |Y ]} =
∫ +∞

−∞
E X | Y [g(X, Y ) | y] fY (y) dy

=
∫ +∞

−∞

( ∫ +∞

−∞
g(x, y)fX | Y (x | y) dx

)
fY (y) dy

=
∫ +∞

−∞

∫ +∞

−∞
g(x, y)fX | Y (x | y)fY (y) dx dy

=
∫ +∞

−∞

∫ +∞

−∞
g(x, y) fX,Y (x, y) dx dy

= E X,Y [g(X, Y )].

2
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Reminder: Law of Conditional Variances

Define the conditional variance of X given Y = y to be the
variance of X with respect to fX | Y (x | y), i.e.

varX | Y (X |Y = y) = E X | Y

[
(X − E X|Y [X | y])2 | y

]
= E X | Y [X2 | y]− (E X|Y [X | y])2.

The random variable varX | Y (X |Y ) is a function of Y only,
taking values var(X |Y = y). Its expected value with respect
to Y is

E Y {varX | Y (X |Y )} = E Y

{
E X | Y [X2 |Y ]− (E X|Y [X |Y ])2

}
iterated exp.

= E X,Y [X2]− E Y {(E X|Y [X |Y ])2}

= E X[X2]− E Y {(E X|Y [X |Y ])2}.

Since E X|Y [X |Y ] is a random variable (and a function of Y
only), it has variance:

varY {E X|Y [X |Y ]} = E Y {(E X|Y [X |Y ])2} − (E Y {E X|Y [X |Y ]})2

iterated exp.
= E Y {(E X|Y [X |Y ])2} − (E X,Y [X])2

= E Y {E X|Y [X |Y ]2} − (E X[X])2.
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Adding the above two expressions yields the law of conditional
variances:

E Y {varX | Y (X |Y )}+ varY {E X|Y [X |Y ]} = varX(X). (5)

Note: (4) and (5) hold for both real- and complex-valued
random variables.
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Useful Expectation and Covariance Identities
for Real-valued Random Variables and Vectors

E X,Y [aX + b Y + c] = a · E X[X] + b · E Y [Y ] + c

varX,Y (aX + b Y + c) = a2 varX(X) + b2 varY (Y )

+2 a b · covX,Y (X, Y )

where a, b, and c are constants and X and Y are random
variables. A vector/matrix version of the above identities:

E X,Y [A X + B Y + c] = A E X[X] + B E Y [Y ] + c

covX,Y (A X + B Y + c) = A covX(X) AT + B covY (Y ) BT

+A covX,Y (X,Y ) BT + B covX,Y (Y ,X) AT

where “T” denotes a transpose and

covX,Y (X,Y ) = E X,Y {(X − E X[X]) (Y − E Y [Y ])T}.

Useful properties of crosscovariance matrices:

•

covX,Y ,Z(X,Y + Z) = covX,Y (X,Y ) + covX,Z(X,Z).
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•
covY ,X(Y ,X) = [covX,Y (X,Y )]T .

•

covX(X) = covX(X,X)

varX(X) = covX(X, X).

•

covX,Y (A X + b, P Y + q) = A covX,Y (X,Y ) PT .

(To refresh memory about covariance and its properties, see p.
12 of handout 5 in EE 420x notes. For random vectors, see
handout 7 in EE 420x notes, particularly pp. 1–15.)

Useful theorems:

(1) (handout 5 in EE 420x notes)

E X(X) = E Y [E X | Y (X |Y )] shown on p. 8

E X | Y [g(X) · h(Y ) | y] = h(y) · E X | Y [g(X) | y]

E X,Y [g(X) · h(Y )] = E Y {h(Y ) · E X | Y [g(X) |Y ]}.

The vector version of (1) is the same — just put bold letters.
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(2)

varX(X) = E Y [varX | Y (X |Y )] + varY (E X | Y [X|Y ]);

and the vector/matrix version is

covX(X)︸ ︷︷ ︸
variance/covariance

matrix of X

= E Y [covX | Y (X |Y )]

+covY (E X | Y [X|Y ]) shown on p. .

(3) Generalized law of conditional variances:

covX,Y (X, Y ) = E Z[covX,Y | Z(X, Y |Z)]

+covZ(E X | Z[X |Z],E Y | Z[Y |Z]).

(4) Transformation:

Y = g(X) one-to-one⇐⇒
Y1 = g1(X1, . . . , Xn)

...
Yn = gn(X1, . . . , Xn)

then
fY (y) = fX(h1(y1), . . . , hn(yn)) · |J |
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where h(·) is the unique inverse of g(·) and

J =
∣∣∣ ∂x

∂yT

∣∣∣ =

∣∣∣∣∣∣∣
∂x1
∂y1

· · · ∂x1
∂yn... ... ...

∂xn
∂y1

· · · ∂xn
∂yn

∣∣∣∣∣∣∣
Print and read the handout Probability distributions
from the Course readings section on WebCT. Bring it with you
to the midterm exams.
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Jointly Gaussian Real-valued RVs

Scalar Gaussian random variables:

fX(x) =
1√

2 π σ2
X

exp
[
− (x− µX)2

2 σ2
X

]
.

Definition. Two real-valued RVs X and Y are jointly
Gaussian if their joint pdf is of the form

fX,Y (x, y) =
1

2πσXσY

√
1− ρ2

X,Y

· exp

{
− 1

2 (1− ρ2
X,Y )

·
[(x− µX)2

σ2
X

+
(y − µY )2

σ2
Y

−2 ρX,Y
(x− µX) (y − µY )

σXσY

]}
. (6)

This pdf is parameterized by µX, µY , σ2
X, σ2

Y , and ρX,Y . Here,

σX =
√

σ2
X and σY =

√
σ2

Y .

Note: We will soon define a more general multivariate Gaussian
pdf.
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If X and Y are jointly Gaussian, contours of equal joint pdf
are ellipses defined by the quadratic equation

(x− µX)2

σ2
X

+
(y − µY )2

σ2
Y

−2 ρX,Y
(x− µX) (y − µY )

σXσY

= const ≥ 0.

Examples: In the following examples, we plot contours of the
joint pdf fX,Y (x, y) for zero-mean jointly Gaussian RVs for
various values of σX, σY , and ρX,Y .
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If X and Y are jointly Gaussian, the conditional pdfs are
Gaussian, e.g.

X | {Y = y} ∼ N
(
ρX,Y ·σX·

y − E Y [Y ]
σY

+E X[X], (1−ρ2
X,Y )·σ2

X

)
.

(7)

If X and Y are jointly Gaussian and uncorrelated, i.e. ρX,Y = 0,
they are also independent.
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Gaussian Random Vectors

Real-valued Gaussian random vectors:

fX(x) =
1

(2 π)N/2 |CX|1/2
exp

[
− 1

2 (x− µX)TC−1
X (x− µX)

]
.

Complex-valued Gaussian random vectors:

fZ(z) =
1

πN |CZ|
exp

[
− (z − µZ)H C−1

Z (z − µZ)
]
.

Notation for real- and complex-valued Gaussian random vectors:

X ∼ Nr(µX, CX) [or simply N (µX, CX)] real

X ∼ Nc(µX, CX) complex.

An affine transform of a Gaussian vector is also a Gaussian
random vector, i.e. if

Y = A X + b

then

Y ∼ Nr(A µX + b, A CX AT ) real

Y ∼ Nc(A µX + b, A CX AH) complex.
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The Gaussian random vector W ∼ Nr(0, σ2 In) (where In

denotes the identity matrix of size n) is called white; pdf
contours of a white Gaussian random vector are spheres
centered at the origin. Suppose that W [n], n = 0, 1, . . . , N −
1 are independent, identically distributed (i.i.d.) zero-
mean univariate Gaussian N (0, σ2). Then, for W =
[W [0],W [1], . . . ,W [N − 1]]T ,

fW (w) = N (w |0, σ2 I).

Suppose now that, for these W [n],

Y [n] = θ + W [n]

where θ is a constant. What is the joint pdf of Y [0], Y [1], . . .,
and Y [N − 1]? This pdf is the pdf of the vector Y =
[Y [0], Y [1], . . . , Y [N − 1]]T :

Y = 1 θ + W

where 1 is an N × 1 vector of ones. Now,

fY (y) = N (y |1 θ, σ2 I).

Since θ is a constant,

fY (y) = fY | θ(y | θ).
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Gaussian Random Vectors

A real-valued random vector X = [X1, X2, . . . , Xn]T with

• mean µ and

• covariance matrix Σ with determinant |Σ | > 0 (i.e. Σ is
positive definite)

is a Gaussian random vector (or X1, X2, . . . , Xn are jointly
Gaussian RVs) if and only if its joint pdf is

fX(x) =
1

|2πΣ |1/2
exp[−1

2 (x− µ)TΣ−1(x− µ)]. (8)

Verify that, for n = 2, this joint pdf reduces to the two-
dimensional pdf in (6).

Notation: We use X ∼ N (µ,Σ ) to denote a Gaussian random
vector. Since Σ is positive definite, Σ−1 is also positive definite
and, for x 6= µ,

(x− µ)TΣ−1(x− µ) > 0

which means that the contours of the multivariate Gaussian
pdf in (8) are ellipsoids.

The Gaussian random vector X ∼ N (0, σ2In) (where In

denotes the identity matrix of size n) is called white —
contours of the pdf of a white Gaussian random vector are
spheres centered at the origin.
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Properties of Real-valued Gaussian Random
Vectors

Property 1: For a Gaussian random vector, “uncorrelation”
implies independence.

This is easy to verify by setting Σi,j = 0 for all i 6= j in
the joint pdf, then Σ becomes diagonal and so does Σ−1;
then, the joint pdf reduces to the product of marginal pdfs
fXi

(xi) = N (µi,Σi,i) = N (µi, σ
2
Xi

). Clearly, this property
holds for blocks of RVs (subvectors) as well.

Property 2: A linear transform of a Gaussian random vector
X ∼ N (µX,ΣX) yields a Gaussian random vector:

Y = A X ∼ N (A µX, AΣX AT ).

It is easy to show that E Y [Y ] = A µX and covY (Y ) = ΣY =
AΣX AT . So

E Y [Y ] = E X[A X] = A E X[X] = A µX

and

ΣY = E Y [(Y − E Y [Y ]) (Y − E Y [Y ])T ]

= E X[(A X −A µX) (A X −A µX)T ]

= A E X[(X − µX) (X − µX)T ]AT = AΣX AT .
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Of course, if we use the definition of a Gaussian random vector
in (8), we cannot yet claim that Y is a Gaussian random
vector. (For a different definition of a Gaussian random vector,
we would be done right here.)

Proof. We need to verify that the joint pdf of Y indeed has
the right form. Here, we decide to take the equivalent (easier)
task and verify that the characteristic function of Y has the
right form.

Definition. Suppose X ∼ fX(X). Then the characteristic
function of X is given by

ΦX(ω) = E X[exp(j ωT X)]

where ω is an n-dimensional real-valued vector and j =
√
−1.

Thus

ΦX(ω) =
∫ +∞

−∞
· · ·

∫ +∞

−∞
fX(x) exp(j ωT x) dx

proportional to the inverse multi-dimensional Fourier transform
of fX(x); therefore, we can find fX(x) by taking the Fourier
transform (with the appropriate proportionality factor):

fX(x) =
1

(2π)n

∫ +∞

−∞
· · ·

∫ +∞

−∞
ΦX(ω) exp(−j ωT x) dx
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Example: The characteristic function for X ∼ N (µ, σ2) is
given by

ΦX(ω) = exp(−1
2 ω2 σ2 + j µω) (9)

and for a Gaussian random vector Z ∼ N (µ,Σ ),

ΦZ(ω) = exp(−1
2 ωT Σω + j ωT µ). (10)

Now, go back to our proof: the characteristic function of
Y = AX is

ΦY (ω) = E Y [exp(j ωT Y )]

= E X[exp(j ωT A X)]

= exp(−1
2 ωT AΣX AT ω + j ωT A µX).

Thus
Y = A X ∼ N (A µX, AΣXAT ).
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Property 3: Marginals of a Gaussian random vector are
Gaussian, i.e. if X is a Gaussian random vector, then, for
any {i1, i2, . . . , ik} ⊂ {1, 2, . . . , n},

Y =


Xi1

Xi2
...

Xik


is a Gaussian random vector. To show this, we use Property 2.

Here is an example with n = 3 and Y =
[

X1

X3

]
. We set

Y =
[

1 0 0
0 0 1

] X1

X2

X3


thus

Y ∼ N
( [

µ1

µ3

]
,

[
Σ1,1 Σ1,3

Σ3,1 Σ3,3

])
.

Here

E X


 X1

X2

X3

 =

 µ1

µ2

µ3


and

covX


 X1

X2

X3

 =

 Σ1,1 Σ1,2 Σ1,3

Σ2,1 Σ2,2 Σ2,3

Σ3,1 Σ3,2 Σ3,3


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and note that

[
µ1

µ3

]
=

[
1 0 0
0 0 1

] µ1

µ2

µ3


and

[
Σ1,1 Σ1,3

Σ3,1 Σ3,3

]
=

[
1 0 0
0 0 1

] Σ1,1 Σ1,2 Σ1,3

Σ2,1 Σ2,2 Σ2,3

Σ3,1 Σ3,2 Σ3,3

 1 0
0 0
0 1

 .

The converse of Property 3 does not hold in general; here is a
counterexample:

Example: Suppose X1 ∼ N (0, 1) and

X2 =
{

1, w.p. 1
2

−1, w.p. 1
2

are independent RVs and consider X3 = X1 X2. Observe that

• X3 ∼ N (0, 1) and

• fX1,X3(x1, x3) is not a jointly Gaussian pdf.
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2

Property 4: Conditionals of Gaussian random vectors are
Gaussian, i.e. if

X =
[

X1

X2

]
∼ N

( [
µ1

µ2

]
,

[
Σ1,1 Σ1,2

Σ2,1 Σ2,2

])
then

{X2 |X1 = x1} ∼ N
(
Σ2,1Σ−1

1,1 (x1−µ1)+µ2,Σ2,2−Σ2,1Σ−1
1,1Σ1,2

)
and

{X1 |X2 = x2} ∼ N
(
Σ1,2Σ−1

2,2 (x2−µ2)+µ1,Σ1,1−Σ1,2Σ−1
2,2Σ2,1

)
.
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Example: Compare this result to the case of n = 2 in (7):

{X2 |X1 = x1} ∼ N
(Σ2,1

Σ1,1
(x1 − µ1) + µ2,Σ2,2 −

Σ 2
1,2

Σ1,1

)
.

In particular, having X = X2 and Y = X1, y = x1, this result
becomes:

{X |Y = y} ∼ N
(σX,Y

σ2
Y

(y − µY ) + µX, σ2
X −

σ2
X,Y

σ2
Y

)

where σX,Y = covX,Y (X, Y ), σ2
X = covX,X(X, X) = varX(X),

and σ2
Y = covY ,Y (Y, Y ) = varY (Y ). Now, it is clear that

ρX,Y =
σX,Y

σX σY

where σX =
√

σ2
X > 0 and σY =

√
σ2

Y > 0.

Example: Suppose
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Property 5: If X ∼ N (µ,Σ ) then

(x− µ)TΣ−1(x− µ) ∼ χ2
d (Chi-square in your distr. table).
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Additive Gaussian Noise Channel

Consider a communication channel with input

X ∼ N (µX, τ2
X)

and noise
W ∼ N (0, σ2)

where X and W are independent and the measurement Y is

Y = X + W.

Since X and W are independent, we have

fX,W(x,w) = fX(x) fW(x)

and [
X
W

]
∼ N

( [
µX

0

]
,

[
τ2

X 0
0 σ2

])
.

What is fY |X(y |x)? Since

{Y |X = x} = x + W ∼ N (x, σ2)

we have
fY |X(y |x) = N (y |x, σ2).
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How about fY (y)? Construct the joint pdf fX,Y (x, y) of X and
Y : since [

X
Y

]
=

[
1 0
1 1

] [
X
W

]
then[
X
Y

]
∼ N

( [
1 0
1 1

] [
µX

0

]
,

[
1 0
1 1

] [
τ2

X 0
0 σ2

] [
1 1
0 1

])
yielding [

X
Y

]
∼ N

( [
µX

µX

]
,

[
τ2

X τ2
X

τ2
X τ2

X + σ2

])
.

Therefore,

fY (y) = N
(
y

∣∣ µX, τ2
X + σ2

)
.

EE 527, Detection and Estimation Theory, # 0b 31



Complex Gaussian Distribution

Consider joint pdf of real and imaginary part of an n × 1
complex vector Z

Z = U + j V .

Assume

X =
[

U
Y

]
.

The 2 n-variate Gaussian pdf of the (real!) vector X is

fX(x) =
1√

(2 π)2 n|ΣX|
exp

[
−1

2 (z − µX)TΣ−1
X (z − µX)

]
where

µX =
[

µU

µV

]
, ΣX =

[
ΣUU ΣUV

ΣV U ΣV V

]
.

Therefore,

Pr{x ∈ A} =
∫
x∈A

fX(x) dx.
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Complex Gaussian Distribution (cont.)

Assume that ΣX has a special structure:

ΣUU = ΣV V and ΣUV = −ΣV U .

[Note that ΣUV = ΣT
V U has to hold as well.] Then, we can

define a complex Gaussian pdf of Z as

fZ(z) =
1

πn |ΣX|
exp

[
−(z − µZ)HΣ−1

Z (z − µZ)
]

where

µZ = µU + j µV

ΣZ = E Z{(Z − µZ) (Z − µZ)H} = 2 (ΣUU + j ΣV U)

0 = E Z{(Z − µZ) (Z − µZ)T}.
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