
EM Algorithm

Outline:

• Expectation-maximization (EM) algorithm.

• Examples.
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likelihood from incomplete data via the EM algorithm,” J.
R. Stat. Soc., Ser. B, vol. 39, no. 1, pp. 1–38, 1977

which you can download through the library’s web site. You
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T.K. Moon, “The expectation-maximization algorithm,” IEEE
Signal Processing Mag., vol. 13, pp. 47–60, Nov. 1996

available at IEEE Xplore.
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EM Algorithm

EM algorithm provides a systematic approach to finding ML
estimates in cases where our model can be formulated in terms
of “observed” and “unobserved” (missing) data. Here, “missing
data” refers to quantities that, if we could measure them, would
allow us to easily estimate the parameters of interest.

EM algorithm can be used in both classical and Bayesian
scenarios to maximize likelihoods or posterior probability
density/mass functions (pdfs/pmfs), respectively. Here, we
focus on the classical scenario; the Bayesian version is similar
and will be discussed in handout # 4.

To illustrate the EM approach, we derive it for a class of models
known as mixture models. These models are specified through
the distributions (pdfs, say)1

fY |U,θ,ϕ(y |u,θ,ϕ)

and

fU |ϕ(u |ϕ)

with unknown parameters θ and ϕ. (Note that ϕ parametrizes
fU |ϕ(u |ϕ) and fY |U,θ,ϕ(y |u,θ,ϕ), whereas θ parametrizes
fY |U,θ,ϕ(y |u,θ,ϕ) only.) This leads to the marginal

1We focus on pdfs without loss of generality.
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distribution of y (given the parameters):

fY | θ,ϕ(y |θ,ϕ) =
∫
U

fY ,U | θ,ϕ(y,u | θ,ϕ)︷ ︸︸ ︷
fY |U,θ,ϕ(y |u,θ,ϕ) fU |ϕ(u |ϕ) du

(1)
where U is the support of fU |ϕ(u |ϕ).

Notation:

• y ≡ observed data,

• u ≡ unobserved (missing) data,

• (u,y) ≡ complete data,

• fY | θ,ϕ(y |θ,ϕ) ≡ marginal observed data density,

• fU |ϕ(u |ϕ) ≡ marginal unobserved data density,

• fY ,U | θ,ϕ(y,u |θ,ϕ) ≡ complete-data density,

• fU | Y ,θ,ϕ(u |y,θ,ϕ) ≡ conditional unobserved-data
(missing-data) density.

•
E U | Y ,θ,ϕ[· |y,θ,ϕ]
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means, in the pdf case,

E U | Y ,θ,ϕ[· |y,θ,ϕ] =
∫
U
·fU | Y ,θ,ϕ(u |y,θ,ϕ) du

and, therefore, at the pth estimate of the parameters:

E U | Y ,θ,ϕ[· |y,θp,ϕp] =
∫
U
·fU | Y ,θ,ϕ(u |y,θp,ϕp) du.

Goal: Estimate θ and ϕ by maximizing the marginal log-
likelihood function of θ and ϕ, i.e. find θ and ϕ that maximize

L(θ,ϕ) = ln fY | θ,ϕ(y |θ,ϕ). (2)

We assume that

(i) Ui are conditionally independent given ϕ, where U =
[U1, . . . , UN ]T :

fU |ϕ(u |ϕ) =
N∏

i=1

fUi |ϕ(ui |ϕ) (3)

Ui is the support of fUi |ϕ(ui |ϕ), and
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(ii) Yi are conditionally independent given the missing data u:

fY |U,θ,ϕ(y |u,θ,ϕ) =
N∏

i=1

fY i | Ui,θ,ϕ(yi |ui,θ,ϕ). (4)

Thus

fY ,U | θ,ϕ(y,u |θ,ϕ) =
N∏

i=1

fY i | Ui,θ,ϕ(yi |ui,θ,ϕ) fUi |ϕ(ui |ϕ)︸ ︷︷ ︸
fY i,Ui | θ,ϕ(yi,ui | θ,ϕ)

(5)

fY | θ,ϕ(y |θ,ϕ)

see (1)
=

N∏
i=1

∫
U

fY i | Ui,θ,ϕ(yi |u, θ,ϕ) fUi |ϕ(u |ϕ) du︸ ︷︷ ︸
fY i | θ,ϕ(yi | θ,ϕ)

(6)

fU | Y ,θ,ϕ(u |y,θ,ϕ) =
fY ,U | θ,ϕ(y,u |θ,ϕ)

fY | θ,ϕ(y |θ,ϕ)
(7)

see (5) and (6)
=

N∏
i=1

fUi | Y i,θ,ϕ(ui | yi,θ,ϕ). (8)

Comments:

• When we cover graphical models, it will become obvious
from the underlying graph that the conditions (i) and (ii) in
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(3) and (4) imply (8). The above derivation of (8) is fairly
straightforward as well.

• We have two blocks of parameters, θ and ϕ, because we
wish to separate the parameters modeling the distribution of
u from the parameters modeling the distribution of y given
u. Of course, we can also lump the two blocks together into
one big vector.

Now,

ln fY | θ,ϕ(y |θ,ϕ)︸ ︷︷ ︸
L(θ,ϕ)

= ln fY ,U | θ,ϕ(y,u |θ,ϕ)︸ ︷︷ ︸
complete

− ln fU | Y ,θ,ϕ(u |y,θ,ϕ)︸ ︷︷ ︸
conditional unobserved

given observed

or, summing across observations,

L(θ,ϕ) =
∑

i

ln fY i | θ,ϕ(yi |θ,ϕ) =
∑

i

ln fY i,Ui | θ,ϕ(yi, ui |θ,ϕ)

−
∑

i

ln fUi | Y i,θ,ϕ(ui | yi,θ,ϕ).

If we choose values of θ and ϕ, θp and ϕp say, we can take
the expected value of the above expression with respect to
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fU | Y ,θ,ϕ(u |y,θp,ϕp) to get:

∑
i

E Ui | Y i,θ,ϕ[ln fY i | θ,ϕ(yi |θ,ϕ) | yi,θp,ϕp]

=
∑

i

E Ui |Yi,θ,ϕ[ln fY i,Ui | θ,ϕ(yi, Ui |θ,ϕ) | yi,θp,ϕp]

−
∑

i

E Ui |Yi,θ,ϕ[ln fUi |Yi,θ,ϕ(Ui | yi,θ,ϕ) | yi,θp,ϕp].

Since L(θ,ϕ) = ln fY | θ,ϕ(y |θ,ϕ) in (2) does not depend on
u, it is constant for this expectation. Hence,

L(θ,ϕ) =
∑

i

E Ui |Yi,θ,ϕ[ln fY i,Ui | θ,ϕ(yi, Ui |θ,ϕ) | yi,θp,ϕp]

−
∑

i

E Ui |Yi,θ,ϕ[ln fUi |Yi,θ,ϕ(Ui | yi,θ,ϕ) | yi,θp,ϕp]

which can be written as

L(θ,ϕ,y) = Q(θ,ϕ |θp,ϕp)−H(θ,ϕ |θp,ϕp). (9)

To clarify, we explicitly write out the Q and H functions (for
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the pdf case):

Q(θ,ϕ |θp,ϕp)

=
∑

i

∫
Ui

ln fY i,Ui | θ,ϕ(yi, u |θ,ϕ)fUi |Yi,θ,ϕ(u | yi,θp,ϕp) du

H(θ,ϕ |θp,ϕp)

=
∑

i

∫
Ui

ln fUi |Yi,θ,ϕ(u | yi,θ,ϕ) fUi |Yi,θ,ϕ(u | yi,θp,ϕp) du.

Recall that our goal is to maximize L(θ,ϕ) with respect to θ
and ϕ. The key to the missing information principle is that
H(θ,ϕ |θp,ϕp) is maximized (with respect to θ and ϕ) by
θ = θp and ϕ = ϕp:

H(θ,ϕ |θp,ϕp) ≤ H(θp,ϕp |θp,ϕp) (10)

for any θ and ϕ in the parameter space.

Proof. Consider the function

fU | Y ,θ,ϕ(u |y,θ,ϕ)
fU | Y ,θ,ϕ(u |y,θp,ϕp)

.

By Jensen’s inequality (introduced in homework assignment #
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1), we have

E U | Y ,θ,ϕ

{
ln

[ fU | Y ,θ,ϕ(U |y,θ,ϕ)
fU | Y ,θ,ϕ(U |y,θp,ϕp)

] ∣∣∣ y,θp,ϕp

]}
≤ ln E U | Y ,θ,ϕ

[ fU | Y ,θ,ϕ(U |y,θ,ϕ)
fU | Y ,θ,ϕ(U |y,θp,ϕp)

∣∣∣ y,θp,ϕp

]
= ln

∫
U

fU | Y ,θ,ϕ(u |y,θ,ϕ)
fU | Y ,θ,ϕ(u |y,θp,ϕp)

fU | Y ,θ,ϕ(u |y,θp,ϕp) du = 0.

2
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Digression

The result (10) is fundamental to both information theory and
statistics. Here is its special case that is perhaps familiar to
those in (or who took) information theory.

Proposition 1. Special case of (10). For two pmfs p =
(p1, . . . , pK) and q = (q1, . . . , qK) on {1, . . . K}, we have

∑
k

pk ln pk ≥
∑

k

pk ln qk.

Proof. First, note that

• both sums in the above expression do not change if we
restrict them to {k : pk > 0} (as, by convention 0 ln 0 = 0)
and

• the above result is automatically true if there is some k such
that pk > 0 and qk = 0.

Hence, without loss of generality, we assume that all elements
of p and q are strictly positive. We wish to show that∑

k

pk ln(qk/pk) ≤ 0.
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The ln function satisfies the inequality lnx ≤ x − 1 for all
x > 0; see the picture and note that the slope of lnx is 1 at
x = 1.

So,∑
k

pk ln
qk

pk
≤

∑
k

pk

(qk

pk
− 1

)
=

∑
k

(qk − pk) = 1− 1 = 0.

2

Why is this result so important? It leads to the definition of
the Kullback-Leibler distance D(p ‖ q) from one pmf (p) to
another (p):

D(p ‖ q) =
∑

k

pk ln
pk

qk
.

The above proposition shows that this “distance” is always
nonnegative, and it can be shown that D(p ‖ q) = 0 if and
only if p = q. An extension to continuous distributions and
(10) is straightforward.
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EM ALGORITHM (cont.)

We now continue with the EM algorithm derivation. Equation
(9) may be written as

Q(θ,ϕ |θp,ϕp) = L(θ,ϕ) + H(θ,ϕ |θp,ϕp)︸ ︷︷ ︸
≤H(θp,ϕp | θp,ϕp)

. (11)

Note: If we maximize Q(θ,ϕ |θp,ϕp) with respect to θ and ϕ
for given θp and ϕp, we are effectively finding a transformation
T that can be written as

(θp+1,ϕp+1) = T (θp,ϕp)

where (θp+1,ϕp+1) is the value of the pair (θ,ϕ) that
maximizes Q(θ,ϕ |θp,ϕp).

In this context, we define a fixed-point transformation as a
transformation that maps (θp,ϕp) onto itself, i.e. T? is a
fixed-point transformation if

T?(θp,ϕp) = (θp,ϕp).
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Proposition 2. Missing Information Principle. For a
transformation defined by maximizing

Q(θ,ϕ |θp,ϕp)

on the right-hand side of (11) with respect to θ and ϕ and if
L(θ,ϕ) and H(θ,ϕ |θp,ϕp) are differentiable,

(i) the pair (θ,ϕ) that maximizes L(θ,ϕ) [i.e. the
ML estimates of θ and ϕ] constitutes a fixed-point
transformation.

(ii) any fixed-point transformation is either the ML estimate
or a stationary point of L(θ,ϕ).

Proof. (heuristic)

(i) If the ML estimate (θ̂, ϕ̂) = (θp,ϕp), i.e.

Q(θ,ϕ | θ̂, ϕ̂) = L(θ,ϕ) + H(θ,ϕ | θ̂, ϕ̂)

then (θ̂, ϕ̂) maximizes both terms on the right-hand side of
the above expression simultaneously (and hence also their
sum, Q).

(ii) For any (θp,ϕp),

T (θp,ϕp) = (θp,ϕp) (12)
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maximizes H(θ,ϕ |θp,ϕp). By the assumptions, both L(θ,ϕ)
and H(θ,ϕ |θp,ϕp) are differentiable, implying that (12)
cannot maximize

Q(θ,ϕ |θp,ϕp) = L(θ,ϕ) + H(θ,ϕ |θp,ϕp)

unless it is also a maximum (a local maximum, in general) or
a stationary point of L(θ,ϕ). 2

To summarize:

E Step (Expectation). Compute Q(θ,ϕ |θp,ϕp) where, for
given θp and ϕp,

Q(θ,ϕ |θp,ϕp)

=
∑

i

E Ui |Yi,θ,ϕ

[
ln fY i,Ui

(yi, Ui |θ,ϕ)
∣∣ yi,θp,ϕp

]
.

M Step (Maximization). Maximize Q(θ,ϕ |θp,ϕp) with
respect to θ and ϕ:

(θp+1,ϕp+1) = arg max
θ,ϕ

Q(θ,ϕ |θp,ϕp).

Iterate between the E and M steps until convergence i.e.
until reaching a fixed-point transformation. Then, based on
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Proposition 2, we have reached either the ML estimate or a
stationary point of L(θ,ϕ), if L(θ,ϕ) and H(θ,ϕ |θp,ϕp) are
differentiable.

An important property of the EM algorithm is that the observed-
data log-likelihood function L(θ,ϕ) increases at each iteration
or, more precisely, does not decrease. The likelihood-climbing
property, however, does not guarantee convergence, in general.
(This property carries over to the Bayesian scenario, where it
can be called posterior climbing, since, in the Bayesian scenario,
the goal is to maximize the posterior pdf or pmf.)

We now show the likelihood-climbing property. Recall (9):

L(θ,ϕ) = Q(θ,ϕ |θp,ϕp)−H(θ,ϕ |θp,ϕp).

The previous values (θp,ϕp) and updated values (θp+1,ϕp+1)
satisfy

L(θp+1,ϕp+1)− L(θp,ϕp)

= Q(θp+1,ϕp+1 |θp,ϕp)−Q(θp,ϕp |θp,ϕp)︸ ︷︷ ︸
≥ 0, since Q is maximized

+H(θp,ϕp |θp,ϕp)−H(θp+1,ϕp+1 |θp,ϕp)︸ ︷︷ ︸
≥ 0, by (10)

≥ 0.

Another important property of the EM algorithm is that it
handles parameter constraints automatically, e.g. estimates of
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probabilities will be between zero and one and estimates of
variances will be nonnegative. This is because each M step
produces an ML-type estimate (for the complete data).

Main Disadvantages of the EM Algorithm, compared with
the competing Newton-type algorithms:

• The convergence can be very slow. (Hybrid and other
approaches have been proposed in the literature to improve
convergence speed. One such approach is called PX-EM.)

• There is no immediate way to assess accuracy of EM-based
estimators, e.g. to compute CRB.
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Canonical Exponential Family for I.I.D.
Complete Data

Consider the scenario where the complete data (Yi, Ui) are
independent given the canonical parameters η, following pdfs
(or pmfs) fYi,Ui | η(yi, ui |η) that belong to the canonical
exponential family:

fY i,Ui | η(yi, ui |η) = h(yi, ui) exp[ηT T i(yi, ui)−A(η)] (13)

and, therefore,

fY ,U | η(yi, ui |η)

=
[ ∏

i

h(yi, ui)
]
· exp

{
ηT

[∑
i

T i(yi, ui)
]
−N A(η)

}
and

Q(η |ηp) =
∑

i

E Ui | Y i,η{η
TT i(yi, Ui)−A(η)+ln h(yi, Ui) | yi,ηp}

(14)
which is maximized with respect to η for

∑
i

E Ui | Y i,η[T i(yi, Ui) | yi,ηp]︸ ︷︷ ︸
T (p+1)

i

= N
∂A(η)

∂η
.
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To obtain this equation, take the derivative of (14) with respect
to η and set it to zero. But, solving the system

∑
i

T i(yi, ui) = N
∂A(η)

∂η
(15)

yields the ML estimates of η under the complete-data model.
(For N = 1, (15) reduces to Theorem 2.3.1 in Bickel &
Doksum. Of course, the regularity conditions stated in this
theorem also need to be satisfied.)

To summarize: When complete data fits the canonical
exponential-family model, the EM algorithm is easily derived
as follows.

• The expectation (E) step is reduced to computing
conditional expectations of the complete-data natural
sufficient statistics [

∑N
i=1 T i(yi, ui)], given the observed

data and parameter estimates from the previous iteration.

• The maximization (M) step is reduced to finding the
expressions for the complete-data ML estimates of the
unknown parameters (θ), and replacing the complete-data

natural sufficient statistics [
∑N

i=1 T i(yi, ui)] that occur
in these expressions with their conditional expectations
computed in the E step.
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Gaussian Toy Example: EM Solution

Suppose we wish to find θ̂ML for the model

fY | θ(y | θ) = N (y | θ, 1 + σ2) (16)

where σ2 > 0 is a known constant and θ is the unknown
parameter. We know the answer:

θ̂ML = y (trivial).

However, it is instructional to derive the EM algorithm for this
toy problem.

We invent the missing data U as follows:

Y = U + W

where

{U | θ} ∼ N (θ, σ2), W ∼ N (0, 1)

and U and W are conditionally independent given θ. Hence,

fY |U,θ(y |u, θ) = N (y |u, 1), fU | θ(u | θ) = N (u | θ, σ2)
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and the complete-data log-likelihood function is

fY,U | θ(y, u | θ) =
1√
2 π

exp[−(y − u)2/2]

· 1√
2 π σ2

exp[−(u− θ)2/(2 σ2)] (17)

which is a joint Gaussian pdf for Y and U . The pdf of Y (given
θ) is Gaussian:

fY | θ(y | θ) = N (θ, 1 + σ2)

the same as the original model in (16). Note that

(θ̂ML)complete data = u

is the complete-data ML estimate of θ obtained by maximizing
(17). Now, the complete-data model (17) belongs to the one-
parameter exponential family and the complete-data natural
sufficient statistic is u, so our EM iteration reduces to updating
u:

θp+1 = up+1 = E U | Y ,θ[U | y, θp].

Here, finding fU |Y,θ(u | y, θp) is a basic Bayesian exercise
(which we will do for a more general case at the very beginning
of handout # 4) and we practiced it in homework assignment
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# 1:

fU |Y,θ(u | y, θp) = N
(
u | y + θp/σ2

1 + 1/σ2
,

1
1 + 1/σ2

)
. (18)

Therefore

E U | Y ,θ[U | y, θp] =
y + θp/σ2

1 + 1/σ2

and, consequently, the EM iteration is

θp+1 =
y + θp/σ2

1 + 1/σ2
.

A (more) detailed EM algorithm derivation for our
Gaussian toy example: Note that we have only one parameter
here, θ. We first write down the logarithm of the joint pdf of
the observed and unobserved data: from (17), we have

ln fY,U | θ(y, u | θ) = const︸ ︷︷ ︸
not a function of θ

−(u− θ)2

2 σ2

= const︸ ︷︷ ︸
not a function of θ

− 1
2 σ2

θ2 +
u

σ2
θ. (19)

Why can we ignore terms in the above expression that do not
contain θ? Because the maximization in the M step will be
with respect to θ. Now, we need the find the conditional pdf
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of the unobserved data given the observed data, evaluated at
θ = θp [see (17)]:

fU |Y,θ(u | y, θp) ∝ fY,U | θ(y, u | θp)

∝ exp[−(y − u)2/2] · exp[−(u− θp)2/(2 σ2)]

∝ exp(y u− 1
2 u2) · exp

(θp

σ2
u− 1

2 σ2
u2

)
combine the linear

and quadratic terms
= exp

[(
y +

θp

σ2

)
u− 1

2

(
1 +

1
σ2

)
u2

]
(look up the table
of distributions)

is the kernel of N
(
u

∣∣∣ y + θp/σ2

1 + 1/σ2
,

1
1 + 1/σ2

)
. (20)

We can derive this result using the conditional pdf expressions
for Gaussian pdfs in handout # 0b. The derivation presented
above uses the Bayesian machinery and ∝ notation, which we
will master soon, in the next few lectures.

Hence, knowing the joint log pdf of the observed and
unobserved data in (17) is key to all steps of our EM algorithm
derivation. We now use (19) and (20) to derive the E and M
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steps for this example:

Q(θ | θp) = E U |Y,θ

[
ln fY,U | θ(y, U | θ) | y, θp

]
= const︸ ︷︷ ︸

not a function of θ

− 1
2 σ2

θ2︸ ︷︷ ︸
no U , expectation disappears

+
E U |Y,θ[U | y, θp]

σ2
· θ

which is a quadratic form of θ, and is easily maximized with
respect to θ, yielding the following M step:

θp+1 = E U |Y,θ[U | y, θp] =
y + θp/σ2

1 + 1/σ2
.
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A More Useful Gaussian Example: EM Solution

Consider the model

Y = aU + W

where
{U | a} ∼ N (0, C), W ∼ N (0, σ2 I)

U and W are independent given θ, C is a known covariance
matrix, and

θ = [a, σ2]T

is the vector of unknown parameters. Therefore,

fY |U,θ(y |u,θ) = N (y | au, σ2 I)

and the marginal likelihood function of θ is

fY | θ(y |θ) = N (y |0, a2 C + σ2 I).

We wish to find the marginal ML estimate of θ by maximizing
fY | θ(y |θ) with respect to θ. There is no closed-for solution
to this problem. A Newton-type iteration is an option, but
requires good matrix-differentiation skills and making sure that
the estimate of σ2 is nonnegative.

Note that a is not identifiable: we cannot uniquely determine
its sign. But, a2 is identifiable.
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For missing data U , we have the complete-data log-likelihood
function:

fY ,U | θ(y,u |θ) =
1

(2 π σ2)N/2
exp[−‖y − au‖2

`2
/(2 σ2)]

· 1√
|2 π C|

exp(−1
2 uT C−1 u) (21)

and, therefore,

fU | Y ,θ(u |y,θp) ∝ fY ,U | θ(y,u |θp)

∝ 1
(2 π σ2

p)N/2
exp[−‖y − ap u‖2

`2
/(2 σ2

p)] exp(−1
2 uT C u)

∝ exp[(ap/σ2
p) yT u] exp{−1

2 uT [(a2
p/σ2

p) I + C−1]u}

is the kernel of N
(
u | (ap/σ2

p)Σp y︸ ︷︷ ︸
4
= µp

,Σp

)

where

Σp = covU | Y ,θ(U |y,θp) = [(a2
p/σ2

p) I + C−1]−1.

Here,

‖x‖2
`2

4
= xT x `2 (Euclidean) norm

for an arbitrary real-valued vector x.
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Now,

ln fY ,U | θ(y,u |θ) = const︸ ︷︷ ︸
not a function of θ

−1
2 N ln(σ2)− yT y/(2 σ2)

+(a/σ2) yT u− 1
2 uT [(a2/σ2) I + C−1]u

= const︸ ︷︷ ︸
not a function of θ

−1
2 N ln(σ2)− yT y/(2 σ2) + (a/σ2) yT u

−1
2 tr{[(a2/σ2) I + C−1]u uT}

= const︸ ︷︷ ︸
not a function of θ

−1
2 N ln(σ2)− yT y/(2 σ2) + (a/σ2) yT u

−1
2 tr{[(a2/σ2) I]u uT}

= const︸ ︷︷ ︸
not a function of θ

−1
2 N ln(σ2)− yT y/(2 σ2) + (a/σ2) yT u

−1
2 (a2/σ2) tr(u uT )

and

Q(θ |θp) = E U | Y ,θ

[
ln fY ,U | θ(y,U |θ) |y,θp

]
= const︸ ︷︷ ︸

not a function of θ

−1
2 N ln(σ2)

−yT y/(2 σ2) + (a/σ2) yT E U | Y ,θ[U |y,θp]

−1
2 (a2/σ2) tr{E U | Y ,θ(U UT |y,θp)}.
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Since

E U | Y ,θ(U |y,θp) = (ap/σ2
p)Σp y

4
= µp

E U | Y ,θ(U UT |y,θp) = µT
p µp + covU | Y ,θ(U |y,θp)︸ ︷︷ ︸

Σp

we have

Q(θ |θp) = E U | Y ,θ

[
ln fY ,U | θ(y,U |θ) |y,θp

]
= const︸ ︷︷ ︸

not a function of θ

−1
2 N ln(σ2)− yT y/(2 σ2) + (a/σ2) yT µp

−1
2 (a2/σ2) tr[(µp µT

p + Σp)]

= const︸ ︷︷ ︸
not a function of θ

−1
2 N ln(σ2)− yT y/(2 σ2) + (a/σ2) yT µp

−1
2 (a2/σ2) µT

p µp − 1
2 (a2/σ2) tr(Σp)

= const︸ ︷︷ ︸
not a function of θ

−1
2 N ln(σ2)

−1
2 ‖y − aµp‖2

`2
/σ2 − 1

2 (a2/σ2) tr(Σp)

yielding

ap+1 =
yT µp

µT
p µp + tr(Σp)

=
yT µp

‖µp‖2
`2

+ tr(Σp)

σ2
p+1 =

‖y − ap µp‖2
`2

+ a2
p

N
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or, perhaps,

ap+1 =
yT µp

µT
p µp + tr(Σp)

=
yT µp

‖µp‖2
`2

+ tr(Σp)

σ2
p+1 =

‖y − ap+1 µp‖2
`2

+ a2
p+1

N
.
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Example: Semi-blind Channel Estimation

This example is a special case of

A. Dogandžić, W. Mo, and Z.D. Wang, “Semi-blind SIMO
flat-fading channel estimation in unknown spatially correlated
noise using the EM algorithm,” IEEE Trans. Signal Processing,
vol. 52, pp. 1791–1797, Jun. 2004

see also references therein. It also fits the mixture model that
we chose to illustrate the EM algorithm.

Measurement Model:

We observe y(t), modeled as

Y (t) = h u(t) + W (t) t = 1, 2, . . . , N

where

• h is unknown channel,

• u(t) is an unknown symbol received by the array at time t
(missing data),

• W (t) is zero-mean additive white Gaussian noise with
unknown variance σ2,
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• N is the number of snapshots (block size).

The symbols u(t), t = 1, 2, . . . , N

• belong to a known M -ary constant-modulus constellation
{u1, u2, . . . , uM}, with

|um| = 1 m = 1, 2, . . . ,M

• are modeled as i.i.d. random variables with probability mass
function

pU(u(t)) =
1
M

i(u(t))

where

i(u) =
{

1, u ∈ {u1, u2, . . . , uM}
0, otherwise

.

Note: an extension to arbitrary known prior symbol
probabilities is trivial.

Training Symbols

To allow unique estimation of the channel h, assume that NT

known (training) symbols

uT(τ) τ = 1, 2, . . . , NT
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are embedded in the transmission scheme and denote the
corresponding snapshots received by the array as

yT(τ) τ = 1, 2, . . . , NT.

Then

yT(τ) = h uT(τ) + W (τ) τ = 1, 2, . . . , NT.

Summary of the Model

We know

• snapshots y(t) t = 1, 2, . . . , N and yT(τ) τ = 1, 2, . . . , NT,
and

• training symbols uT(τ) τ = 1, 2, . . . , NT.

The unknown symbols u(t) t = 1, 2, . . . , N

• belong to a (known) constant-modulus constellation with

|um| = 1 m = 1, 2, . . . ,M

and
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• are equiprobable.

Goal: Using the above information, estimate the channel h
and noise variance σ2. Hence, the unknown parameter vector
is

θ = [h, σ2]T .

ML Estimation

We treat the unknown symbols u(t) t = 1, 2, . . . , N as
unobserved (missing) data and apply the EM algorithm. Given
u(t) and h, the measurements y(t) are distributed as

fY |U,θ(y(t) |u(t),θ) =
1√

2 π σ2
exp

{
− [y(t)− h u(t)]2

2 σ2

}
for t = 1, . . . , N . Similarly, the measurements yT(τ) containing
the training sequence are distributed as

fyT |UT,θ(yT(τ) |uT(τ),θ)
1√

2 π σ2
exp

{
− [yT(τ)− h uT(τ)]2

2 σ2

}
for τ = 1, . . . , NT.
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Complete-data Likelihood and Sufficient Statistics

The complete-data likelihood function is the joint distribution
of y(t), u(t) (for t = 1, 2, . . . , N), and yT(τ) (for τ =
1, 2, . . . , NT) given θ:

[ N∏
t=1

pU(u(t)) fY |U,θ(y(t) |u(t),θ)
]
·

NT∏
τ=1

pyT |uT,θ(yT(τ)|uT(τ),θ)

= [
N∏

t=1

pU(u(t))] · (2 π σ2)−N/2 · exp(−N |h|2

2 σ2
)

· exp
[N + NT

σ2
T1(y,U) h− N + NT

2 σ2
T2(y)

]
which belongs to the exponential family of distributions. Here,

T1(y,U) =
1

N + NT

{
[

N∑
t=1

y(t) U(t)] + [
NT∑
τ=1

yT(τ) uT(τ)]
}

T2(y) =
1

N + NT

{
[

N∑
t=1

y2(t)] + [
NT∑
τ=1

y2
T(τ)]

}
.

are the complete-data natural sufficient statistics for θ. We
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also have

pU(t) | y(t),θ(um | y(t),θp) =
exp{− 1

2 σ2
p
[y(t)− hp um]2}∑N

n=1 exp{− 1
2 σ2

p
[y(t)− hp un]2}

.

EM Algorithm: Apply the recipe for exponential family.

• The Expectation (E) Step:

− compute conditional expectations of the complete-data
natural sufficient statistics, given θ = θp and the observed
data y(t), t = 1, . . . , N and yT(τ), τ = 1, . . . , NT.

• The Maximization (M) Step:

− find the expressions for the complete-data ML estimates
of h and σ2, and

− replace the complete-data natural sufficient statistics
that occur in these expressions with their conditional
expectations computed in the E step.

Note: the complete-data ML estimates of h and σ2 are

ĥ(y,U) = T1(y,U)

σ̂2(y,U) = T2(y)− ĥ2(y,U).
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EM Algorithm

EM Step 1:

h(k+1) =
1

N + NT

·

[
N∑

t=1

y(t)

PM
m=1 um exp{−1

2 [y(t)−h(k)um]2/(σ2)(k)}PM
n=1 exp{−1

2 [y(t)−h(k)un]2/(σ2)(k)}︷ ︸︸ ︷∑M
m=1 um exp[y(t) h(k) um/(σ2)(k)]∑M

n=1 exp[y(t) h(k) un/(σ2)(k)]
+

NT∑
τ=1

yT(τ)uT(τ)∗
]

EM Step 2:

(σ2)k+1 = T2(y)− (h(k))2 or T2(y)− (h(k+1))2.
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