Image Restoration

EE 528 Digital Image Processing



= All Images taken from Gonzalez and Woods
online slides

http://www.imageprocessingplace.com/DIP/dip
faculty/classroom presentations downloads
.ntm

= Material mostly based on A.K. Jain’s book
= Some topics taken from Gonzalez Woods

= Intuition & images on slides, math details will
be covered in class or Is in the book



http://www.imageprocessingplace.com/DIP/dip_faculty/classroom_presentations_downloads.htm
http://www.imageprocessingplace.com/DIP/dip_faculty/classroom_presentations_downloads.htm
http://www.imageprocessingplace.com/DIP/dip_faculty/classroom_presentations_downloads.htm

Image Enhancement or Restoration

Most of what we learnt in Image
Enhancement chapter can also be classified
as Image Restoration techniques. Specifically

o Linear filtering (low pass for noise reduction, high
pass for edge sharpening, band-pass for both)

o Median filtering (for salt and pepper noise),

o Log-domain filtering and other nonlinear
technigues



Inverse & Pseudo-inverse Filters

Inverse Filter
o Assumes no noise, only blurring.
o Blurring filter known

2 In case of noise

If blurring filter has zeros at some frequencies (which it
will since it is a low-pass filter), those frequencies will be

amplified in the noise

Pseudo-inverse filter:

removes the problem at zero (or near zero) frequencies,
but still amplifies noise at other frequencies where the
blurring filter response is not zero but small



Image blurred by atmospheric turbulence
& with additive notise
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FIGURE 5.25
Illustration of the
atmospheric
turbulence model.
(a) Negligible
turbulence.

(b) Severe
turbulence,

k = 0.0025.

(c) Mild
turbulence,

k = 0.001.

(d) Low
turbulence,

k = 0.00025.
{Original image
courtesy of
NASA.)

Hu,») = Rk




Inverse v/s Pseudo-inverse filtering
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FIGURE 5.27
Restoring

Fig. 5.25(b) with
Eq. (5.7-1).

(a) Result of
using the full
filter. (b) Result
with H cut off
outside a radius of
40; (c) outside a
radius of 70; and
(d) outside a
radius of 85.




Wiener Smoother

Assumes image Is blurred and has additive noise
(independent of image)

Need to know

o Blurring filter

o Noise covariance

o True image autocorrelation

o Mean of noise & of true image (or assume zero mean)

Gives “linear MMSE” estimate: linear filter with least
expected value of MSE w.r.t. the true image

Truly MMSE when the observed and true image are
jointly Gaussian



Motion blurred image
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FIGURE 5.26 (a) Original image. (b) Result of blurring using the function in Eg. (5.6-11)
witha=b=01landT = 1.




‘ Pseudo-inverse v/s Wiener

Column 2:
Pseudo-inverse

Column 3:
Wiener

Maximum noise
In row 1, least in
row 3
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FIGURE 5.29 (a) Image corrupted by motion blur and additive noise. (b) Result of inverse filtering. (c) Result
of Wiener filtering, (d)}-([) Same sequence, but with noise variance one order of magnitude less (g)-(1) Same
sequence, but noise variance reduced by five orders of magnitude from (a). Note in (h) how the deblurred
image is quite visible through a “curtain”™ of noise.




Wiener smoother

Observed: v. True: u, convolution: *

Can use orthogonality argument to show that the
MMSE restored image u,., = g * v, where g (Wiener
smoother) satisfies
ak,h)*r, (k1) =r,(k,l) for all (k,I), or equivalently
G(fLf,) = Syufufa) Sy *(f,f)
Assume v = U * h + n, n: noise
Need to know r,, h, r,. h: blurring filter

Compute r,, = h(-k,-l) * r (K,
Compute r,, = h(k,l) *r,, + 1,




Properties ot Wiener Smoother

Non-causal: okay for image processing

For time series applications: need to find the best
causal filter that minimizes expected MSE: more
complicated: Wiener filter

Wiener computes correlations etc assuming all signals
are zero mean

If not, then subtract out the means first and then
compute auto-correlations (in other words, always
using auto-covariances)

Output noise is NOT white.
2D Wiener: not separable even if h, r , are



FIR Wiener

Exact Wiener filter or smoother are infinite
Impulse response (lIR)

lIR: expensive to implement

Many IIR coefficients are small, one solution
IS to truncate it. Or

Design an FIR Wiener

o Find the best (least expected MSE) filter with
(2M+1) x (2M+1) taps

o This will give lower MSE than just truncating the
IR filter



FIR Wiener Algorithm

Assume noise Is white and assume noise
power known, i.e. 6,2 known

Estimate r,,, from the observed image
Solve for r,(k,l) from

o r,, (k) =r, kD) *hk,) + o2 (k)

a Assume r,, zero for more than a few taps
o Need r(k,I) only for =M <= k,I <= M

g satisfies

roo (kD) *gk,D) =1, (K1), -M <= k| <=M



FIR Wiener — No blurring

h = identity

Only need to know SNR 6,2/ 6.,2. Say SNR = a

a0 o2 =r,(0,0)/ (1+a)

o r,0,0)=ar,(0,0)/(1+a)

o rg k) =r k) ifk=0orl=0

0 Iy (k1) =ry(ki)

Compute different Wiener filters for diff image blocks

Choose different length Wieners, e.g. choose M s.t.
output SNR 6,2 / 6.2 is roughly constant



Need a longer tap Wiener if more noise or more
blurring.

If zero noise, Wiener approaches inverse filter
Summary

Q
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Wiener smoother

Wiener filter or causal Wiener (mostly needed for 1D)

FIR Wiener (causal or non-causal)

Computing r,

Can also use AR model to getr,, I.e. use a clean image to

estimate an AR model for the image: that can be used to
compute r,,



Smoothing splines

Main idea: find the “smoothest” function that
“fits the data (observed image)”, i.e. error
between the observed image and smooth
function is below a threshold

“Smoothness” quantified in various ways, one
way IS to minimize roughness, I.e. find the
function that “fits the data” and has the lowest
sum of double derivatives

This Is called a smoothing spline



Constrained Least Squares

Find a maximally “smooth” restored image,
..e. find u,,, so that

J=1| q(m,n) * u,(m,n)|| Is minimized and

[Iv(m,n) — h(m,n)*up(m,n)||*> <= &= 7
Solution:

Unat = H V1 (JH[*+ 7|Q[?)

vy computed S.t. # satisfied with equality

This is the Wiener smoother when S_ =y
and S, = 1/|Q|?



Usually choose g to be the discrete Laplacian

Smoothing splines is same as constrained LS
when h = identity, i.e. no blurring



‘ Constrained LS solution

a-blic

FIGURE 5.30 Results of constrained least squares filtering. Compare (a), (b), and (c) with the Wiener filtering
results in Figs. 5.29(c), (), and (i), respectively.




Geometric distortion

Also called “rubber-sheet” transformations

Image pixel locations distorted, e.g. translate
the image or rotate it or affine deform the
Image (due to camera motion)

Consider distorted image v generated by
v(XLy') = u(x,y), X =r(x,y), ¥y = s(x,y)
r(x,y)=clx+c2y+c3xy+cé
S(X,y) =cbx+cb6y+c7xy+c8



Restoring geometric distortions

Step 1: estimate the distortion, I.e. find a set
of 4 (or more) corresponding points in the two
Images and compute the coefficients cl to c8

Step 2:
0 Upg(XY) = g(r(xy), s(x.y) )
o r(x,y), s(x,y) may not be integers

o Need grey scale interpolation
Zeroth order hold: g( round( r(x,y) ), round( s(x,y) ) )

Bilinear: use floor and cell of r(x,y), s(x,y) to compute
Interpolating function parameters



‘ Corresponding points

FIGURE 5.32

Corresponding

tiepoints in two
e S

image segments.
w




Geometric distortion/restoration
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FIGURE 5.34 (a) Image showing tiepoints. (b) Tiepoints after geometric distortion.
(c) Geometrically distorted image. using nearest neighbor interpolation. (d) Restored
result. (e) Image distorted using bilinear interpolation. {f) Restored image.




Next class




Important difference from other
restoration methods

To estimate the geometric distortion, i.e. c1 through
c8, need at least 4 corresponding point locations In
the true image and the distorted image

o Correcting for geometric distortion is actually an Image
Registration technique: assumes both images given

Other restoration techniques only use the observed
Image and “some” other information (e.qg.
autocorrelation of the true image or at least
knowledge of the blurring filter)



More on Geometric distortions

Finding corresponding points Is the difficult
problem

Commonly used techniques

o Feature matching
Color, KLT tracker, local histogram, local PCA, texture

o Corner detection methods
o Curvature vertices (maxima/min/discontinuities)

o Find the geometric distortion between two whole
contours

o Jointly register & segment



Registering 2 contours

Contours may have different lengths (if there
has been a size change). Solution:

o Sub-sample, uniformly along arclength, both
contours to a fixed number of points M. Use these
points as “corresponding points”

Computing arclength: in class
To do the above robustly: B-spline control points

o Easier but approx solution: assume the points you
get are already uniformly sampled, just resample
to a fixed number of points M

Details in class



Notch filter

Filter out a certain frequency or a certain
small band of frequencies

All called “band-reject” filter
Easiest to implement in the frequency domain



‘ Image corrupted by sinusoidal noise

a
b

FIGURE 5.5

(a) Image
corrupted by
sinusoidal noise.
(b) Spectrum
(each pair of
conjugate
impulses
corresponds to
one sine wave ).
(Original image
courtesy of
NASA.)




‘ Notch filtering/Band-reject filtering
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FIGURE 5.16

(a) Image
corrupted by
sinusoidal noise.
(b) Spectrum of (a).
(¢) Butterworth
bandreject filter
(white represents
1). (d) Result of
filtering. (Original
image courtesy of
NASA.)




FIGURE 5.17
Noise pattern of
the image in

Fig. 5.16(a)
obtained by
bandpass filtering.
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FIGURE 5.20

{a) Image of the
Martian terrain
taken by
Mariner 6.

(b) Fourier
spectrum showing
periodic
interference.
(Courtesy of
NASA.)

‘ Anothe Xaple_

FIGURE 5.23 Processed image. (Courtesy of NASA.)



Speckle noise

Occurs in all coherent imaging systems

Examples
o Ultrasound
0 SAR (Synthetic Aperture Radar)

Effect of interference of energy from
randomly distributed scatters, too small to be
resolved by the imaging system

Occurs when object roughness is of the order
of the incident radiation’s wavelength



Speckle noise model

Model as infinite sum of I.I.d. phasors with random
amplitude and phase, multiplied with the image

o Detalils in class

If low resolution image, an approximate model is
v(X)y) = u(x,y) s(x,y) + n(x,y)

n = additive detector noise (already discussed)

s = speckle noise

s(X,y) = sum of squared magnitude of iid phasors

s(x,y): iid exponential with parameter 1/ (26,2)

Details in class

Similar to “multi-path fading” in communication channels

L U 0O 0 0 0 O



Ultrasound speckle 1mages
= http://www.ljbdev.com/speckle.html
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http://www.ljbdev.com/speckle.html

Speckle noise reduction

Simplest: if multiple ultrasound images available:
average them

o If the multiple images are not “registered” (geometric
distortion b/w them), first register as studied in last class,

then average

o Effect of averaging: the speckle will be more constant
across pixels, but will NOT go away

Techniques for multiplicative noise

o Homomorphic filtering

o Take logarithm: log v(x,y). log s(x,y) is then additive noise.
Assume it to be Gaussian and apply a Wiener filter to log
v(X,y)

o Assumption holds strictly only if s(x,y) were log-normal
which it is not. But Wiener still works!



Another application ot Homomorphic
filtering

Any image consists of an illumination component
and a reflectance component

o 1(xy) = 1(X,y) r(x,y)
o lllumination: 1, Reflectance: r

We are interested in reflectance only: which is due
to object texture

lllumination will be non-uniform if light falling at an
angle. Want to get rid of it.

Take log of image, take DFT, suppress low

frequencies (assumes illumination is low freq), take
I-DFT, and exp



Bayesian methods for Restoration

General idea:

o Given p(v|u) (data term or likelihood) & p(u) (prior)

o Estimate maximizer of p(u|v) : called the MAP solution
Wiener is MAP when u and v are jointly Gaussian
o Weiner gives E[u|v] = conditional mean = MMSE estimate
o MAP is max, p(u|v)

o Since p(ulv) is Gaussian, MAP = conditional mean
Constrained LS or actually Regularized LS

o Min [lgul]? + [lv — H u]|gy?

o Solution is Bayesian with a smoothness prior q
Nonlinear MAP: v = f(Hu) + n, prior on u given



Blind De-convolution: one solution

Computing H(f,,f,)

o Compute S, (f,,f,) from observed image

o Assume S (f;,f,) known (FT of r,,) from training data
o Assume S_ (f;,f,) = 0,2 is known

0 log [H[* = log (S,, — S,,) —l0g S,

This does not give the phase of H: in many cases H
IS linear phase (e.g. due to motion blur) or zero
phase. If need phase: compute S, to get it

Use H in the Wiener filter



Models for the true image

Wiener filter requires r

o It may be estimated from r,,,, but there you are assuming the
noise covariance is known and h (blurring function) is known

When h unknown, definitely need to know r , to estimate h

One solution to obtain r : assume you have at least one true
Image available as “training data”

o Model the image as an MRF (Markov Random Field)
o Usually suffices to use the 4 nearest neighbors for prediction
o Details in class or on pages 206 -208 of AK Jain.



More on Blind De-convolution
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