
General Bayesian Inference I

Outline:

• Basic concepts,

• One-parameter models,

• Noninformative priors.

Reading: Chapters 10 and 11 in Kay-I.

(Occasional) Simplified Notation. When there is no
potential for confusion, we may use

f(x | θ)

instead of the more cumbersome

fX |Θ(x | θ).
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Basic Concepts

X is the observable random variable and θ is the “true state of
nature”;

fX |Θ(x | θ) or pX |Θ(x | θ) denote the data model, likelihood;

π(θ) or fΘ(θ) is the prior distribution of θ (epistemic
probability), i.e. our knowledge about the true state of nature.

In the Bayesian approach, assign a prior distribution on
parameter θ. Here, note that θ is often not really random,
but the epistemic argument justifies the use of a probability
distribution. We apply the Bayes’ rule and base our inference
on the posterior distribution of θ:

fΘ |X(θ |x) =
fX,Θ(x, θ)∫
fX,Θ(x, ϑ) dϑ︸ ︷︷ ︸

does not depend on θ

∝ fX,Θ(x, θ)

and, therefore,

fΘ |X(θ |x) ∝ fX |Θ(x | θ) π(θ)︸ ︷︷ ︸
fX,Θ(x,θ)

.
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Note:

• fΘ |X(θ |x) is also an epistemic probability.

• It is important to master the use of ∝.

A Side Comment (Exercise). Make sure that you understand
the following:

f(θ |x1, x2) ∝ f(θ, x1, x2)

∝ f(θ, x1 |x2)

∝ f(θ, x2 |x1).

More Exercise. Consider

fX,Y (x, y) =
{

2 x, y ≥ 0, x + y ≤ 1
0, otherwise

.

Now, computing fX | Y (x | y) can be done two ways.
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The first (harder) way requires the computation of fY (y):

Then,
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The second (easier) way employs the ∝ notation:

fX | Y (x | y) ∝ fX,Y (x, y)

=

 function(y)︸ ︷︷ ︸
flat in x

, 0 ≤ x ≤ 1− y

0, otherwise
· i(0,1)(y).

Now, function(y) is just a normalizing constant satisfying

∫ +∞

−∞
fX | Y (x | y) dx = 1

which yields

fX | Y (x | y) =
{ 1

1−y, 0 ≤ x ≤ 1− y

0, otherwise
· i(0,1)(y).
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Conjugate Priors

If F is a class of measurement models and P a class of prior
distributions, then P is conjugate for F if π(θ) ∈ P and
fX |Θ(x | θ) ∈ F implies fΘ |X(θ |x) ∈ P . It is convenient
to choose conjugate priors: they allow finding analytically
tractable posteriors.

Important special case: If F is the exponential family of
distributions, then we have natural conjugate priors. Consider

fX |Θ(xn |θ) = h(xn) q(θ) exp[ηT (θ) t(xn)] n = 1, 2, . . . , N.

For conditionally independent, identically distributed (i.i.d.) xn

given Θ = θ, the likelihood function is

fX |Θ(x |θ) =
[ N∏

n=1

h(xn)
]
· qN(θ)︸ ︷︷ ︸

[q(θ)]N

exp[ηT (θ) T (x)]

where x = [x1, x2, . . . , xN ]T and the natural sufficient statistic
is

T (x) =
N∑

n=1

t(xn).

Consider the following prior pdf/pmf:

π(θ) ∝ qξ(θ) exp[ηT (θ) ν]. (1)
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Then, the posterior pdf/pmf is

fΘ |X(θ |x) ∝ qN+ξ(θ) exp{ηT (θ) [T (x) + ν]}

and hence π(θ) is indeed the conjugate prior for fX |Θ(x |θ).

Example. Consider the following binomial data model:

pX |Θ(x | θ) = Bin(x |N, θ)

=
(

N

x

)
θx (1− θ)N−x i(0,1)(θ)

exp. fam.
=

(
N

x

)
︸ ︷︷ ︸
h(x)

[(1− θ) i(0,1)(θ)]N︸ ︷︷ ︸
q(θ)

exp
(

ln
( θ

1− θ

)︸ ︷︷ ︸
η(θ)

x︸︷︷︸
t(x)

)

where N is a known constant (number of coin flips, say) and
θ ∈ [0, 1] is the parameter (probability of heads, say). A
conjugate prior family of pdfs for θ follows by using (1):

π(θ) ∝ (1− θ)N ξ i(0,1)(θ)︸ ︷︷ ︸
[q(θ)]ξ

exp
(

ln
( θ

1− θ

)
ν
)

︸ ︷︷ ︸
exp[η(θ) ν]

= (1− θ)N ξ−ν θν i(0,1)(θ)

where we recognize the kernel of the family of beta pdfs from the
table of distributions; this family is traditionally parametrized
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as follows:

π(θ) = Beta(θ |α, β) ∝ θα−1 (1− θ)β−1 i(0,1)(θ).
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Sequential-Bayesian Idea

Suppose that we have observed x1 and x2, where x1 comes
first (e.g. the subscript is a time index). We wish to make
inference about θ. Then, conditioning on X1 = x1 yields

fX2,Θ |X1
(x2, θ |x1) = fX2 |Θ,X1

(x2 | θ, x1) ·fΘ |X1
(θ |x1) (2)

where

fX2 |X1,Θ(x2 |x1, θ) new, updated likelihood for θ based on x2

and
fΘ |X1

(θ |x1) new, updated prior for θ.

Now, (2) implies

fΘ |X1,X2
(θ |x1, x2) ∝ fX2 |Θ,X1

(x2 | θ, x1)·fΘ |X1
(θ |x1). (3)

Conditionally independent observations X1 and X2 given
Θ. In the special case where X1 and X2 are conditionally
independent given Θ = θ, we have

fX1,X2 |Θ(x1, x2 | θ) = fX1 |Θ(x1 | θ) · fX2 |Θ(x2 | θ) (4)

and, consequently, by the definition of conditional
independence,

fX2 |X1,Θ(x2 |x1, θ) = fX2 |Θ(x2 | θ). (5)
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[We can also go from (4) to (5) as follows:

f(x2 |x1, θ) ∝ f(x2, x1 | θ) = f(x2 | θ) · f(x1 | θ)
∝ f(x2 | θ).

This exercise is a good practice for familiarizing with the ∝
notation.]

Substituting (5) into (3) yields

fΘ |X1,X2
(θ |x1, x2) ∝ fX2 |Θ(x2 | θ)︸ ︷︷ ︸

ordinary likelihood based on x2

· fΘ |X1
(θ |x1)︸ ︷︷ ︸

new prior

. (6)
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On Prediction

We continue with the scenario described on the last two pages.
Suppose that we have observed X1 = x1 and wish to predict
X2. For this purpose, we use the predictive distribution (say a
pdf, for simplicity of exposition):

fX2 |X1
(x2 |x1) (7)

We derive this pdf as follows. Recall (2):

fX2,Θ |X1
(x2, θ |x1) = fX2 |Θ,X1

(x2 | θ, x1)·fΘ |X1
(θ |x1). (8)

Now, marginalize the pdf in (8) with respect to the unknown
parameter Θ, i.e. integrate Θ out:

fX2 |X1
(x2 |x1) =

∫
fX2,Θ |X1

(x2, θ |x1) dθ

=
∫

fX2 |Θ,X1
(x2 | θ, x1) fΘ |X1

(θ |x1) dθ. (9)

Conditionally independent observations X1 and X2 given
Θ = θ. In the special case where X1 and X2 are conditionally
independent given Θ = θ, (4) and (5) hold, and, therefore, (9)
simplifies to

fX2 |X1
(x2 |x1) =

∫
fX2 |Θ(x2 | θ) · fΘ |X1

(θ |x1) dθ. (10)
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The First (Ever) Bayesian Model: Binomial
Measurements

Suppose that X1 and X2 are independent given Θ = θ, coming
from

{Xi |Θ = θ} ∼ Bin(Ni, θ) i = 1, 2
i.e. the joint likelihood of x1 and x2 is

pX1,X2 |Θ(x1, x2 | θ) = pX1 |Θ(x1 | θ) · pX2 |Θ(x2 | θ)

=
(

N1

x1

)
θx1 (1− θ)N1−x1 ·

(
N2

x2

)
θx2 (1− θ)N2−x2 · i(0,1)(θ).

As we have seen on p. 7, the conjugate prior pdf family for θ
under this data model is

π(θ) = Beta(θ |α, β) ∝ θα−1 (1− θ)β−1 i(0,1)(θ).

Therefore, the posterior pdf of θ is

fΘ |X1,X2
(θ |x1, x2) ∝ pX1,X2 |Θ(x1, x2 | θ) π(θ)

∝ θx1+x2+α−1 (1− θ)N1+N2−x1−x2+β−1 · i(0,1)(θ)

which is the kernel of the Beta(x1+x2+α, β+N1−x1+N2−x2)
pdf, see the table of distributions. Hence,

fΘ |X1,X2
(θ |x1, x2)

= Beta(θ |x1 + x2 + α, β + N1 − x1 + N2 − x2). (11)
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How about the posterior pdf fΘ |X1
(θ |x1) given only X1 = x1?

Now,

fΘ |X1
(θ |x1) ∝ pX1 |Θ(x1 | θ) π(θ)

∝ θx1+α−1 (1− θ)N1−x1+β−1 · i(0,1)(θ)

which is the kernel of the Beta(x1 + α, β + N1 − x1) pdf;
therefore,

fΘ |X1
(θ |x1) = Beta(θ |x1 + α, β + N1 − x1).

Since X1 and X2 are conditionally independent given Θ = θ,
we apply (6) (for practice, to verify its validity):

fΘ |X1,X2
(θ |x1, x2)

∝︸︷︷︸
keep track of θ

pX2 |Θ(x2 | θ) · fΘ |X1
(θ |x1)

=
(

N2

x2

)
θx2 (1− θ)N2−x2

·Γ(
α+β+N1︷ ︸︸ ︷

x1 + α + β + N1 − x1)
Γ(x1 + α)Γ(β + N1 − x1)

θx1+α−1 (1− θ)β+N1−x1−1 · i(0,1)(θ)

∝ θx1+x2+α−1 (1− θ)N1+N2−x1−x2+β−1 · i(0,1)(θ)︸ ︷︷ ︸
kernel of Beta(θ | x1+x2+α,β+N1−x1+N2−x2)
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which corresponds to (11). Therefore, we can either perform
sequential or batch inference: both approaches lead to
the same answer.

How about predicting X2 after observing X1 = x1? Since X1

and X2 are independent given Θ = θ, we apply (10):

pX2 |X1
(x2 |x1) =

∫ 1

0

pX2 |Θ(x2 | θ) · fΘ |X1
(θ |x1) dθ

=
(

N2

x2

)
· Γ(α + β + N1)
Γ(x1 + α)Γ(β + N1 − x1)

·
∫ 1

0

θx1+x2+α−1 (1− θ)β+N1−x1+N2−x2−1 dθ︸ ︷︷ ︸
Γ(x1+x2+α) Γ(β+N1−x1+N2−x2)

Γ(α+β+N1+N2)

=
(

N2

x2

)
· Γ(α + β + N1)
Γ(x1 + α) Γ(β + N1 − x1)

·Γ(x1 + x2 + α) Γ(β + N1 − x1 + N2 − x2)
Γ(α + β + N1 + N2)

which is the predictive pmf of X2 given X1 = x1.

Comments:

• Here, we have used the fact that Beta(α, β) pdf of a random
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variable Θ has the following form (see the distribution table):

fΘ(θ) =
Γ(α + β)
Γ(α) Γ(β)︸ ︷︷ ︸

normalizing constant

·θα−1 (1− θ)β−1

implying that∫ 1

0

θα−1 · (1− θ)β−1 dθ =
Γ(α) Γ(β)
Γ(α + β)

.

• Bayes used a special case of the above model.

• Laplace computed posterior probabilities under a special
case of this model. In particular, he considered a single
observation x1 (the number of girls born in Paris over a time
period in the 18th century) coming from

{X1 |Θ = θ} ∼ Bin
(
N1, θ︸︷︷︸

prob. that a newborn child is a girl

)
and set the following prior pdf:

π(θ) = uniform(θ | 0, 1) = Beta(θ | 1, 1).

Here is the measurement:

x1 = 241, 945
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and N1 = 241, 945 + 251, 527. Laplace computed

Pr{Θ ≥ 0.5 |X1 = x1} ≈ 10−42.
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An Example of Bayesian Inference: DC-level
Estimation in AWGN with Known Variance

Single Observation. Choose the data model:

fX |Θ(x | θ) = N (x | θ, σ2)

where we assume that σ2 is known. Hence, the likelihood for
one measurement is

fX |Θ(x | θ) =
1√

2 π σ2
· exp

[
− 1

2 σ2
(x− θ)2

]
. (12)

To obtain the conjugate prior pdf for θ, we view fX |Θ(x | θ) as
a function of θ:

fX |Θ(x | θ) ∝︸︷︷︸
keep track of θ

exp
[
− 1

2 σ2
(θ2 − 2 x θ + x2)︸ ︷︷ ︸

quadratic in θ

]

∝ exp
[
− 1

2 σ2
(θ2 − 2 x θ)

]
︸ ︷︷ ︸

kernel of the Gaussian pdf with mean x and variance σ2

(13)

∝ exp
(
− 1

2 σ2
θ2 +

x θ

σ2

)
︸ ︷︷ ︸

kernel of the Gaussian pdf with mean x and variance σ2
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Then, according to the results from p. 6,

q(θ) = exp
(
− 1

2 σ2
θ2

)
t(x) = x

η(θ) =
θ

σ2

and the conjugate prior pdf for θ has the following form:

π(θ) ∝ exp(− ξ

2 σ2
θ2)︸ ︷︷ ︸

q(θ)ξ

exp(
θ

σ2
ν)︸ ︷︷ ︸

exp[η(θ) ν]

which can be reparametrized as

π(θ) ∝ exp
[
− 1

2 τ2
0

(θ − µ0)2
]

and we conclude that the conjugate prior pdf for the likelihood
function in (12) is

π(θ) = N (θ |µ0, τ
2
0 ).

Here, µ0 and τ2
0 are known hyperparameters. (Of course, we can

continue and assign a prior joint pdf for the hyperparameters,
which would lead to a hierarchical Bayesian model.) We now
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compute the posterior pdf by collecting the terms that contain
θ and θ2:

fΘ |X(θ |x) ∝ fX |Θ(x | θ) π(θ)

∝ exp
[
− 1

2
·
(x2 − 2 x θ + θ2

σ2
+

θ2 − 2 µ0 θ + µ2
0

τ2
0

)]
∝ exp

[
− 1

2
· (τ

2
0 + σ2) θ2 − 2 (x τ2

0 + µ0 σ2) θ

σ2 τ2
0

]
∝ exp

[
− 1

2
· σ

2 + τ2
0

σ2 τ2
0︸ ︷︷ ︸

1/τ2
1

·
(
θ2 − 2

x τ2
0 + µ0 σ2

σ2 + τ2
0︸ ︷︷ ︸

µ1

θ
)]

implying that fΘ |X(θ |x) is a Gaussian pdf with mean and
variance

µ1 = µ1(x) =
x τ2

0 + µ0 σ2

σ2 + τ2
0

τ2
1 =

σ2 τ2
0

σ2 + τ2
0

.

compare with (13). We will generalize the above expressions
to multiple measurements.

Comments on the Single Observation Case:

• The posterior mean is a weighted average of the observation
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and the prior mean:

µ1 = µ1(x) =
x τ2

0 + µ0 σ2

σ2 + τ2
0

=
1
σ2 x + 1

τ2
0
µ0

1
σ2 + 1

τ2
0

=
likelihood precision · x + prior precision · µ0

likelihood precision + prior precision
.

• We will show that the posterior mean is the (Bayesian)
minimum mean-square error (MMSE) estimate of θ.

• Here, the weights are given by precisions 1
σ2 and 1

τ2
0
. (The

inverse of the variance of a Gaussian distribution is called
precision.)

• As the likelihood precision 1
σ2 increases, we have

µ1(x) → x.

• As the prior precision 1
τ2
0

increases, we have

µ1(x) → µ0.

• The posterior mean is the measurement x shifted towards
the prior mean (the right word in shrunk when the prior
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mean is zero, due to the magnitude reduction):

µ1(x) = x− σ2

σ2 + τ2
0

(x− µ0)

or the prior mean adjusted towards the measurement x:

µ1(x) = µ0 +
τ2
0

σ2 + τ2
0

(x− µ0).

• Posterior precision is the sum of the prior and likelihood
precisions:

1
τ2
1

=
σ2 + τ2

0

σ2 τ2
0

=
1
σ2

+
1
τ2
0

.

Multiple Conditionally I.I.D. Observations given the mean
parameter θ. Consider now N conditionally i.i.d. observations
X[0], X[1], . . . , X[N − 1] given θ:

fΘ |X(θ |x) ∝ π(θ) fX |Θ(x | θ)

∝ exp
[
− 1

2 τ2
0

(θ − µ0)2
]
·

N−1∏
n=0

exp
[
− 1

2 σ2
(x[n]− θ)2

]

where x = [x[0], x[1], . . . , x[N − 1]]T . This posterior pdf
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depends on x only through the sample mean

x =
1
N

N−1∑
n=0

x[n]

i.e. x is the sufficient statistic for θ in this model. Note that

{X |Θ = θ} ∼ N (θ, σ2/N)︸ ︷︷ ︸
new likelihood

(using sufficiency)

.

By employing sufficiency, we reduce our problem to the single-
observation case, where x is our equivalent single observation.
Hence,

fΘ |X(θ |x)
sufficiency

= fΘ |X(θ |x) ∝ π(θ) fX |Θ(x | θ)

= N (θ |µN(x), τ2
N) (14)

with

µN(x) =
N
σ2 x + 1

τ2
0
µ0

N
σ2 + 1

τ2
0

1
τ2

N

=
N

σ2
+

1
τ2
0

(15)

see also Example 10.2 in Kay-I.
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Comments:

• If N is large, the influence of the prior pdf disappears and
the posterior pdf effectively depends only on x and σ2.

• If τ2
0 = σ2, the prior has the same weight as adding one

more observation with value µ0.

• When τ2
0 ↗ +∞ with N fixed or N ↗ +∞ with τ0 fixed,

we have

fΘ |X(θ |x) → N
(
θ
∣∣ x,

σ2

N

)
(16)

which is a good general approximation whenever our prior
knowledge about θ is vague or the number of observations
N is large. In this scenario, the influence of the prior
disappears. Furthermore, τ2

0 ↗ +∞ corresponds to

π(θ) ∝ 1 (17)

and leads to the posterior pdf proportional to the likelihood:

fΘ |X(θ |x)
sufficiency

= fΘ |X(θ |x) ∝ π(θ)︸︷︷︸
∝1, see (17)

fX |Θ(x | θ)

∝ fX |Θ(x | θ)︸ ︷︷ ︸
likelihood

.
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The prior choice (17) does not describe a valid probability
density, since ∫ +∞

−∞
1 = +∞.

Hence, (17) is an improper prior. However, we can still use
it because the posterior pdf in (16) is proper.
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If τ2
0 is large, we obtain a noninformative prior:

Recall: The posterior mean and precision are

µN(x) =
N
σ2 x + 1

τ2
0
µ0

N
σ2 + 1

τ2
0

1
τ2

N

=
N

σ2
+

1
τ2
0
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Sufficiency and Bayesian Models

Since we have just applied sufficiency to simplify our Bayesian
calculations, perhaps it is a good idea to formally state the
following (Kolmogorov’s) result:

Theorem 1. If a statistic T (X) is sufficient for a parameter
θ, then

fΘ |T (X)(θ |T (x)) = fΘ |X(θ |x).

For Bayesians, the statement

fΘ |X(θ |x) = fΘ |T (X)(θ |T (x))

is the definition of a sufficient statistics T (x) for θ. Note that
the factorization theorem applies to the posterior fΘ |X(θ |x)
the same way it does to the likelihood fX |Θ(x | θ).
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Back to DC-level Estimation in AWGN with
Known Variance: Predictive Distribution

Suppose that we have collected N conditionally i.i.d.
observations X[0], X[1], . . . , X[N − 1] given θ, following the
DC-level model from p. 21:

{X[n] |Θ = θ} ∼ N (θ, σ2).

We wish to predict the next observation, denoted by X?, which
is conditionally independent of X[0], X[1], . . . , X[N − 1] given
Θ = θ, and

{X? |Θ = θ} ∼ N (θ, σ2). (18)

Recall that

X =
1
N

N−1∑
n=0

X[n]

is a sufficient statistic for θ based on X[0], X[1], . . . , X[N − 1]
and that

fΘ |X(θ |x) = fΘ |X(θ |x)

where x = [x[0], x[1], . . . , x[N − 1]]T . Then, we apply the
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identity (10) to obtain

fX? |X(x? |x) =
∫

fX? |Θ(x? |ϑ) fΘ |X(ϑ |x)︸ ︷︷ ︸
f

X?,Θ |X(x?,ϑ | x)

dϑ. (19)

The fact that X? and X[0], X[1], . . . , X[N−1] are conditionally
independent given Θ = θ also implies

•
fX? |Θ, X(x? | θ, x) = fX? |Θ(x? | θ) (20)

which is analogous to (5), and

• based on (19):

E X?,Θ |X = E Θ |X{E X? |Θ[· |Θ] |X} (21)

which we will use to apply the laws of iterated expectations
and conditional variances.

We focus on the integrand of (19):

fX?,Θ |X(x?, θ |x) = fX? |Θ(x? | θ)︸ ︷︷ ︸
N (x? | θ,σ2)

fΘ |X(θ |x)︸ ︷︷ ︸
N (θ |µN ,τ2

N
)
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and, therefore,

fX?,Θ |X(x?, θ |x) ∝ exp
[
− 1

2 σ2
(x? − θ)2

]
· exp

{
− 1

2 τ2
N

[θ − µN(x)]2
}

which is kernel of a bivariate Gaussian pdf, see p. 15 in handout
# 0b. Hence,

fX?,Θ |X(x?, θ |x)

is a bivariate Gaussian pdf. We wish to find the predictive pdf

fX? |X(x? |x).

Now, integrating θ out (i.e. marginalizing with respect to θ) in
(19) is easy, see Property 3 on p. 25 of handout # 0b. Since we
know that the predictive pdf fX? |X(x? |x) must be Gaussian,
we just need to find its mean:

E X? |X[X? |x]︸ ︷︷ ︸
E

X?,Θ |X [X? | x]

iter. exp.
= E Θ |X[E X? |Θ(X? |Θ) |x]︸ ︷︷ ︸

see (21)

see (18)
= E Θ |X(Θ |x)

see (14)
= µN(x)

and variance [where we use the law of conditional variances
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based on (21)]:

varX?,Θ |X(X? |x)︸ ︷︷ ︸
var

X? |X(X? | x)

cond. var.= E Θ |X
[
varX? |Θ(X? | θ)︸ ︷︷ ︸

σ2, see (18)

|x
]

+varΘ |X
[
E X? |Θ(X? | θ)︸ ︷︷ ︸

Θ, see (18)

|x
]

see (14)
= σ2 + τ2

N

see the probability review in handout # 0b. Therefore

fX? |X(x? |x) = N (µN(x), σ2 + τ2
N).
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Proper vs. Improper Priors

A prior π(θ) is called proper if it is a valid probability
distribution:

π(θ) ≥ 0 ∀θ,
∫

π(θ) dθ = 1.

A prior π(θ) is called improper if

π(θ) ≥ 0 ∀θ,
∫

π(θ) dθ = +∞.

If a prior is proper, so is the posterior

fΘ |X(θ |x) ∝ π(θ) fX |Θ(x |θ)

and everything is fine.

If a prior is improper, the posterior may or may not be proper.
For many common problems, popular improper noninformative
priors (e.g. Jeffreys’ priors, to be discussed later in this handout)
lead to proper posteriors, assuming enough data have been
collected. But, this has to be checked.

Regarding “propriety,” all that we really care about is that the
posterior is proper: a valid posterior pdf/pmf is key to Bayesian
inference.
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Conjugate Prior for the Variance of a Gaussian
Distribution with Known Mean

See also Section 2.7 in

A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin, Bayesian
Data Analysis, 2nd ed. New York: Chapman & Hall, 2004.

Data model:

fX |Σ2(x |σ2) = N (X |µ, σ2)

where σ2 ≥ 0 is now the parameter of interest and µ is a known
constant.

Example. We now find the conjugate prior family of pdfs for
σ2 under this model. First, write fX |Σ2(x |σ2) explicitly:

fX |Σ2(x |σ2) = exp
[
− 1

2 σ2︸ ︷︷ ︸
η(σ2)

(x− µ)2︸ ︷︷ ︸
t(x)

]
· 1√

2 π σ2
· i[0,+∞)(σ2)︸ ︷︷ ︸
q(σ2)

.

A conjugate prior family of pdfs for σ2 follows by using (1):

π(θ) ∝ (2 π σ2)−ξ/2 i[0,+∞)(σ2)︸ ︷︷ ︸
[q(σ2)]ξ

exp
[
− 1

2 σ2
ν
]︸ ︷︷ ︸

exp[η(σ2) ν]

.
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How does this pdf look like? By looking up the table of
distributions we see that it “looks like” (and therefore is) an
inverse-gamma pdf:

π(σ2) ∝ (σ2)−(α+1) exp(−β/σ2) · i[0,+∞)(σ2)

where α and β are known hyperparameters. (Note that this
distribution is used as a prior distribution for the variance
parameter in Example 10.3 of Kay-I.)

For ease of interpretation, use an equivalent prior pdf: a
scaled inverted χ2 distribution with scale σ2

0 and ν0 degrees
of freedom; here σ2

0 and ν0 are the known hyperparameters.
In other words, we take the prior distribution of σ2 to be the
distribution of

σ2
0 ν0

X
where X is a χ2

ν0
random variable (see the underlined part of

the distribution handout). We use the following notation for
this distribution:

Σ2 ∼ Inv-χ2(ν0, σ
2
0)

or

fΣ2(σ2) = Inv-χ2(σ2 | ν0, σ
2
0)

∝
(
σ2

)−(ν0/2+1) exp
(
− ν0 σ2

0

2 σ2

)
· i[0,+∞)(σ2).

Note: From the table of distributions, we also obtain the
following facts:
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• the mean of fΣ2(σ2) is

E Σ2(σ2) =
σ2

0 ν0

ν0 − 2
(22)

and

• when ν0 is large, the variance behaves like (σ2
0)

2/ν0, implying
that large ν0 yields high precision.
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Example: Estimating the Variance of a
Gaussian Distribution with Known Mean

For conditionally i.i.d. X[0], X[1], . . . , X[n − 1] given σ2, the
likelihood function is

fX |Σ2(x |σ2) = (2 π σ2)−N/2 exp
[
− 1

2 σ2

N−1∑
n=0

(x[n]− µ)2
]

= (2 π σ2)−N/2 exp
(
− N T (x)

2 σ2

)
where

T (x)
4
=

1
N

N−1∑
n=0

(x[n]− µ)2

is the natural sufficient statistic; note that the above likelihood
function is in the exponential-family form. Choose the
conjugate prior family of pdfs:

π(σ2) = Inv-χ2(σ2 | ν0, σ
2
0)

∝
(
σ2

)−(ν0/2+1) exp
(
− ν0 σ2

0

2 σ2

)
· i[0,+∞)(σ2)

i.e. scaled inverted χ2 distribution.
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Now,

fΣ2 |X(σ2 |x) ∝ π(σ2) fX |σ2(x |σ2)

∝
(
σ2

)−(
ν0
2 +1) exp

(
− ν0 σ2

0

2 σ2

)
·(σ2)−N/2 · exp

(
− N T (x)

2 σ2

)
∝ (σ2)−(

νN
2 +1) · exp

(
− νN σ2

N

2 σ2

)
with

νN = ν0 + N

and

σ2
N = σ2

N(x) =
N T (x) + ν0 σ2

0

N + ν0
.

Therefore, fΣ2 |X(σ2 |x) is also a scaled inverted χ2

distribution. Now, the posterior mean (and the MMSE estimate
of σ2, to be shown later) is

E Σ2 |X(Σ2 |X = x) =
σ2

N νN

νN − 2
=

N T (x) + ν0 σ2
0

N + ν0 − 2

obtained by using (22), but now for the posterior pdf.

Comments:

• The MMSE estimate of σ2 is a weighted average of the prior
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guess and a data estimate:

E Σ2 |X(Σ2 |X = x) =
N T (x) + ν0 σ2

0

N + ν0 − 2

where the weights are obtained using the prior and sample
degrees of freedom.

• Interpretation of the prior information: the chosen prior
provides information equivalent to ν0 observations with
average variance equal to σ2

0.

• As N ↗ +∞, σ2
N → T (x) and

E Σ2 |X(Σ2 |X = x) → T (x).

• As ν0 ↗ +∞, σ2
N → σ2

0 and

E Σ2 |X(Σ2 |X = x) → σ2
0.
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Noninformative Priors

Although it may seem that picking a noninformative prior
distribution is easy, (e.g. just use a uniform pdf or pmf), it is
not quite that straightforward.

Example: Estimating the Standard Deviation and
Variance of a Gaussian Distribution with Known
Mean. Consider now N conditionally i.i.d. observations
X[0], X[1], . . . , X[N − 1] given the standard deviation Σ = σ,
where

{X[n] |Σ = σ} ∼ N (0, σ2) (23)

π(σ) ∝ i[0,∞)(σ) (24)

i.e. we assume a uniform prior (from zero to infinity) for the
standard deviation σ.

Question: What is the equivalent prior for the variance σ2?

Reminder: Consider a random variable Θ with pdf fΘ(θ) and
a one-to-one transformation

φ = h(θ).

Then, the pdf of φ satisfies

fΦ(φ) = fΘ(θ) · |dθ/dφ| = fΘ(θ) · |h′(θ)|−1
∣∣
θ=h−1(φ)

.
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We now apply the above change-of-variables formula to our
problem: h(σ) = σ2, h′(σ) = 2 σ, yielding

π(σ2) ∝ 1
2 σ

i[0,∞)(σ) (25)

which is not uniform. Therefore, (24) implies (25), which
means that our prior belief is that the variance σ2 is small.

Then, the following prior for the standard deviation σ

π(σ) ∝ 2 σ i[0,∞)(σ2)

implies that we believe that the standard deviation σ is large,
but is equivalent to the uniform prior on the variance σ2:

π(σ2) ∝ i[0,∞)(σ2).

Problems of this kind are the main reasons why R.A. Fisher, the
father of statistics, had a distaste for the Bayesian approach.

One way to visualize the observed phenomenon observed is to
look at what happens to intervals of equal measure.

In the case of σ2 being uniform, an interval [a, a + 0.1] must
have the same prior measure as the interval [0.1, 0.2]. When
we transform to σ, the corresponding prior measure must have
intervals [

√
a,
√

a + 0.1] having equal measure. But, the length
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of [
√

a,
√

a + 0.1] is a decreasing function of a, which agrees
with the increasing density in σ.

Therefore, when talking about non-informative priors, we need
to think about scale.
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Jeffreys’ Priors

Can we pick a prior where the scale of the parameter does not
matter?

Jeffreys’ general principle states that any rule for determining
the prior density

fΘ(θ)
for parameter θ should yield an equivalent result if applied to
the transformed parameter (φ = h(θ), say, where h(·) is a
one-to-one transformation). Therefore, applying the prior

fΦ(φ) = {πθ(θ) · |h′(θ)|−1}
∣∣
θ=h−1(φ)

for Φ should give the same answer as dealing directly with the
transformed model,

fX,Φ(x, φ) = fΦ(φ) fX |Φ(x |φ).

Jeffreys’ suggestion: choose

fΘ(θ) ∝
√
I(θ) (26)

where I(θ) is the Fisher information for θ. Why is this choice
good? If we make a one-to-one transformation φ = h(θ), then
the Jeffreys’ prior for the transformed model is

fΦ(φ) ∝
√
I(φ). (27)
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Recall the change-of-variables formula for CRB in (12) of
handout #2:

I(φ) = I(θ) ·
∣∣∣dθ

dφ

∣∣∣2∣∣∣
θ=h−1(φ)

implying

√
I(φ)︸ ︷︷ ︸

∝fΘ(θ), see (26)

=
√
I(θ) ·

∣∣∣dθ

dφ

∣∣∣∣∣∣
θ=h−1(φ)︸ ︷︷ ︸

∝fΦ(φ), see (27)

where, recall the Jacobian transformation applied to the prior
pdf (or pmf)

fΦ(φ) = {fΘ(θ) · |dθ/dφ|}
∣∣
θ=h−1(φ)

.

Example. Estimating the Variance of a Gaussian
Distribution with Known Mean: Recall that the Fisher
information for σ2 is [see eq. (30) in handout # 2]

I(σ2) =
N

2 (σ2)2
.

Therefore, the Jeffreys’ prior for σ2 is

π(σ2) ∝ 1
σ2
· i[0,+∞)(σ2). (28)
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Alternative descriptions under different parameterizations for
the variance parameter are (for σ2 > 0)

π(σ) ∝ 1
σ

i[0,+∞)(σ), π(lnσ2) ∝ 1 uniform on (−∞,+∞).

Here, π(lnσ2) ∝ 1 means that

πQ(q) ∝ 1 uniform on (−∞,+∞)

where Q = ln Σ2.

Example. Estimating the Mean of a Gaussian Distribution
with Known Variance. Consider N conditionally i.i.d.
observations X[0], X[1], . . . , X[N − 1] given Θ = θ, following

{X[n] |Θ = θ} ∼ N (θ, σ2)

where σ2 is a known constant. Here

I(θ) =
N

σ2
= const

and, therefore, the clearly improper Jeffreys’ prior for θ is

π(θ) ∝ 1 uniform on (−∞,+∞).
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Bayesian Estimation

Suppose that we need to provide a point estimate of the
parameter of interest. How do we do that in the Bayesian
setting? Here, we first consider the most popular squared-error
loss scenario and then discuss the general scenario (for an
arbitrary loss).

Bayesians construct estimators

θ̂ = θ̂(x)

based on the posterior distribution fΘ |X(θ |x). Hence, a
Bayesian approach to solving the above problem is, say, to
obtain θ̂ by minimizing a posterior expected (squared, say)
loss:

ρ(θ̂ |x) = E Θ |X{[θ̂(X)−Θ]2 |x}

=
∫

[θ̂(x)− θ]2︸ ︷︷ ︸
squared-error loss

fΘ |X(θ |x) dθ

with respect to θ̂ = θ̂(x). This is easy to do: decompose
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ρ(θ̂ |x) as

ρ(θ̂ |x) =
∫

[θ̂ − E Θ |X(Θ |x) + E Θ |X(Θ |x)− θ]2 fΘ |X(θ |x) dθ

=
∫ [

θ̂ − E Θ |X(Θ |x)
]2

fΘ |X(θ |x) dθ

+
∫ [

θ − E Θ |X(θ |X = x)
]2

fΘ |X(θ |x) dθ

+2
[
θ̂ − E Θ |X(Θ |x)

]
·
∫ [

θ − E Θ |X(θ |X = x)
]
fΘ |X(θ |x) dθ︸ ︷︷ ︸

E Θ |X(Θ |x)−E Θ |X(Θ |x)=0

and the optimal θ̂ follows by minimizing the first term (which
has a quadratic form, hence the minimization is trivial):

arg minbθ ρ(θ̂ |x) = E Θ |X(Θ |x).

Clearly, the posterior mean of the parameter θ minimizes
its posterior expected squared loss; the minimum posterior
expected squared loss is

minbθ ρ(θ̂ |x) =
∫ [

θ − E Θ |X(Θ |x)
]2

fΘ |X(θ |x) dθ.

Mean-square error measures.
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1. Classical:

MSE{θ̂} = E X |Θ([θ̂(X)− θ]2 |Θ = θ)

=
∫

[θ̂(x)− θ]2 fX |Θ(x | θ) dx

see also (4) in handout # 1.

2. “Bayesian” (preposterior) MSE:

BMSE{θ̂} = E X,Θ([θ̂(X)−Θ]2)

=
∫ ∫

[θ̂(x)− θ]2 fX |Θ(x | θ) π(θ) dx dθ

iter. exp.
= E Θ[MSE{θ̂}]

see also (2) in handout # 0. The preposterior MSE (BMSE)
is obtained by averaging the squared-error loss over both the
noise and parameter realizations. It is computable before
the data has been collected, hence the name preposterior.

• The classical MSE generally depends on the true value of
the parameter θ. Therefore, classical MMSE “estimates”
usually depend on θ; hence, classical MMSE estimates do
not exist.

• Since Θ is integrated out, the preposterior BMSE does not
depend on θ; hence, Bayesian MMSE estimates exist.
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Which θ̂ minimizes BMSE? Since

BMSE{θ̂} = E X,Θ([θ̂(X)−Θ]2)

= E X

{
E Θ |X([θ̂(X)−Θ]2 |X)︸ ︷︷ ︸

ρ(bθ |X)

}

and, for every given x, we know that

θ̂ = E Θ |X(Θ |x) posterior mean of Θ

minimizes the posterior expected squared loss ρ(θ̂ |x) =
E Θ |X{[θ̂(X)−Θ]2 |x}.
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Loss (Cost) Functions for Bayesian Estimation
and the Corresponding Optimal Estimators

Define the estimation error

ε = ε(x, θ) = θ̂(x)− θ

and assign a loss (cost) function L(ε). We may choose θ̂(x) to
minimize the preposterior risk:

E X,Θ[L(ε)] = E X,Θ[L(θ̂(X)−Θ)]

but this is equivalent to minimizing the posterior expected loss:

ρ(θ̂ |x) = E Θ |X[L(ε) |x] =
∫

L(θ̂(x)− θ) fΘ |X(θ |x) dθ

for each X = x, which is a Bayesian criterion. The proof is
the same as for the squared-error loss:

E X,Θ[L(θ̂(X)−Θ)]
iter. exp.

= E X{E Θ |X[L(θ̂(X)−Θ) |X]︸ ︷︷ ︸
ρ(bθ(X) |X)

}.

(29)
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Here are a few popular loss functions:

1. L(ε) = ε2 (squared-error loss, accurate, most popular),

2. L(ε) = |ε| (absolute-error loss, robust to outliers),

3. L(ε) =
{

0, |ε| ≤ ∆/2
1, |ε| > ∆/2 (0-1 loss, tractable)

corresponding to:

1. MMSE estimator:

θ̂ = θ̂(x) = E Θ |X[Θ |X = x]

the posterior mean of θ given X = x (as proved earlier in
this handout).

2. Posterior median, i.e. the optimal θ̂ satisfies:

∫ bθ
−∞

fΘ |X(θ |x) dθ =
∫ +∞

bθ fΘ |X(θ |x) dθ

HW: check this.

EE 527, Detection and Estimation Theory, # 4 49



3. MAP (maximum a posteriori) estimator, i.e. the

optimal θ̂MAP = θ̂MAP(x) satisfies:

θ̂MAP(x) = arg max
θ

fΘ |X(θ |x) (30)

also known as the posterior mode.

We now show the MAP estimator result in 3.

MAP Estimation. Start from (29):

E X

{
E Θ |X[L(ε)]

}
= E X

{
1−

∫ bθ+∆/2

bθ−∆/2

fΘ |X(θ |x) dθ
}

.

To minimize this expression with respect to θ̂, we maximize∫ bθ+∆/2

bθ−∆/2

fΘ |X(θ |x) dθ

with respect to θ̂ which, for small ∆, reduces to maximizing

fΘ |X(θ̂ |x)

with respect to θ̂ and (30) follows. Since

fΘ |X(θ |x) ∝ fX |Θ(x | θ) π(θ)
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we have

θ̂MAP = arg max
θ

[ln fX |Θ(x | θ) + lnπ(θ)].

Note that ln fX |Θ(x | θ) is the log-likelihood function of θ.
Thus, for a flat prior

π(θ) ∝ 1

the MAP estimator coincides with the classical maximum-
likelihood (ML) estimator.
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