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Stochastic and Deterministic Networks for Texture 
Segmentation 

Abstract-This paper describes several texture segmentation algo- 
rithms based on deterministic and stochastic relaxation principles, and 
their implementation on parallel networks. The segmentation problem 
is posed as  an optimization problem and two different optimality cri- 
teria a re  considered. The first criterion involves maximizing the pos- 
terior distribution of the intensity field given the label field (maxi- 
mum a posteriori (MAP) estimate). The posterior distribution of the 
texture labels is derived by modeling the textures as  Gauss Markov 
random field (GMRF) and characterizing the distribution of different 
texture labels by a discrete multilevel Markov model. Fast approxi- 
mate solutions for MAP a re  obtained using deterministic relaxation 
techniques implemented on a Hopfield neural network and are  com- 
pared with those of simulated annealing in obtaining the MAP estimate. 
A stochastic algorithm which introduces learning into the iterations of 
the Hopfield network is proposed. This iterated hill-climbing algorithm 
combines fast convergence of deterministic relaxation with the sus- 
tained exploration of the stochastic algorithms, but is guaranteed to 
find only a local minimum. The second optimality criterion requires 
minimizing the expected percentage of misclassification per pixel by 
maximizing the posterior marginal distribution, and the maximum 
posterior marginal (MPM) algorithm is used to obtain the correspond- 
ing solution. All these methods implemented on parallel networks can 
he easily extended for hierarchical segmentation and we present rewlts  
of the various schemes in classifying some real textured images. 

I. INTRODUCTION 

HIS PAPER describes several algorithms, both de- T terministic and stochastic, for the segmentation of 
textured images. Segmentation of image data is an im- 
portant problem in computer vision, remote sensing, and 
image analysis. Most objects in the real world have tex- 
tured surfaces. Segmentation based on texture informa- 
tion is possible even if there are no apparent intensity 
edges between the different regions. There are many ex- 
isting methods for texture segmentation and classifica- 
tion, based on different types of statistics that can be ob- 
tained from the gray level images. The approach we use 
stems from the idea of using Markov random field models 
for textures in an image. We assign two random variables 
for tbe observed pixel, one characterizing the underlying 
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intensity and the other for labeling the texture correspond- 
ing to the pixel location. We use the Gauss Markov ran- 
dom field (GMRF) model for the conditional density of 
the intensity field given the label field. Prior information 
about the texture label field is introduced using a discrete 
Markov distribution. The segmentation can then be for- 
mulated as an optimization problem involving minimiza- 
tion of a Gibbs energy function. Exhaustive search for the 
optimum solution is not possible because of the large di- 
mensionality of the search space. For example, even for 
the very simple case of segmenting a 128 X 128 image 
into two classes, there are 2*'' possible label configura- 
tions. Derin and Elliott [ I ]  have investigated the use of 
dynamic programming for obtaining an approximation to 
the maximum a posteriori (MAP) estimate while Cohen 
and Cooper [2] give a deterministic relaxation algorithm 
for the same problem. The optimal MAP solution can be 
obtained by using stochastic relaxation algorithms such as 
simulated annealing [3]. Recently there has been consid- 
erable interest in using neural networks for solving com- 
putationally hard problems and the main emphasis in this 
paper is on developing parallel algorithms which can be 
implemented on such networks of simple processing ele- 
ments (neurons). 

The inherent parallelism of neural networks provides an 
interesting architecture for implementing many computer 
vision algorithms [4]. Some examples are image restora- 
tion [5], stereopsis [6], and computing optical flow [7]- 
[9]. Networks for solving combinatorially hard problems 
such as the traveling salesman problem have received 
much attention in the neural network literature [lo]. In 
almost all cases, these networks are designed to minimize 
an energy function defined by the network architecture. 
The parameters of the network are obtained in terms of 
the energy (cost) function it is designed to minimize and 
it can be shown [ 101 that for networks having symmetric 
interconnections, the equilibrium states correspond to the 
local minima of the energy function. For practical pur- 
poses, networks with few interconnections are preferred 
because of the large number of processing units required 
in any image processing application. In this context Mar- 
kov random field (MRF) models for images play a useful 
role. They are typically characterized by local dependen- 
cies and symmetric interconnections which can be ex- 
pressed in terms of energy functions using Gibbs-Markov 
equivalence [3]. 
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We look into two different optimality criteria for seg- 
menting the image. The first corresponds to the label con- 
figuration which maximizes the posterior probability of 
the label array given the intensity array. As noted before. 
an exhaustive search for the optimal solution is practically 
impossible. An alternative is to use stochastic relaxation 
algorithms such as simulated annealing 131. which asymp- 
totically converge to the optimal solution. However the 
computational burden involved because of the theoretical 
requirements on the initial temperature and the impracti- 
cal cooling schedules overweigh their advantages in many 
cases. Fast approximate solutions can be obtained by such 
deterministic relaxation algoritms as the iterated condi- 
tional mode rule [ 1 11. The energy function corresponding 
to this optimality criterion can be mapped into a Hopfield- 
type network in a straightforward manner and it can be 
shown that the network converges to an equilibrium state, 
which in general will be a local optimum. The solutions 
obtained using this method are sensitive to the initial con- 
figurations, and in many cases starting with a maximum 
likelihood estimate is preferred. Stochastic learning can 
be easily introduced into the network, and the overall sys- 
tem improves the performance by learning while search- 
ing. The learning algorithms used are derived from the 
theory of stochastic learning automata [ 121 and we be- 
lieve that this is the first time such a hybrid system has 
been used in an optimization problem. The stochastic na- 
ture of the system helps in preventing the algorithm from 
being trapped in a local minimum and we observe that this 
improves the quality of the solutions obtained. 

The second optimality criterion minimizes the expected 
percentage of classification error per pixel. This is equiv- 
alent to finding the pixel labels that maximize the mar- 
ginal posterior probability given the intensity data [ 131. 
Since calculating the marginal posterior probability is very 
difficult, Marroquin [ 141 suggested the MPM algorithm, 
which asymptotically computes the posterior marginal. In 
[14] the algorithm is used for image restoration, stereo 
matching, and surface interpolation. Here we use this 
method to find the texture label that maximizes the mar- 
ginal posterior probability for each pixel. 

The organization of the paper is as follows: Section I1 
describes the image model. A neural network model for 
the relaxation algorithms is given in Section I11 along with 
a deterministic updating rule. Section IV discusses the 
stochastic algorithms for segmentation and their parallel 
implementation on the network. A learning algorithm is 
proposed in Section V and the experimental results are 
provided in Section VI.  

11. IMAGE MODEL 
The use of MRF models for image processing applica- 

tions has been investigated by many researchers (see e .g . ,  
Chellappa [15]). Cross and Jain 1161 provide a detailed 
discussion on the application of MRF in modeling tex- 
tured images. Geman and Geman [3] discuss the equiva- 
lence between MRF and Gibbs distributions. The GMRF 
model for the texture intensity process has been used in 

Fig. I .  Structure 0 1  the G M R F  model. The numbers indicate the order of 
the niodel relative to.\ 1161. 

[ I ] ,  (21, and [ 171. The MRF is also used to describe the 
label process in [ l ]  and 121. In this paper we use the 
fourth-order GMRF indicated in Fig. 1 to model the con- 
ditional probability density of the image intensity array 
given its texture labels. The texture labels are assumed to 
obey a first- or second-order discrete Markov model with 
a single parameter P ,  which measures the amount of clus- 
tering between adjacent pixels. 

Let R denote the set of grid points in the M x M lattice, 
i . e . , R  = { ( i , j ) ,  1 I i , j  I M } .  FollowingGemanand 
Graffigne [ IS] ,  we construct a composite model which ac- 
counts for texture labels and gray levels. Let { L,,, s E Q }  
and { Y, ,  s E R }  denote the labels and zero mean gray 
level arrays respectively. The zero mean array is obtained 
by subtracting the local mean computed in a small win- 
dow centered at each pixel. Let N ,  denote the symmetric 
fourth-order neighborhood of a site s. Then, assuming that 
all the neighbors of s also have the same label as that of 
s, we can write the following expression for the condi- 
tional density of the intensity at the pixel site s: 

P(  Y\ = Y,\ I Yr = Y r ,  r E N.\, L\ = I )  

- ~ X P  [ - U (  Y\ = y,s I Yr Y r ,  r E Ns, L., = l ) ]  - 
~ ( 1  I Y r ,  r E ~ . s )  

(1)  
where Z (  I I J,. ,  r E N, , )  is the partition function of the con- 
ditional Gibbs distribution and 

u ( Y , = ~ , ( Y , . = ~ , . , ~ E N . , , L , = I )  
/ \ 

I c / 1 \  ' " I  \ 

In ( 2 ) ,  (T/ and 8' are the GMRF model parameters of 
the I th  texture class. The model parameters satisfy el,, = 

We view the image intensity array as composed of a set 
of overlapping k x k. windows W , ,  centered at each pixel 
s E R.  In  each of these windows we assume that the tex- 
ture label L, is homogeneous (all the pixels in the window 
belonging to the same texture) and compute the joint dis- 
tribution of the intensity in the window conditioned on L,. 
The corresponding Gibbs energy is used in the relaxation 
process for segmentation. As explained in the previous 
paragraph, the image intensity in the window is modeled 
by a fourth-order stationary GMRF. The local mean is 

er- \  I = e:_ ,  = 8; .  
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computed by taking the average of the intensities in the 
window W, and is subtracted from the original image to 
get the zero mean image. All our references to the inten- 
sity array correspond to the zero mean image. Let Y,* de- 
note the 2-D vector representing the intensity array in the 
window W,.  Using the Gibbs formulation and assuming a 
free boundary model, the joint probability density in the 
window W, can be written as [2] 

where Z , (  I ) is the partition function and 

The label field is modeled as a first- or second-order 
discrete MRF. If A, denotes the appropriate neighborhood 
for the label field, then we can write the distribution func- 
tion for the texture label at site s conditioned on the labels 
of the neighboring sites as 

e - U ? ( l s  1 1 I )  

2 2  
P ( L ,  1 L, ,  Y E f l \ )  = 

U ~ ( L \ \ L , ,  r E f l , )  = -6 C. 6 ( ~ ,  - L ) ) ,  

where Z ,  is a normalizing constant and 

6 > 0. 
,EN!  

( 4 )  
In (4), 0 determines the degree of clustering, and 6 ( i  - 
j )  is the Kronecker delta. Using the Bayes rule, we can 
write 

P(L\  I y: ,  L,, y E fl,) 

write 

Note that the second term in (7) relates the observed pixel 
intensities to the texture labels and the last term specifies 
the label distribution. The bias term w ( L , )  = log Z,(L , , )  
is dependent on the texture class and it can be explicitly 
evaluated for the GMRF model considered here using the 
toroidal assumption (the computations become very cum- 
bersome if toroidal assumptions are not made). An alter- 
native approach is to estimate the bias from the histogram 
of the data as suggested by Geman and Graffigne [ 181. 
Finally, the posterior distribution of the texture labels for 
the entire image given the intensity array is 

Maximizing (8) gives the optimal Bayesian estimate. 
Though it is possible in principle to compute the right- 
hand side of (8) and find the global optimum, the com- 
putational burden involved is so enormous that it is prac- 
tically impossible to do so. However, we note that the 
stochastic relaxation algorithms discussed in Section IV 
require only the computation of (6) to obtain the optimal 
solution. The deterministic relaxation algorithm given in 
the next section also uses these values, but in this case 
the solution is only an approximation to the MAP esti- 
mate. 

111. A NEURAL NETWORK FOR TEXTURE 
CLASSIFICATION 

We describe the network architecture used for segmen- 
tation and the implementation of deterministic relaxation 
algorithms. The energy function which the network min- 
imizes is obtained from the image model discussed in the 
previous section. For convenience of notation let U,( i, j ,  
I )  = U , ( Y , * ,  L,  = I )  + w ( l ) ,  wheres = ( i , j ) d e n o t e s  
a pixel site and U,(  . ) and w ( I  ) are as defined in (7). The 
network consists of K layers, each layer arranged as an M 
X M array, where K is the number of texture classes in 
the image and M is the dimension of the image. The ele- 
ments (neurons) in the network are assumed to be binary 
and are indexed by ( i ,  j ,  I ) where ( i ,  j ) = s refers to 
their position in the image and I refers to the layer. The 
( i ,  j ,  1)th neuron is said to be ON if its output V,,, is 1 ,  
indicating that the corresponding site s = ( i ,  j ) " i n  the 

strength between 
be the input bias current. Then a general form for the en- 

Since ',* is known' the denominator in  ( 5 )  is just a 'On- image has the texture label 1. Let Tcj/:j:j,/ ,  be the connection stant. The numerator is a product of two exponential func- 
tions and can be expressed as ( i, j ,  I ) and j , ,  ) and 

ergy of the network is [ IO]  
M M K M M K  

M M K  

- f c c c I / / /  V/// .  where Z,, is the partition function and U,,( ) is the pos- 
terior energy corresponding to (5). From ( 3 )  and (4) we I =  I / = I  / =  I 

(9 )  



From our discussion in Section 11, we note that a so- 
lution for the MAP estimate can be obtained by minimiz- 
ing (8). Here we approximate the posterior energy by 

and the corresponding Gibbs energy to be minimized can 
be written as 

. M  M K 

2 I = )  / = I  /= I  

K M M  

2 / = I  i =  I , /= I  ( j ' . / ' ) € N , ,  

yhere Nil is the neighborhood of site ( i ,  j )  (same as the 
N ,  in Section 11). In ( I l ) ,  it is implicitly assumed that 
each pixel site has a unique label; i .e.,  only one neuron 
is active in each column of the network. This constraint 
can be implemented in different ways. For the determin- 
istic relaxation algorithm described below, a simple 
method is to use a winner-takes-all circuit for each col- 
umn so that the neuron receiving the maximum input is 
turned on and the others are turned off. Alternatively, a 
penalty term can be introduced in ( 1  1 )  to represent the 
constraint as in [lo]. From (9) and ( 1  I )  we can identify 
the parameters for the network: 

and the bias current 

plement. We observe that in general an algorithm based 
on MRF models can be easily mapped onto neural net- 
works with local interconnections. The main advantage of 
this deterministic relaxation algorithm is its simplicity. 
Often the solutions are reasonably good and the algorithm 
usually converges within 20-30 iterations. In the next 
section we study two stochastic schemes which asymp- 
totically converge to the global optimum of the respective 
criterion functions. 

Iv. STOCHASTIC ALGORITHMS FOR TEXTURE 
SEGMENTATION 

We look at two optimal solutions corresponding to dif- 
ferent decision rules for determining the labels. The first 
one uses simulated annealing to obtain the optimum MAP 
estimate of the label configuration. The second algorithm 
minimizes the expected misclassification per pixel. The 
parallel network implementation of these algorithms is 
discussed in Section IV-C. 

A. Searching for  MAP Solution 
The MAP rule [ 181 searches for the configuration L that 

maximizes the posterior probability distribution. This is 
equivalent to maximizing P (  Y *  1 L )  P ( L )  as P (  Y * )  is 
independent of the labels and Y *  is known. The right- 
hand side of (8) is a Gibbs distribution. To maximize (8) 
we use simulated annealing 131, a combinatorial optimi- 
zation method which is based on sampling from varying 
Gibbs distribution functions: 

A. Deterministic Relaxation 

of the network to that of the image model. The connection 
matrix for the above network is symmetric and there is no 
self-feedback; i.e., Tll / . l / /  = 0,  Vi,;, 1. Let ul,/ be the PO- 
tential of neuron ( i ,  j ,  I ). With 1 the layer mmber Cor- 
responding to texture class I ,  we have 

in order to maximize 
The above equations (12) and (13) relate the parameters e -U, , (L 1 Y * )  

Z 

TA being the time-varying parameter, referred to as the 
temperature. We used the following cooling schedule: 

M M K  

In order to minimize ( 1  I ) ,  we use the following updating 
rule: 

This updating scheme ensures that at each stage the en- 
ergy decreases. Since the energy is bounded, the conver- 
gence of the above system is ensured but the stable state 
will in general be a local optimum. 

This network model is a version of the iterated condi- 
tional mode (ICM) algorithm of Besag [ 1 I ] .  This algo- 
rithm maximizes the conditional probability P (  L ,  = 
1 I Y:, L\,, s' E fi\) during each iteration. It is a local 
deterministic relaxation algorithm that is very easy to im- 

where k is the iteration number. When the temperature is 
high, the bond between adjacent pixels is loose, and the 
distribution tends to behave like a uniform distribution 
over the possible texture labels. As Th decreases, the dis- 
tribution concentrates on the lower values of the energy 
function, which correspond to points with higher proba- 
bility. The process is bound to converge to a uniform dis- 
tribution over the label configuration that corresponds to 
the MAP solution. Since the numer of texture labels is 
finite, convergence of this algorithm follows from [ 3 ] .  In 
our experiment, we realized that starting the iterations 
with TO = 2 did not guarantee convergence to the MAP 
solution. Since starting at a much higher temperature will 
slow the convergence of the algorithm significantly, we 
use an alternative approach, viz., cycling the temperature 
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[13]. We follow the annealing schedule until Tk reaches a 
lower bound; then we reheat the system and start a new 
cooling process. By using only a few cycles, we obtained 
results better than those with a single cooling cycle. Par- 
allel implementation of simulated annealing on the net- 
work is discussed in Section IV-C. The results we present 
in Section VI were obtained with two cycles. 

B. Maximizing the Posterior Marginal Distribution 
The choice of the objective function for optimal seg- 

mentation can significantly affect its result. The choice 
should be made depending on the purpose of the classifi- 
cation. In many implementations the most reasonable ob- 
jective function is the one that minimizes the expected 
percentage misclassification per pixel. The solution to the 
above objective function is also the one that maximizes 
the marginal posterior distribution of L,, given the obser- 
vation Y *  for each pixel s: 

P { L ,  = I Y* = y*}  

cc c P ( Y *  = y* I L = Z )  P ( L  = 1 ) .  
11 L,  = I, 

The summation above extends over all possible label 
configurations keeping the label at site s constant. This 
concept was thoroughly investigated in [ 141. Marroquin 
[19] discusses this formulation in the context of image 
restoration and illustrates the performance on images with 
few gray levels. He also mentions the possibility of using 
this objective function for texture segmentation. In [ 1 I] 
the same objective function is mentioned in the context of 
image estimation. 

To find the optimal solution we use the stochastic al- 
gorithm suggested in [14]. The algorithm samples out of 
the posterior distribution of the texture labels given the 
intensity. Unlike the stochastic relaxation algorithm, 
samples are taken with a fixed temperature T = 1.  The 
Markov chain associated with the sampling algorithm 
converges with probability 1 to the posterior distribution. 
We define new random variables g:' for each pixel ( s  E 
a) :  

1 L { = I  

0 otherwise 
g ! ' { L ; }  = 

where L: is the class of the s pixel, at time t ,  in the state 
vector of the Markov chain associated with the Gibbs 
sampler. We use the ergodic property of the Markov chain 
[20] to calculate the expectations for these random vari- 
ables using time averaging: 

where N is the number of iterations performed. To obtain 
the optimal class for each pixel, we simply chose the class 
that occurred more often than the others. 

The MPM algorithm was implemented using the Gibbs 
sampler [3]. A much wider set of sampling algorithms, 
such as Metropolis, can be used for this purpose. The al- 

gorithms can be implemented sequentially or in parallel, 
with a deterministic or stochastic decision rule for the or- 
der of visiting the pixels. In order to avoid the dependence 
on the initial state of the Markov chain, we can ignore the 
first few iterations. In the experiments conducted we ob- 
tained good results after 500 iterations. The algorithm 
does not suffer from the drawbacks of simulated anneal- 
ing. For instance we do not have to start the iterations 
with a high temperature to avoid local minima, and the 
performance is not badly affected by enlarging the state 
space. 

C. Network Implementation of the Sampling Algorithms 
All the stochastic algorithms described in the Gibbs for- 

mulation are based on sampling from a probability distri- 
bution. The probability distribution is constant in  the 
MPM algorithm [I41 and is time varying in the case of 
annealing. The need for parallel implementation is due to 
the heavy computational load associated with their use. 

The issue of parallel implementation in stochastic al- 
gorithms was first addressed by Geman and Geman [3]. 
They show that the Gibbs sampler can be implemented by 
any deterministic or stochastic rule for choosing the order 
in which pixels are updated, as long as each pixel is vis- 
ited infinitely often. An iteration is the time required to 
visit each pixel at least once (a full sweep). Note that the 
stochastic rules have a random period and allow us to visit 
a pixel more than once in a period. They consider the new 
Markov chain one obtains from the original by viewing it 
only after each iteration. Their proof is based on two es- 
sential elements. The first is the fact that the embedded 
Markov chain has a strictly positive transition probability 
pi, for any possible states i ,  j ,  which proves that the chain 
will converge to a unique probability measure regardless 
of the initial state. The second is that the Gibbs measure 
is an invariant measure for the Gibbs sampler, so that the 
embedded chain converges to the Gibbs measure. The 
proof introduced in 131 can be applied to a much larger 
family of sampling algorithms satisfying the following 
properties [20] : 

1) The sampler produces a Markov chain with a pos- 
tive transition probability p i ,  for any choice of states 

2 )  The Gibbs measure is invariant under the sampling 

The Metropolis and heat bath algorithms are two such 
sampling methods. To see that the Metropolis algorithm 
satisfies property 2,  we look at the following equation for 
updating a single pixel: 

i ,  j .  

algorithm. 

1 
( i )  = - C ~ " ( j )  Pll+ I 

m * ( J ) < r ( l )  

1 ,  . . a f i l  



where tn is the number of values each pixel can take. The 
first term corresponds to the cases when the system was 
in s ta te j  and the new state i has higher probability. The 
second term corresponds to a system in state i and a new 
statej  that has lower probability. The given probability is 
for staying in state i. The third term corresponds to a sys- 
tem in s ta te j  and a new state i with lower probability. If 
we now replace P'" I (  i ) and PI'( i ) with T (  i ) and PI'( j ), 
we see that the equality holds, implying that the Gibbs 
measure is invariant under the Metropolis algorithm. The 
first property is also satisfied. Note that the states now 
correspond to the global configuration. To implement the 
algorithm in parallel, one can update pixels in parallel as 
long as neighboring pixels are not updated at the same 
time. A very clear discussion on this issue can be found 
in [14]. 

We now describe how these stochastic algorithms can 
be implemented on the network discussed in Section 111. 
The only modification required for the simulated anneal- 
ing rule is that the neurons in the network fire according 
to a time-dependent probabilistic rule. Using the same no- 
tation as in Section 111, the probability that neuron ( i ,  j ,  
f ) will fire during iteration k is 

e - I /TL)I,<,/ 

P (  VI,, = 1 ) = (17)  
ZTk 

where U,,/ is as defined in (14) and TL follows the cooling 
schedule ( 16). 

The MPM algorithm uses the above selection rule with 
Tk = 1 .  In addition, each neuron in the network has a 
counter which is incremented every time the neuron fires. 
When the iterations are terminated the neuron in each col- 
umn of the network having the maximum count is selected 
to represent the label for the corresponding pixel site in 
the image. 

We have noted before that for parallel implementation 
of the sampling algorithms, neighboring sites should not 
be updated simultaneously. Some additional observations 
are made in Section VI. 

V. STOCHASTIC LEARNING A N D  NEURAL NETWORKS 

In the previous sections purely deterministic and sto- 
chastic relaxation algorithms were discussed. Each has its 
own advantages and disadvantages. Here we consider the 
possibility of combining the two methods using stochastic 
learning automata and we compare the results obtained by 
this new scheme with those of previous algorithms. 

We begin with a brief introduction to the stochastic 
learning automaton [12]. An automation is a decision 
maker operating in a random environment. A stochastic 
automation can be defined by a quadruple (a, Q ,  T ,  R ) ,  
where a = { aI, , aN } is the set of available actions 
to the automaton. The action selected at time t is denoted 
by a ( t ) .  Q ( t )  is the state of the automaton at time t and 
consists of the action probability vector p (  t )  = [ pI (  t ) ,  
. . .  , p N ( t ) ] ,  w h e r e p , ( r )  = prob ( a ( t )  = a,) and Cl  
p, ( t )  = 1 v t .  The environment responds to the action 

(Y ( t )  with a X ( I )  E R ,  R being the set of the environment's 
responses. The state transitions of the automaton are gov- 
erned by the learning algorithm T ,  Q (  t + 1 ) = T (  Q (  t ) ,  
c u ( r ) ,  h ( t ) ) .  Without loss of generality, it can be as- 
sumed that R = [0, 1 ]; i .e.,  the responses are normalized 
to lie in the interval [0,  I ] ,  1 indicating a complete suc- 
cess and 0 total failure. The goal of the automaton is to 
converge to the optimal action, i .e . ,  the action which re- 
sults in the maximum expected reward. Again without loss 
of generality let aI be the optimal action and d ,  = 
E [  X ( r )  1 a l l  = max, { E [  X ( r )  1 a,]}. At present no 
learning algorithms exist which are optimal in the above 
sense. However we can choose the parameters of certain 
learning algorithms so as to realize a response as close to 
the optimum as desired. This condition is called E opti- 
mality. If M ( r )  = E [  h ( t )  I p ( t ) ] ,  then a learning algo- 
rithm is said to be E optimal if it results in an M ( t )  such 
that 

for a suitable choice of parameters and for any t > 0. 
One of the simplest learning schemes is the linear reward- 
inaction rule, L R P l .  Suppose at time r we have a ( t )  = 
a,; if X (  t )  is the response received, then according to the 
L, - , rule 

PI ( r  + 1 )  = P l ( t )  + a h ( r )  [ 1 - P l ( 0 ]  

where a is a parameter of the algorithm controlling the 
learning rate. Typical values for a are in the range 0.01- 
0. I .  It can be shown that this LR - I  rule is E optimal in all 
stationary environments; i.e., there exists a value for the 
parameter U so that condition ( I  8)  is satisfied. 

Collective behavior of a group of automata has also 
been studied. Consider a team of N automata A ;  ( i  = 1, 
. . .  , N ) ,  each having r, actions a' = {a ' ,  * . . a:.,}. 
At any instant t each member of the team makes a deci- 
sion a ( t ) .  The environment responds to this by sending 
a reinforcement signal h ( r )  to all the automata in the 
group. This situation represents a cooperative game 
among a team of automata with an identical payoff. All 
the automata update their action probability vectors ac- 
cording to (19) using the same learning rate, and the pro- 
cess repeats. Local convergence results can be obtained 
for the case of stationary random environments. Varia- 
tions of this rule have been applied to complex problems 
such as decentralized control of Markov chains [21] and 
relaxation labeling [22]. 

The texture classification discussed in the previous sec- 
tions can be treated as a relaxation labeling problem and 
stochastic automata can be used to learn the labels (tex- 
ture class) for the pixels. A learning automaton is as- 
signed to each of the pixel sites in the image. The actions 
of the automata correspond to selecting a label for the 
pixel site to which it  is assigned. Thus for a K-class prob- 
lem each automaton has K actions and a probability dis- 
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tribution over this action set. Initially the labels are as- 
signed randomly with equal probability. Since the number 
of automata involved is very large, it is not practical to 

5 )  Generate a new configuration from this updated la- 
bel probabilities, increment the iteration counter, 
and go to step 3.  

update the action probability vector at each iteration. In- 
stead we combine the iterations of the neural network de- 
scribed in the previous section with the stochastic learning 
algorithm. This results in an iterative hill-climbing-type 
algorithm which combines the fast convergence of deter- 
ministic relaxation with the sustained exploration of the 
stochastic algorithm. The stochastic part prevents the al- 
gorithm from getting trapped in local minima and at the 
same time “learns” from the search by updating the state 
probabilities. However, in contrast to simulated anneal- 
ing, we cannot guarantee convergence to the global opti- 
mum. Each cycle now has two phases: the first consists 
of the deterministic relaxation network converging to a 
solution; the second consists of the learning network up- 
dating its state, the new state being determined by the 
equilibrium state of the relaxation network. A new initial 
state is generated by the learning network depending on 
its current state and the cycle repeats. Thus relaxation and 
learning alternate with each other. After each iteration the 
probability of the more stable states increases and because 
of the stochastic nature of the algorithm the possibility of 
getting trapped in bad local minima is reduced. The al- 
gorithm is summarized below. 

A.  Learning Algorithm 
Let the pixel site be denoted by s E a and the number 

of texture classes be K .  Let A, be the automaton assigned 
to site s and the action probability vector of A, be p ,  ( t )  
= [P , , I (~ ) ,  * * 9 P s . k  ( t ) ]  and C j P s , ,  ( t )  = 1 Vs, t ,  where 
p S , /  ( t )  = prob (label of site s = 1 ). The steps in the 
algorithm are as follows: 

1) Initialize the action probability vectors of all the au- 
tomata 

~ , . , ( o )  = 1/K, VS, 1. 

Initialize the iteration counter to 0. 
2) Choose an initial label configuration sampled from 

the distribution of these probability vectors. 
3) Start the neural network of Section 111 with this con- 

figuration. 
4) Let I ,  denote the label for site s at equilibrium. Let 

the current time (iteration number) be t .  Then the 
action probabilities are updated as follows: 

PI., ( t  + 1 )  = P.,,, ( t )  [ 1 - a w l ,  

V j  # I, and Vs. (20 )  
The response h ( r )  is derived as follow: Suppose the 
present label configuration resulted in a lower en- 
ergy state than the previous one. Then it results in 
X ( t )  = XI, and if the energy increases we have X ( t )  
= X 2  with XI > A,. In our simulations we used X I  
= 1 and h2 = 0.25. 

Thus the system consists of two layers, one for relax- 
ation and the other for learning. The relaxation network 
is similar to the one considered in Section 111, the only 
difference being that the initial state is decided by the 
learning network. The learning network consists of a team 
of automata and learning takes place at a much lower 
speed than the relaxation, with fewer updatings. The 
probabilities of the labels corresponding to the final state 
of the relaxation network are increased according to (20). 
Using these new probabilities a new configuation is gen- 
erated. Since the response does not depend on time, this 
corresponds to a stationary environment, and as we have 
noted before this L R - /  algorithm can be shown to con- 
verge to a stationary point, not necessarily to the global 
optimum. 

VI. EXPERIMENTAL RESULTS A N D  CONCLUSIONS 

The segmentation results using the above algorithms are 
given on two examples. The parameters U /  and corre- 
sponding to the fourth-order GMRF for each texture class 
were precomputed from 64 x 64 images of the textures. 
The local mean (in an 11 X 1 1  window) was first sub- 
tracted to obtain the zero mean texture, and the least- 
square estimates [17] of the parameters were then com- 
puted from the interior of the image. The first step in the 
segmentation process involves computing the Gibbs ener- 
gies U , (  Y,* I L , )  in ( 3 ) .  This is done for each texture class 
and the results are stored. For computational convenience 
these U , (  * ) values are normalized by dividing by k ’ ,  
where k is the size of the window. To ignore the boundary 
effects, we set U ,  = 0 at the boundaries. We have exper- 
imented with different window sizes; larger windows re- 
sult in more homogeneous texture patches but the bound- 
aries between the textures are distorted. The results 
reported here are based on windows of size 1 1  x 1 1  pix- 
els. The bias term w(1,)  can be estimated using the his- 
togram of the image data [ 181 but we obtained these val- 
ues by trial and error. 

In Section IV we observed that neighboring pixel sites 
should not be updated simultaneously. This problem oc- 
curs only if digital implementations of the networks are 
considered, as the probability of this happening in an an- 
alog network is zero. When this simultaneous updating 
was tested for the deterministic case, it always converged 
to limit cycles of length 2. (In fact it can be shown that 
the system converges to limit cycles of length at most 2.) 

The choice of 0 plays an important role in the segmen- 
tation process and its value depends on the magnitude of 
the energy function VI(  . ). Various values of 0 ranging 
from 0.2-3.0 were used in the experiments. In the deter- 
ministic algorithm it is preferable to start with a small (3 
and increase it gradually. Large values of beta usually de- 
grade the performance. We also observed that slowly in- 
creasing fl during the iterations improves the results for 
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the stochastic algorithms. It should be noted that using a 
larger value of p for the deterministic algorithm (com- 
pared to those used in the stochastic algorithms) does not 
improve the performance. 

The nature of the segmentation results depends on the 
order of the label model. It is preferable to choose the 
first-order model for the stochastic algorithms if we know 
a priori that the boundaries are either horizontal or ver- 
tical. However, for the deterministic rule and the learning 
scheme the second-order model results in more homoge- 
neous classification. 

The MPM algorithm requires the statistics obtained 
from the invariant measure of the Markov chain corre- 
sponding to the sampling algorithm. Hence it is preferable 
to ignore the first few hundred trials before starting to 
gather the statistics. The performance of the deterministic 
relaxation rule of Section I11 also depends on the initial 
state and we have looked into two different initial condi- 
tions. The first one starts with a label configuration L such 
that L, = 1, if U,(  Y,* I I,) = min,, { U , (  Y,* I IL ) } .  This 
corresponds to maximizing the probability P( Y *  I L )  
[23]. The second choice for the initial configuration is a 
randomly generated label set. Results for both cases are 
provided and we observe that the random choice often 
leads to better results. 

In the examples below the following learning parame- 
ters were used: learning rate a = 0.05 and reward/penalty 
parameters A ,  = 1.0 and A ?  = 0.25. 

Example I :  This is a two-class problem consisting of 
grass and calf textures. The image is of size 128 X 128 
and is shown in Fig. 2(a). In Fig. 2(b) the classification 
obtained by the deterministic algorithm discussed in Sec- 
tion I11 is shown. The maximum likelihood estimate was 
the initial state for the network, and Fig. 2(c) gives the 
result with random initial configuration. Notice that in this 
case the final result has fewer misclassified regions than 
in Fig. 2(b) and this was observed to be true in general. 
Parts (d) and (e) of the figure give the MAP solution using 
simulated annealing and the MPM solution respectively. 
The result of the learning algorithm is shown in Fig. 2(f)  
and there are no misclassifications within the homoge- 
neous regions. However the boundary is not as good as 
those of the MAP or MPM solutions. In all the cases we 
used p = 0.6. 

Example 2: This is a 256 X 256 image (Fig. 2(a)) hav- 
ing six textures: calf, grass, wool, wood, pig skin, and 
sand. This is a difficult problem in the sense that three of 
the textures (wool, pig skin, and sand) have almost iden- 
tical characteristics and are not easily distinguishable, 
even by the human eye. The maximum likelihood solution 
is shown in Fig. 3(b), and part (c) of the figure is the 
solution obtained by the deterministic relaxation network 
with the result in part (b) as the initial condition. Fig. 3(d) 
gives the result with random initial configuration. The 
MAP solution using simulated annealing is shown in part 
(e). As was mentioned in Section IV-A, cycling of 

temperature improves the performance of simulated an- 
nealing. The segmentation result ws obtained by starting 
with an initial temperature T,, = 2.0 and cooling accord- 
ing to the schedule (16) for 300 iterations. Then the sys- 
tem was reset to To = 1.5 and the process was repeated 
for 300 more iterations. In the case of the MPM rule the 
first 500 iterations were ignored and Fig. 3(f)  shows the 
result obtained using the last 200 iterations. As in the pre- 
vious example, the best results were obained by the sim- 
ulated annealing and MPM algorithms. For the MPM case 
there were no misclassifications within homogeneous re- 
gions but the boundaries were not accurate. In fact, as 
indicated in Table I, simulated annealing has the lowest 
percentage error in classification. Introducing learning in  
deterministic relaxation considerably improves the per- 
formance (Fig. 3(g)). Table I gives the percentage clas- 
sification error for the different cases. 

It is noted from the table that although learning im- 
proves the performance of the deterministic network al- 
gorithm, the best results were obtained by the simulated 
annealing technique, which is to be expected. 

A .  Hierarchicul Segmentation 

The various segmentation algorithms described in the 
previous sections can be easily extended to hierarchical 
structures wherein the segmentation is carried out at dif- 
ferent levels-from coarse to fine. The energy functions 
are modified to take care of the coupling between the ad- 
jacent resolutions of the system. Consider a K-stage hi- 
erarchical system, with stage 0 representing the maximum 
resolution level and stage K - 1 being the coarsest level. 
The energy corresponding to the kth stage is denoted by 
U! ( s ,  1 ) and U: (s ) (eqs. (3) and (4)). The size of the 
window used in computing the joint energy potential 
U!(  * ) increases with the index k .  The potential U,  is 
modified to take care of the coupling as follows: 

+ PL(6(L"(S) - L " ' ( s ) ) )  + \ v ( L ( s ) ) ,  

(21 1 O < k < K - l  

where L " ( s )  is the label for the site s in the kth stage, and 
f lL is the coupling coefficient between the stages k + 1 
and k.  D L ( s )  is the appropriate neighborhood set for the 
kth stage. The result of segmentation on the six-class 
problem with K = 2 and using the learning algorithm is 
shown in Fig. 3(h). 

B. Conclusion 

In this paper we have looked into different texture seg- 
mentation algorithms based on modeling the texture in- 
tensities as a GMRF. It is observed that a large class of 
natural textures can be modeled in this way. The perfor- 
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Fig. 2 .  (a) Original image consisting o f  two textures. The cia\\ 
textures are coded by gray levels.) ( h )  Deterministic relaxation 
with random init ial  condition. (d)  MAP c\tiniatc using s1iiitiIat 
learning 

mance of several algorithms for texture segmentation is 
studied. The stochastic algorithms obtain nearly optinxi1 
results, as can be seen from the examples. We noted that 
the MRF model helps us to trivially map the optimization 
problem onto a Hopfield-type neurd network. This deter- 
ministic relaxation network converges extremely fast to a 
solution, typically in 20-30 iterations for the 256 x 256 
image. Its performance, however. is sensitive to the in i -  
tial state of the system and often is not very satisfactory. 

ification using d i f t ren t  algorithms i\ \hewn in  ( b ) - ( t ) .  (The 
u i t h  tiiaxiiiiuin Iihelihood \illtition iis initial condition and ( c l  
ed annealing. (e) MPM \elution. (0 Network w i t h  \tochastlc 

To overcome the disadvantagts of the network. a new al- 
gorithm, which introduces stochastic learning into the it- 
erations of the networh. was proposed. This helps to 
maintain a sustained search of the solution space while 
learning from the past experience. This algorithm coni- 
bines the advantages of deterministic and stochastic relax- 
ation schemes and i t  would be interesting to explore its 
performance in solving other computationally hard prob- 
lems in computer vision. 



Fig. 3 .  (a)  Original image consisting of six textures. (b)  Maximum likelihood solution. (c) Deterministic relaxation with (b )  as 
initial condition and (d) with random initial condition. (e) MAP estimate using simulated annealing. ( f )  MPM solution, (g) 
Network with stochastic learning. (h) Hierarchical network solution 
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TABLE I 
PERCENTAGE M I ~ C L A S S I I : I C ~ ~ - I O N  I O K  ESAMPLI.. 2 (SIX CLASS PKOHLI-.M) 

Algorithm 

Maximum Likelihood Estimate 

Neural network (MLE as initial state) 

Neural network (Random initial state) 

Simulated annealing (MAP) 

MPM algorithm 

Neural network with learning 

Hierarchical network 

Percentage Error 

22.17 

16.25 

14.74 

6.72 

7.05 

8.7 

8.21 
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