Homework 2: Deriving gradient flows using

Calculus of Variations

1) Deriving Euler-Lagrange whe# is a function ofu = u(x,y), i.e. u is a function of 2 variables

(Application: optical flow).

Given that
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Assumeu(al,y) = v1, Yy, u(bl,y) = v2, Yy, u(z,a2) = 3, Vz, u(x,b2) = 4, Va (basicallyu

is fixed at known values at the boundaries).

2) Deriving Euler Lagrange whe#® is a function of both first and second derivatives (Application:
energy minimization for parametric snakes - Kass,Witkin,Terzopolous).

Given that
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AssumeC'(0) = v1, C(1) = 2, Cp(0) = 73, Cp(1) = 4 (basicallyC and C, are fixed at known
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values at the boundaries).

Note | have given the above assumption to simplify your homework problem. Actually for
closed contours, do not need this assumption. First two terms in the “integration by parts” step
cancel because = 0 andp = 1 are the same point, so any function jphas the same value at

bothp =0 andp = 1.



3) Extra: (An exercise in understanding papers, both of these have been done in the papers posted

on the class webpage)

a) Derive the edge based geometric active contour flow. Given

b)
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show that
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where L(C) denotes length of contoufy denotes the normal and denotes curvature.

Main idea: In the expression for E, the integral is over a regien= 0 to s = L(C)) that
depends on the contour itself. Hence cannot apply the formulae derived earlier. Solution:
Assume an arbitrary parametrizatiof'(p) with p € [0,1] and C(0) = C(1). Thends =
||Cp||dp and the integral runs fronp = 0 to p = 1. Then apply the standard formula

Derive the region based geometric active contour flow. Given
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NOTE: There may be a minus sign in the above, please verify

Main idea: The expression foFE is a region integral depending on the contour. First
convert it to a boundary integral over the contour boundary (using divergence theorem:
Jp(V - F(z,y))dzdy = fL(OC)(F(C) - N)ds where C' is the boundary of regiorR). Then

use the idea described in part 3a.

Two things to note in the above:

When parameterizing contours by arc-lengththe definition of “inner product” is: For 2 vectors
hi(s) and hy(s) the inner product ishy - ho = [~ Le )hl( Yha(s)ds = fplzo hi(p)ha(p)||Cpl|dp.

Also note that there is abuse of notation when | also define the inner prodi&t by the same

notation: for e.g. Vg - N is an inner product inR?.



