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Optical Flow
Namrata Vaswani, namrata@iastate.edu

These notes are still under preparation. Please email me if you find any mistakes and typos.

Most of the material here is based on [1], Chapter 5 of [2] and Chapter 15 of [3].

Optical Flow (OF) is the 2D motion field,u(x, y), v(x, y), for each point(x, y) in an image. First note

that the OF does not directly tell us about the real 3D motion of the object, it only gives us the projection

of the motion in 2D. OF vectors along with a camera model assumption can be used to estimate the 3D

motion (and depth) of objects and this is called “Structure from Motion”.

There are two types of algorithms that can be used to estimate optical flow. Given a set of corresponding

points in 2 images, the OF at these points is given by the displacement vector between these points.

To estimate OF at all points in an image (dense OF), we use the “intensity constancy” assumption

which says that the intensity of any point on any object remains constant with time (even though the

object itself moves), i.e.

I(x + ∆x, y + ∆y, t + ∆t) = I(x, y, t) (1)

Assuming small motion between consecutive frames (small∆x, ∆y), the above can be expanded using

first order Taylor series to get

Ixu + Iyv + It = 0 (2)

where Ix , ∂I
∂x and so on. Alsou = dx

dt , v = dy
dt . This is called the optical flow equation and forms

the basis of a large number of first order algorithms (where the small motion assumption is valid). We

discuss 2 algorithms here.

A. Horn and Schunk

First notice, that (2) gives only one equation for 2 variables (or if there areN pixels in the image,

it gives N equations for2N variables) and hence requires additional constraints to make it well-posed.

Horn and Schunk [?] proposed to use thesmoothness constraint, i.e. nearby points on an object move

with similar x and y velocities, or that||∇u||2, ||∇v||2 is small. Thus they proposed to findu, v to

minimize the following energy functional

E(u, v) =
∫

Ω
[(Ixu + Iyv + It)2 + λ(u2

x + u2
y + v2

x + v2
y)]dxdy (3)
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whereλ controls the weight given to the smoothness constraint andΩ denotes the image domain. Also,

we assume thatu, v are known (zero) at the boundaries of the image domain.Now E is a functional, i.e.

it is a function of functions,u, v both of which are functions ofx, y. SinceE is a function ofu, v and

their derivatives, we use Calculus of Variations to perform the minimization. Defining the Lagrangian as

the integrand in (3)

L(u(x, y), v(x, y)) , [(Ixu + Iyv + It)2 + λ(u2
x + u2

y + v2
x + v2

y)] (4)

and using Calculus of Variations, we get

∇uE =
∂L

∂u
− ∂

∂x

∂L

∂ux
− ∂

∂y

∂L

∂uy

= I2
xu + IxIyv − IxIt − λ∇2u (5)

∇vE = IxIyu + I2
yv − IyIt − λ∇2v (6)

where∇2u = uxx +uyy. A necessary condition forE to be minimized is given by∇uE = 0, ∇vE = 0.

This is called the Euler-Lagrange equation and can be re-arranged to give

I2
xu + IxIyv = λ∇2u− IxIt

IxIyu + I2
yv = λ∇2v − IyIt (7)

To solve the above for discrete pixels, the Laplacians can be approximated by their discrete central

approximation,∇2u(x, y) ≈ 4(ū(x, y)−u(x, y)) whereū(x, y) , 1
4(u(x− 1, y)+u(x+1, y)+u(x, y−

1) + u(x, y + 1)). This gives2N equations in2N variables: definingα = 4λ, we get

(I2
x + α)u + IxIyv = αū− IxIt

IxIyu + (I2
y + α)v = αv̄ − IyIt (8)

This can in principle be solved directly, but will require inverting a very large,2N × 2N , matrix. A

faster method is to obtain an iterative solution using the Gauss-Seidel method which takes advantage of

the sparseness of the matrix. Thus to summarize the algorithm:

1) At iteration n = 0, start with an initial guess ofu, v

2) Update using:

un+1 = ūn − Ix
(Ixūn + Iyv̄

n + It)
α + I2

x + I2
y

vn+1 = v̄n − Iy
(Ixūn + Iyv̄

n + It)
α + I2

x + I2
y

(9)
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3) Stop whenE does not decrease much or equivalentlyIxūn + Iyv̄
n + It is small.

Some things to notice:

1) Notice that the update for the(n + 1)th iteration of u depends only on values ofu computed in

the nth iteration and hencethe above algorithm can be parallelized.

2) Uniform intensity regions (whereIx, Iy, It are small) are filled using averages from the edges where

there is significant intensity variation. In other words OF for uniform regions gets estimated only

using the smoothness constraint.

3) In regions where image gradient||∇I||2 = I2
x + I2

y is large, the effect ofα is negligible, i.e. the

OF equation is mainly used in these regions.

4) Notice from (2) that the OF equation gives no estimate of the OF in directions perpendicular to

the image gradient (along edges). Thus in general one gets accurate OF estimates using the above

algorithm when nearby image pixels have different directions of the image gradient.

5) If a uniform intensity disc is rotating about its center, then the estimate of optical flow using any

algorithm will be ZERO becauseIt will be zero. Same for a rectangular object aligned with the

x-y plane and with an infinitely long y edge, moving along the y axis.

6) If there is intensity variation with time introduced due to illumination change, that will wrongly

appear as non-zero optical flow even if the scene is not moving.

Two problems with the above method are [2]:

1) It smooths across motion edges: When an object is moving against a background, there is no reason

to impose smoothness of optical flow across the boundary between the object and background. But

the above algorithm does. One solution to this is to impose a weighted smoothness criterion, i.e.

replaceλ||∇u||2 by (∇u)T W (∇u) whereW = [(∇I)(∇I)T ]−1 and similarly forλ||∇v||2

2) It uses OF equation even for occluded regions. This happens only when motion is more than one

pixel per unit time. For a region that was occluded in the first frame but is visible in the second

frame, one wrongly gets a large estimate ofIt even though the region may not have undergone any

motion. One solution to this problem is to turn off the OF constraint and only use the smoothness

constraint for occluded regions (setλ to a very large value in these regions). Occluded region are

the interior of regions of highIt. A second solution is to use a hierarchical method (discussed

below) to estimate optical flow, so that at each level, motion is not more than one pixel per unit

time.
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B. Least Mean Squares: Lucas-Kanade

This assumes that OF at neighboring pixels is equal and obtains a least mean squares estimate (LMSE)

of OF. For example let the optical flow be constant in a3 × 3 neighborhood ofx, y, then we have 9

equations in 2 variables and one can get an LMSE estimate of OF. Read Chapter 5, section 5.3.3 of [2].

More averaging can be performed by also averaging over a sequence of frames. If frames are coming in

sequentially, one can use other least squares methods such as Recursive Least Squares (see Least Squares

handout).

Now the assumption of constant OF for neighboring pixels is not true for rotatory motion. Thus this

method approximates rotatory motion by3× 3 blocks of translation.

C. Hierarchical Approaches

In many cases the small motion assumption is not satisfied for consecutive frames at the original

resolution. But if one were to reduce the resolutionr times (low pass filter followed by downsampling),

the motion between consecutive frames also reducesr times. In these cases, using a hierarchical first

order method (either Horn-Schunk or LMSE) gives more accurate results. The hierarchical OF algorithm

for 2 levels is:

1) Reduce resolution of framesI0 andI1, r times and estimate OF.

2) Increase resolution (upsample and interpolate) of the estimated OFr times to getû, v̂.

3) EstimateÎ1(x, y) = I0(x + û(x, y), y + v̂(x, y))

4) Estimate OF between̂I1 andI1, call it ˆ̂u, ˆ̂v.

5) Then total OF betweenI0 andI1 is û + ˆ̂u, v̂ + ˆ̂v.

D. Second order and other approaches

To get a more accurate estimate of 2D motion, one uses a second order Taylor series approximation

of (1) and then estimates both optical flow velocity and acceleration. Some other approaches assume

a parametric model for OF and estimate its parameters assuming intensity constancy. Rigid 3D motion

of objects projected using an orthographic camera model, can be described by a 6 dimensional affine

transformation on each pixel. Its parameters can be learnt again using a least squares approach.
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