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Recall: Geometric Intuition for Least Squares'

Minimize J(z) = ||y — Hz||?

Solution satisfiesH! Hi = H'y,i.e.2 = (H'H)"'H'y
SoH'(y— Hz)=0
The least errofy — Hz) is L to column space off

Think 3D: minimum error is always. to plane of projection
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Weighted Least Squarej

o y=Hx+e
e Minimize
J(x) = (y — Ha)' W(y — Hzx) £ |ly — Hzl[fy (1)
Solution:
&= (H"WH) *H" Wy (2)

e GiventhatEle] = 0 andE[eel] =V,
Min. Variance Unbiased Linear Estimatorof choose?/ = V1 in (2)
Min. Variance of a vector: variance in any direction is minimized
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Proof (skip if you want to) I

e Givenz = Ly, findL,st. E[Ly| = E|LHz| = E|z],SOLH =1
e Letly=(H'VIH)1HIV!
e Error variancel|(xz — 2)(z — 2)7]
El(x —2)(x —2)'] = E[(x—LHx — Le)(x — LHX — Le)"]
= E[Lee' L' =LVL*
SayL =L — Lo+ Lo. HereLH = I, LoH = I, s0(L — Lo)H = 0
LVLY = LoVL{ + (L - Lo)V(L — Lo)* +2LoV(L — Lo)*
= LoVLI + (L - Lo)V(L - Lo)T + (HTV'H)"'HT(L — Ly)”
= LoVLi + (L —Lo)V(L — Lo)" > LyVL}

ThusL is the optimal estimator (Note: for matrices)
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Regularized Least Squarej

e Minimize

J(z) = (z — x0) Iy (v — xo) + (y — Ha)' W(y — Ha)

A /! A
= x—x0, Y =y — Huxg

J(:C) :C/THO_laj/ 4+ y/TWy/
e Mtz
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t=x0+ My + HTWH) "HTW (y — Hay)

e Advantage: improves condition number&f H, incorporate prior
knowledge about distance from
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Recursive Least Square'

e Use in one of following situations:

— When number of equations much larger than number of variables;
Storage problem

— Getting data sequentially, do not want to re-solve the full problem
again

— The dimension of is large, want to avoid inverting matrices

e Goal: Atstep: — 1, havez;_1: minimizer of
(x — w0) Iy (@ — o) + ||Hicrz — Yic |3y, Yic1 = [y1,yi-1)”

Find 2;: minimizer of (z — zo) "Iy ' (z — zo) + || Hiz — V3| |3,
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(h; is arow vector)Y; = [y1,...y;]1 (column vector)

HT 1H7, 1‘|‘hTh
(I, + HY H) 'H!'Y;
Iyt + HY (Hy 1 +hlh) N(H Yo+ hly)

Define

P, = (Ug'+H H)™ ', PRy=1l
So P (P +hing !

Use Matrix Inversion identity:
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(A+ BCD) ' =A"1+ A 'B(C '+ DA 'B)"1DA!
P, =P,_1— K;h; P;_4

Ki = Pz'_lh;-r(l + hiPi—lh?)_l

0

PH]Y;

[Py — Kb P ) [H Y1 + b yi]

i1+ Ki(yi — hiZi—1)
The last equality uses the facts thatij) = P;_1 H! ,Y;_1, (ii)
[P;_1 — K;h; P;_1]h}y; = K,y; (expandK;, obtain this after a few
manipulations).
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Here we considered the weight, = I. If W; # I, the equation fol;
modifies to (replace; by wil/Qyz- & h; by wil/th-, wherew; = (W;); ;)

Ki = Pi_lh;-r(’wi_l + hipi_lh;'r)_l (5)

Also, here we considereg to be a scalar antl; to be a row vector. In
general:y; can be a-dim vector,h; will be a matrix withk rows, and
the above formulae still apply, replatdy I everywhere

RLS with Forgetting factor
Weight older data with smaller weighli(z) = 3" _, (y; — h;z)?8(i, )
Exponential forgetting3(i, j) = \* 7, A< 1

Moving averagep(¢,j) = 0if |i — 5| > A andg(¢,5) = 1 otherwise
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Summarizing Recursive LSI

e In general can assume thatis £ dimensional and sh; hask rows.
Weight matrix(W;); ; = w;. Solution is:
ro, Fo = llg
Pi_1h] (w; '+ hi Pk )]
I — K;hi) P4
Ti—1 + Ki(ys — hiz;)

e This is arecursive way to get the Regularized LS solution

&, = (Il + Hf W, Hy) ™Y,

with H; = [hT, hT, . BTT,Y; = [T 4T, . .yT]T
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Connection with Kalman Filtering I

The above is also the Kalman filter estimate of the state for the following

system model:

X Li—1

Yi hiz; +v;, v ~N(0,R;), w; = Ri“l
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Kalman Filter Motivation .

RLS was for static data: estimate the signdletter and better as more and
more data comes in, e.g. estimating the mean intensity of an object from
video sequence

RLS with forgetting factor assumes slowly time varying

Kalman filter: if the signal is time varying, and we know (statistically) the
dynamical model followed by the signal: e.g. tracking a moving object

I ~/ N(O, Ho)
v, = Fxiq+vei, v, ~N(0Q;)

The observation model is as before:

= hix; + v, v; ~N(0,R;)
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Goal: get the best (minimum mean square error) estimate wbm Y

Cost: J(2;) = E[(z; — 2;)2|Y;]

Minimizer: conditional meatt; = E|z;|Y;]

This is also the MAP estimate, i.¢; also maximize®(x;|Y;)
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Example Applications'

— Adaptive noise cancelation

e Recursive LS:

— Channel equalization using a training sequence

— ODbject intensity estimation: = intensity,y; = vector of intensities of
object region in frame, h; = 1,,, (column vector ofn ones)

— Keep updating estimate of location of an object that is static, using p

sequence of location observations coming in sequentially

e Recursive LS with forgetting factor: object not static but drifts very
slowly (e.g. floating object) or object intensity changes very slowly

e Kalman filter: Track a moving object (estimate its location, velocity at
each time), when acceleration is assumed i.i.d. Gaussian
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Material adapted from I

e Chapters 2, 3 of Linear Estimation, by Kailath, Sayed, Hassibi
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