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READING: § 1.1-§ 1.4 in the textbook®.

Discrete-time (DT) Sinusoids

RECALL THE DEFINITION OF PERIODIC DT SIGNALS:
Definition (Periodic DT signals). If a signal x[n] satisfies
x[n+ N| =x[n] foralln

then it is periodic with period N. The smallest positive N that satisfies the
above equation is called the fundamental period.

Start with a continuous-time (CT) sinusoid:
x(t) = Acos(wt+0) t€ (—oo0,+00)

where w is the analog frequency in radians per second. This CT
sinusoid is periodic with fundamental period

Tper =27n/w

for any w.
Sample with sampling interval T = 2 7r/wy to obtain a DT sinu-
soid:
x[n] = x(t)|,_, = Acos(wnT+8).

*A. V. Oppenheim and A. S. Willsky.
Signals & Systems. Prentice Hall, Upper
Saddle River, NJ, second edition, 1997
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The sampling frequency is wy. Define discrete-time frequency 2 =
wT=2n w% =27 ﬁ in radians (rad); then,

x[n] = A cos(Qn+0). (1)
This x[n] is not always periodic. Define
O =wT.
Then, x[n] in (1) is periodic with period N if and only if* 2Here, N denotes the set of all integers.
Q' n+N)=Q'n+2nm VnelN
for some m, N € IN. Solving this equation leads to
O'N=2mm

and
Q’:wT:Ml m,N € N
N
ie. 2 = w T must be a rational multiple of 2 7r. The fundamental
period of the DT sinusoid in (1) is the smallest positive N satisfying

the above condition. To find the fundamental period, express

o= me m,N €N
using the smallest positive N. Clearly, the discrete-time frequency (2

corresponds to a collection of rational multiples of 2 7t.

Examples

WE NOW PRESENT EXAMPLES OF SAMPLING CT SINUSOIDS.

Example 1.
s
x1(t) = cos(zt

)-
The frequency of this sinusoid is w = 0.5 7t rad/s and its fundamental
period is Tper =27n/w=4s.

Sample x1(t) with sampling interval T =1 s:

s
xi[n] = x1(t)|,_,r = COS(E n).

The frequency of this DT sinusoid is (2 = 0.5 7t rad, which is a rational
multiple of 2 7t; hence, x1[n] is periodic.

To find the fundamental period, express the discrete-time frequency as

2nm 27 .
05m = N — 1 m, N integers

using the smallest positive N. The fundamental period is
N=4

see Fig. 1.
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Figure 1: x1(t) and x1 [n] in Example 1.
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Example 2.
x2(t) = cos(2t).

The frequency of this sinusoid is w = 2 rad/s and its fundamental period is
Tper =271/w = 7T 5.
Sample x,(t) with sampling interval T =1 s:
x2[n] = x2(t)|,_, 7 = cos(2n).
The frequency of this DT sinusoid is (2 = 2 rad, which is not a rational
multiple of 2 7t; hence, x;[n] is not periodic, see Fig. 2.

A Figure 2: x;(t) and x[n] in Example 2.
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e A given DT sinusoid corresponds to samples of CT sinusoids of
many different frequencies.

ExAMPLE:
xl(t) = COS(TL’t), w =TI, Tper =2n/m=2 different
x(t) =cos(3mt), w=3m, Tper=2m/(3m)=2/3 | CTsignals

Sample with sampling interval T =1 s:

xi[n] = cos(mtn), Q' =m= %Zﬂ, N=2 identical
xp[n] =cos(3nmn), ' =3n= %2 71, N =2 | DTsignals

Note that

() = mrrad = 37T rad.

Figure 3: x3(t) and x3[n].

e This frequency ambiguity is the origin of aliasing.
e Consider a family of CT sinusoids at frequencies w + kwq k € IN:
xg(t) = A cos ((w +kwp) t+6).

where
wy=2mn/T

is the sampling frequency that we will use to sample these sinu-
soids.

o xi(t) are distinct signals for different values of k.

e Sample xi(t) using sampling interval T to obtain a family of DT
sinusoids:

xe[n] = A cos ((w+kwy)nT+0) =A cos((X n+2mkn+06) Q' =wT
= A cos(QY' n+9).
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e ConcrusionN: All CT sinusoids at frequencies w + kwg k € IN
yield the same DT signal (i.e. same samples) when sampled at the

sampling frequency
27

wy = T rad/s.

e All DT sinusoids at frequencies (2’ + k27 k € IN have the same
samples. Indeed,

Qrad=Q' +2nrad=Q' —2nrad=Q" +2-27rad ---

are all a single DT frequency in radians.

e Based on the above conclusion, two analog frequencies w; and w»
are ambiguous after sampling if

|wy — wa| =kwy, kinteger.

Consider a lowpass signal x(t) with spectrum given in Fig. 4.
Taking wy = —wm and wy = wn, we obtain that there is no
ambiguity if this x(t) is sampled at

wo > 2 Wn.

Figure 4: Spectrum of a lowpass CT

I Xf u.)) I signal x(t).

e

- W, Wi, {rad /s)

|

e To eliminate this ambiguity, we often restrict ourselves to
CT frequencies: —wg/2 < w < wy/2

DT frequencies: —7m < < .
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Periodicity of a sum of DT sinusoids

Tae DT siGgNAL
x[n] = Ay cos(Qyn+61) + Ay cos(Qxn+6,)

is periodic provided that both frequencies (2; and (2; are rational
multiples of 2 7t

Ql = mZn

N
Ny smallest N; and N = ! are fundamental periods.
O, ="™27 Ny
2 N,

Then, the fundamental period N of x[n] is the least common multiple
(lcm) of Nb and No:
N =lem(Ny, Np).

ExAMPLE:

M =221 Ny=5

N = lem(2,5) = 10.
=127 Ny=2 cm(2,5)

DT Exponential Functions

DT CoMPLEX SINUSOID:
x[n] = el (21+0) — cos(Qn + ) +j sin(Qn +6).
DT REAL-VALUED EXPONENTIAL FUNCTION:

x[n]=Ca" VnelN wckR.

a > 1 : growing exponential

0 < a < 1. decaying exponential

TCHTTII:T i [ITTTr :

Figure 5: DT exponential functions for
a>0.

6
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decaying, alternating sign

DT Singularity Functions

DT UNIT STEP:

1, n>0

u[n]_{ 0, n<0

where n € IN, see Fig. 7.
DT UnNiT RaMmP:

0, n<O0
r[n] =nun] = 0 >0

where n € N, see Fig. 8.

-1 1

DT Un1t IMPULSE:

where n € N, see Fig. 9.
Unit impulse is first difference of unit step:

8[n] = u[n] —un —1J.

Unit step is running sum of unit impulse:3

un] = i S[k].

k=—o0

Energy and Power of DT Signals

ENERGY OF A DT SIGNAL OVER ALL TIME: is written as4

—+o0o

)

(3)

(4)

Figure 6: DT exponential functions for
—1<a<0.

n

Figure 7: DT unit step. Corresponds to
sampled u(t), CT unit step.
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Figure 8: DT unit ramp. Corresponds to
sampled r(t), CT unit ramp.
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Figure 9: DT unit impulse. Does not
correspond to sampled d(t), CT unit
impulse.

0, n<0
IR

4(4) is computed as follows:

N

Ew = lim x[n]|?.
W+°°n§N| [n]]
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AVERAGE POWER OF A DT SIGNAL OVER ALL TIME:

Py = i <;NH]|2)
© = N e 2N+1n§an '

DT Energy Signal: 0 < Exw < 400, Poo =0

DT Power Signal: 0 < P < +00, Eq = +00

There exist signals that are neither energy nor power signals.
Periopic DT SIGNALS. Suppose

x[n+ N]=x[n] VneN.

Then, for nonzero x[n], E.ec = +0c0 and we can compute the power
over one period N as

1
P= Yo kbR
n=(N)
N——
any N consecutive
samples (one period)

Examples of Energy and Power Calculations

ExamriE 1. Find the energy and power of x[n] = 0.5/"! for all 1, see
Fig. 10.

Figure 10: x[n] = 0.5/"! as a function of
n.
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Energy
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e Fy: standard geometric series Fy = -

e E;: graphically we can see By = E5 — (1)
e To compute E; by brute force: put in terms of standard geometric
series:

W[

letk=—-1—n
00 k+1 oo k
1 1 1 11 1
nE0) 0 i
pard 4 4k:0 4 4171 3
4 1 5
Fe=313=3
Power

9
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ExaMPLE 2. Find the energy and power of x[n] = cos(Qn + 6).

Assume ()g = 7 - 2, the period is N, and 0 < )y <«

Energy
E. =00
Power
| N1
Py = i Z A2 cosQ(Qon +6)
n=>0
Q=0
Acosh
N=1 z[n] = Acosf Vn ]
0 n
PNZ—ZAQCOSQS—AQCOSQB e :
n=
Qo =T
N o 2 AcosB._,_v‘

I['i:]
z[n] = Acos(mn+6) = Acosf(—1)" R

=)
IS

-4 -3 -2

1
1
Py = 5 Z A? cos? 9(—1)2" = AZ cosr(g)

n=0

—Acosf'®

0< Qo< eg. Q=75 0=4 N=4

Sl
/.LH
{
e

Compute Py for general N. Recall inverse Euler’s formula:
COS(QO n-+ 0) — % (e] (QO n+6) + ef]' (Qo ”er))
and note that we now focus on periodic x[n] with

00:271% m=1,2,...,N 1. (5)

10
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Then
A2 N-
Py =+ Z A? cos*(Qpn +0) = N Z J(Qont0) 4 p=j(Qon+0))2
n—O n=0
A? 0 Az N A?
j(Qon+96) —2] (Qon+0) ey,
4N(Ze )+4N(; )+ 2N
A 5 A?
]95 2]95
2 +e +e 2 = 2
where
m N 1 N_
Z e S
n=0 z1—-1
71 ' _2jm/n N-1 N_q
Sp= ) et B=2 7 =0
n=0 n=0 22

since z{\’ =1landz) =1
To summarize, for N > 2, the power of the periodic DT sinusoid

x[n] :Acos(Zn%rﬂ-G) m=0,1,...,N

is

1 A? cos? 9, m=0N=1
Po= ¥ P =1 A%cos?s, m=1,N=2
N —(N AZ
n=(N) &, m=12,..., N—1,N>2

Hence, the power of a periodic DT sinusoid [at frequency (2 in (5)]
with period N > 2 is

PN:

zl =
]
=2
=
I
™|

n=(N)

which is not a function of 6, m, or N.
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