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Discrete-time (DT) Sinusoids

Recall the definition of periodic DT signals:

Definition (Periodic DT signals). If a signal x[n] satisfies

x[n + N] = x[n] for all n

then it is periodic with period N. The smallest positive N that satisfies the
above equation is called the fundamental period.

Start with a continuous-time (CT) sinusoid:

x(t) = A cos(ω t + θ) t ∈ (−∞,+∞)

where ω is the analog frequency in radians per second. This CT
sinusoid is periodic with fundamental period

Tper = 2 π/ω

for any ω.
Sample with sampling interval T = 2 π/ω0 to obtain a DT sinu-

soid:
x[n] = x(t)

∣∣
t=n T = A cos(ω n T + θ).
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The sampling frequency is ω0. Define discrete-time frequency Ω =

ω T = 2 π ω
ω0

= 2 π T
Tper

in radians (rad); then,

x[n] = A cos(Ω n + θ). (1)

This x[n] is not always periodic. Define

Ω′ = ω T.

Then, x[n] in (1) is periodic with period N if and only if2 2 Here, N denotes the set of all integers.

Ω′ (n + N) = Ω′ n + 2 π m ∀n ∈N

for some m, N ∈N. Solving this equation leads to

Ω′ N = 2 π m

and
Ω′ = ω T =

2 π m
N

m, N ∈N

i.e. Ω′ = ω T must be a rational multiple of 2 π. The fundamental
period of the DT sinusoid in (1) is the smallest positive N satisfying
the above condition. To find the fundamental period, express

Ω′ =
2 π m

N
m, N ∈N

using the smallest positive N. Clearly, the discrete-time frequency Ω

corresponds to a collection of rational multiples of 2 π.

Examples

We now present examples of sampling CT sinusoids.

Example 1.
x1(t) = cos(

π

2
t).

The frequency of this sinusoid is ω = 0.5 π rad/s and its fundamental
period is Tper = 2 π/ω = 4 s.

Sample x1(t) with sampling interval T = 1 s:

x1[n] = x1(t)
∣∣
t=n T = cos(

π

2
n).

The frequency of this DT sinusoid is Ω = 0.5 π rad, which is a rational
multiple of 2 π; hence, x1[n] is periodic.

To find the fundamental period, express the discrete-time frequency as

0.5 π =
2 π m

N
=

2 π

4
m, N integers

using the smallest positive N. The fundamental period is

N = 4

see Fig. 1.
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Figure 1: x1(t) and x1[n] in Example 1.

Example 2.
x2(t) = cos(2 t).

The frequency of this sinusoid is ω = 2 rad/s and its fundamental period is
Tper = 2 π/ω = π s.

Sample x2(t) with sampling interval T = 1 s:

x2[n] = x2(t)
∣∣
t=n T = cos(2 n).

The frequency of this DT sinusoid is Ω = 2 rad, which is not a rational
multiple of 2 π; hence, x2[n] is not periodic, see Fig. 2.

Figure 2: x2(t) and x2[n] in Example 2.

Frequency ambiguity

Comments:
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• A given DT sinusoid corresponds to samples of CT sinusoids of
many different frequencies.

Example:

x1(t) = cos(π t), ω = π, Tper = 2 π/π = 2
x2(t) = cos(3 π t), ω = 3 π, Tper = 2 π/(3 π) = 2/3

]
different

CT signals

Sample with sampling interval T = 1 s:

x1[n] = cos(π n), Ω′ = π = 1
2 2 π, N = 2

x2[n] = cos(3 π n), Ω′ = 3 π = 3
2 2 π, N = 2

]
identical

DT signals

Note that
Ω = π rad = 3 π rad.

Figure 3: x3(t) and x3[n].

• This frequency ambiguity is the origin of aliasing.

• Consider a family of CT sinusoids at frequencies ω + k ω0 k ∈N:

xk(t) = A cos
(
(ω + k ω0) t + θ

)
.

where
ω0 = 2 π/T

is the sampling frequency that we will use to sample these sinu-
soids.

• xk(t) are distinct signals for different values of k.

• Sample xk(t) using sampling interval T to obtain a family of DT
sinusoids:

xk[n] = A cos
(
(ω + k ω0) n T + θ

)
= A cos(Ω′ n + 2 π k n + θ)

= A cos(Ω′ n + θ).

Ω′ = ω T
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• Conclusion: All CT sinusoids at frequencies ω + k ω0 k ∈ N

yield the same DT signal (i.e. same samples) when sampled at the
sampling frequency

ω0 =
2 π

T
rad/s.

• All DT sinusoids at frequencies Ω′ + k 2 π k ∈ N have the same
samples. Indeed,

Ω′ rad = Ω′ + 2 π rad = Ω′ − 2 π rad = Ω′ + 2 · 2 π rad · · ·

are all a single DT frequency in radians.

• Based on the above conclusion, two analog frequencies ω1 and ω2

are ambiguous after sampling if

|ω1 −ω2| = k ω0, k integer.

Consider a lowpass signal x(t) with spectrum given in Fig. 4.
Taking ω1 = −ωm and ω2 = ωm, we obtain that there is no
ambiguity if this x(t) is sampled at

ω0 > 2 ωm.

Figure 4: Spectrum of a lowpass CT
signal x(t).

• To eliminate this ambiguity, we often restrict ourselves to
CT frequencies: −ω0/2 < ω < ω0/2

DT frequencies: −π < Ω < π.
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Periodicity of a sum of DT sinusoids

The DT signal

x[n] = A1 cos(Ω1 n + θ1) + A2 cos(Ω2 n + θ2)

is periodic provided that both frequencies Ω1 and Ω2 are rational
multiples of 2 π:

Ω1 = m1
N1

2 π

Ω2 = m2
N2

2 π
smallest N1 and N2 ⇒

N1
N2

are fundamental periods.

Then, the fundamental period N of x[n] is the least common multiple
(lcm) of N1 and N2:

N = lcm(N1, N2).

Example:

Ω1 = 4
5 2 π N1 = 5

Ω2 = 7
2 2 π N2 = 2

N = lcm(2, 5) = 10.

DT Exponential Functions

DT Complex Sinusoid:

x[n] = ej (Ω n+θ) = cos(Ω n + θ) + j sin(Ω n + θ).

DT Real-valued Exponential Function:

x[n] = C αn ∀n ∈N α ∈ R.

Figure 5: DT exponential functions for
α > 0.
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Figure 6: DT exponential functions for
−1 < α < 0.

DT Singularity Functions

DT Unit Step:

u[n] =

{
0, n < 0
1, n ≥ 0

(2)

where n ∈N, see Fig. 7. Figure 7: DT unit step. Corresponds to
sampled u(t), CT unit step.DT Unit Ramp:

r[n] = n u[n] =

{
0, n < 0
n, n ≥ 0

(3)

where n ∈N, see Fig. 8.

Figure 8: DT unit ramp. Corresponds to
sampled r(t), CT unit ramp.

DT Unit Impulse:

δ[n] =

{
0, n 6= 0
1, n = 0

where n ∈N, see Fig. 9.

Figure 9: DT unit impulse. Does not
correspond to sampled δ(t), CT unit
impulse.

Unit impulse is first difference of unit step:

δ[n] = u[n]− u[n− 1].

Unit step is running sum of unit impulse:3

3 ∑n
k=−∞ δ[k] =

{
0, n < 0
1, n > 0

.

u[n] =
n

∑
k=−∞

δ[k].

Energy and Power of DT Signals

Energy of a DT signal over all time: is written as4 4 (4) is computed as follows:

E∞ = lim
N↗+∞

N

∑
n=−N

|x[n]|2.E∞ =
+∞

∑
n=−∞

|x[n]|2. (4)
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Average power of a DT signal over all time:

P∞ = lim
N↗+∞

( 1
2 N + 1

N

∑
n=−N

|x[n]|2
)

.

DT Energy Signal: 0 < E∞ < +∞, P∞ = 0

DT Power Signal: 0 < P∞ < +∞, E∞ = +∞
There exist signals that are neither energy nor power signals.

Periodic DT Signals. Suppose

x[n + N] = x[n] ∀n ∈N.

Then, for nonzero x[n], E∞ = +∞ and we can compute the power
over one period N as

PN =
1
N ∑

n = 〈N〉︸ ︷︷ ︸
any N consecutive

samples (one period)

|x[n]|2.

Examples of Energy and Power Calculations

Example 1. Find the energy and power of x[n] = 0.5|n| for all n, see
Fig. 10.

Figure 10: x[n] = 0.5|n| as a function of
n.
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Example 2. Find the energy and power of x[n] = cos(Ω0 n + θ).

Compute PN for general N. Recall inverse Euler’s formula:

cos(Ω0 n + θ) = 1
2 (e

j (Ω0 n+θ) + e−j (Ω0 n+θ))

and note that we now focus on periodic x[n] with

Ω0 = 2 π
m
N

m = 1, 2, . . . , N − 1. (5)
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Then

PN =
1
N

N−1

∑
n=0

A2 cos2(Ω0 n + θ) =
A2

4 N

N−1

∑
n=0

(ej (Ω0 n+θ) + e−j (Ω0 n+θ))2

=
A2

4 N
( N−1

∑
n=0

e2 j (Ω0 n+θ)
)
+

A2

4 N
( N−1

∑
n=0

e−2 j (Ω0 n+θ)
)
+

A2

4 N
2 N

=
A2

2
+ e2 j θ S1 + e−2 j θ S2 =

A2

2

where

S1 =
N−1

∑
n=0

e2 j Ω0 n z1=e2 j m/N
=

N−1

∑
n=0

zn
1 =

zN
1 − 1

z1 − 1
= 0

S2 =
N−1

∑
n=0

e−2 j Ω0 n z2=e−2 j m/N
=

N−1

∑
n=0

zn
2 =

zN
2 − 1

z2 − 1
= 0

since zN
1 = 1 and zN

2 = 1.
To summarize, for N > 2, the power of the periodic DT sinusoid

x[n] = A cos
(
2 π

m
N

n + θ
)

m = 0, 1, . . . , N

is

PN =
1
N ∑

n=〈N〉
|x[n]|2 =


A2 cos2 θ, m = 0, N = 1
A2 cos2 θ, m = 1, N = 2

A2

2 , m = 1, 2, . . . , N − 1, N > 2
.

Hence, the power of a periodic DT sinusoid [at frequency Ω0 in (5)]
with period N > 2 is

PN =
1
N ∑

n=〈N〉
|x[n]|2 =

A2

2

which is not a function of θ, m, or N.
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