Note: Handouts DO NOT replace the book. In most cases, they only provide a
guideline on topics and an intuitive feel.
1 Random Variable: Topics

e Chap 2, 2.1 - 2.4 and Chap 3, 3.1 - 3.3

e What is a random variable?

Discrete random variable (r.v.)

Probability Mass Function (pmf)
— pmf of Bernoulli, Binomial, Geometric, Poisson

— pmfof Y = g(X)

Mean and Variance, Computing for Bernoulli, Poisson

Continuous random variable

— Probability Density Function (pdf) and connection with pmf
— Mean and Variance

— Uniform and exponential random variables
e Cumulative Distribution Function (cdf)

— Relation with pdf and pmf
— Connection between Geometric and Exponential **

— Connection between Binomial and Poisson **

Gaussian (or Normal) random variable

2 What is a random variable (r.v.)?

A real valued function of the outcome of an experiment

Example: Coin tosses. r.v. X =1 if heads and X = 0 if tails (Bernoulli r.v.).

A function of a r.v. defines another r.v.

Discrete r.v.: X takes values from the set of integers

3 Discrete Random Variables & Probability Mass Function (pmf)

e Probability Mass Function (pmf): Probability that the r.v. X takes a value x is pmf of
X computed at X = x. Denoted by px(z). Thus

px(x) = P({X = z}) = P(all possible outcomes that result in the event {X =z}) (1)



e Everything that we learnt in Chap 1 for events applies. Let  is the sample space (space of
all possible values of X in an experiment). Applying the axioms,

— px(z) =20
- P{X € S}) = pr(a;) (follows from Additivity since different events {X = z} are
zeS
disjoint)
- Z px(x) =1 (follows from Additivity and Normalization).
€

2
— Example: X = number of heads in 2 fair coin tosses (p = 1/2). P(X > 0) = ZpX (x) =
=1

0.75.

e Can also define a binary r.v. for any event A as: X = 1 if A occurs and X = 0 otherwise.
Then X is a Bernoulli r.v. with p = P(A).

e Bernoulli (X =1 (heads) or X = 0 (tails)) r.v. with probability of heads p

Bernoulli(p) : px(z) =p*(1 —p)'™, =0, orz =1 (2)

e Binomial (X = x heads out of n independent tosses, probability of heads p)

Binomial(n,p) : px(x) = < " >px(1 —p)"* x=0,1,...n (3)

e Geometric r.v., X, with probability of heads p (X= number of coin tosses needed for a head
to come up for the first time or number of independent trials needed to achieve the first
“success”).

— Example: I keep taking a test until I pass it. Probability of passing the test in the 2
try is px ().
— Easy to see that

Geometric(p) : px(z)=(1—p)*'p, £=0,1,2,...00 (4)

e Poisson r.v. X with expected number of arrivals A (e.g. if X = number of arrivals in time 7
with arrival rate A\, then A = A7)

—A A
Poisson(A) : px(z) = %, x=0,1,...00 (5)

e Uniform(a,b):

0, otherwise

pX(J:)Z{ 1/(b—a+1), if r=a,a+1,...b

e pmf of YV = g(X)



—py(y) =P{Y =y})= >  pxl)
z|g(x)=y
Example Y = |X|. Then py(y) = px(y) + px(—y), if y > 0 and py(0) = px(0).
Exercise: X ~ Uniform(—4,4) and Y = |X|, find py (y).

Expectation, mean, variance

— Motivating example: Read pg 81

— Expected value of X (or mean of X): Z xpx(
e
— Interpret mean as center of gravity of a bar with weights px(x) placed at location x
(Fig. 2.7)
— Expected value of Y = g(X): E[Y] = E[g(X)] = Z g(x)px(z). Exercise: show this.

€
— n'" moment of X: E[X"]. n'* central moment: E[(X — E[X])"].

Variance of X: var[X] £ E[(X — E[X])?] (2nd central moment)
Y =aX + b (linear fn): E[Y] = aE[X] + b, var[Y] = a?var[X]
— Poisson: E[X] = A, var[X]| = A (show this)
Bernoulli: E[X] = p, var[X]| = p(1 — p) (show this)
Uniform(a,b): E[X] = (a+b)/2, var[X] = % (show this)

Application: Computing average time. Example 2.4

Application: Decision making using expected values. Example 2.8 (Quiz game, compute
expected reward with two different strategies to decide which is a better strategy).

Binomial(n,p) becomes Poisson(np) if time interval between two coin tosses becomes very

small (so that n becomes very large and p becomes very small, but A = np is finite). **

4 Continuous R.V. & Probability Density Function (pdf)

Example: velocity of a car

A r.v. X is called continuous if there is a function fx(x) with fx(x) > 0, called probability
density function (pdf), s.t. P(X € B) = [ fx(x)dz for all subsets B of the real line.

Specifically, for B = [a, b],

b
Pla<X <b) = / Fx(@)da (7)
and can be interpreted as the area under the graph of the pdf fx(x).
For any single value a, P{X =a}) = [ fx(z)dz = 0.
Thus P(a< X <b)=Pla< X <b)=Pla< X <b)=Pla<X <b)

Sample space Q = (—o0, 00)



Normalization: P(Q) = P(—o0 < X <oo) =1. Thus [° _ fx(z)dz =1

Interpreting the pdf: For an interval [x,z + 0] with very small ¢,

)

P,z +0]) = / Fx(@dt ~ fx ()5 (8)

t=x

Thus fx(xz)= probability mass per unit length near x. See Fig. 3.2.
Continuous uniform pdf, Example 3.1

Piecewise constant pdf, Example 3.2

Connection with a pmf (explained after cdf is explained) **

Expected value: E[X] = [° _ xfx(z)dz. Similarly define E[g(X)] and var[X]
Mean and variance of uniform, Example 3.4

Exponential r.v.

e M ifx
fx<:c>:{A A (9)

0, otherwise

— Show it is a legitimate pdf.
— E[X] =1/\, var[X] = 1/A? (show).

Example: X= amount of time until an equipment breaks down or a bulb burns out.

Example 3.5 (Note: you need to use the correct time unit in the problem, here days).

Cumulative Distribution Function (cdf)

Cumulative Distribution Function (cdf), Fy(z) & P(X < z) (probability of event {X < x}).

Defined for discrete and continuous r.v.’s

Discrete: Fy(z) = pr(k) (10)
k<x
Continuous: Fyx(z) = /w fx(t)dt (11)

Note the pdf fx(z) is NOT a probability of any event, it can be > 1.
But F'x(x) is the probability of the event {X < z} for both continuous and discrete r.v.’s.
Properties

— Fx(x) is monotonically nondecreasing in z.
— Fx(z) > 0asz — —oo and Fx(z) — 1 asz — oo

— Fx(z) is continuous for continuous r.v.’s and it is piecewise constant for discrete r.v.’s



e Relation to pmf, pdf
Discrete: px (k) = Fx(k) — Fx(k—1) (12)

Continuous: fx(z) = dd%(m) (13)

e Using cdf to compute pmf.

— Example 3.6: Compute pmf of maximum of 3 r.v.’s: What is the pmf of the maximum
score of 3 test scores, when each test score is independent of others and each score takes
any value between 1 and 10 with probability 1/107
Answer: Compute Fx (k) = P(X < k) = P({X1 <k}, and {X2 <k}, and {X3 < k}) =
P{X; <k})P({X2 < k})P{X3 < k}) (follows from independence of the 3 events) and
then compute the pmf using (12).

— For continuous r.v.’s, in almost all cases, the correct way to compute the cdf of a function
of a continuous r.v. (or of a set of continuous r.v.’s) is to compute the cdf first and then
take its derivative to get the pdf. We will learn this later.

e Connection of a pdf with a pmf **

— You learnt the Dirac delta function in EE 224. We use it to define a pdf for discrete r.v.

[e.e]
— The pdf of a discrete r.v. X, fx(x) = Z px(7)0(z — 7).
j=—00
— If T integrate this, I get Fx(x) = fx(@)dt = sz (j) which is the same as the cdf
t<z :
= Jjlz
definition given in (10)

e Geometric and exponential cdf **

— Let Xgeop be the number of trials required for the first success (geometric) with prob-
ability of success = p. Then we can show that the probability of {Xgeo, < k} is equal
to the probability of an exponential r.v. {Xczpox < kd} with parameter A, if § satisfies
l—-p=e™Mord=—In(l—p)/A
Proof: Equate Fx,,, (k) =1— (1 —p)* to Fx k§) =1 — e M0

— Implication: When ¢ (time interval between two Bernoulli trials (coin tosses)) is small,
then Fx k)~ Fx k&) with p = A0 (follows because e ~ 1 — A for § small).

expo,/\(

QEO,P( expo,\ (

e Binomial(n,p) becomes Poisson(np) for small time interval, §, between coin tosses (Details
in Chap 5) **
Proof idea:

— Consider a sequence of n independent coin tosses with probability of heads p in any toss
(number of heads ~ Binomial(n,p)).

Assume the time interval between two tosses is 6.

Then expected value of X in one toss (in time 0) is p.
When ¢ small, expected value of X per unit time is A = p/J.

The total time duration is 7 = nd.



— When 0 — 0, but A and 7 are finite, n — oo and p — 0.

— When § small, can show that the pmf of a Binomial(n,p) r.v. is approximately equal
to the pmf of Poisson(\7) r.v. with A7 = np

The Poisson process is a continuous time analog of a Bernoulli process (Details in Chap 5) **

6 Normal (Gaussian) Random Variable

The most commonly used r.v. in Communications and Signal Processing

X is normal or Gaussian if it has a pdf of the form

fcle) = e oo

V2o

where one can show that u = E[X] and 0% = var[X].
Standard normal: Normal r.v. with u =0, 02 = 1.

Cdf of a standard normal Y, denoted ®(y)

Yy
Bly) 2 P(Y <y) = —— [ /g
V2T J o

It is recorded as a table (See pg 155).

Let X is a normal r.v. with mean p, variance o2. Then can show that Y = % is a standard
normal r.v.

Computing cdf of any normal r.v. X using the table for ®: Fx(z) = ®(*>F). See Example 3.7.

Signal detection example (computing probability of error): Example 3.8. See Fig. 3.11. A
binary message is tx as a signal .S which is either -1 or +1. The channel corrupts the tx with
additive Gaussian noise, N, with mean zero and variance 2. The received signal, Y = S+ N.
The receiver concludes that a -1 (or +1) was tx’ed if Y < 0 (Y > 0). What is the probability
of error? Answer: It is given by P(N > 1) = 1 — ®(1/0). How we get the answer will be
discussed in class.

Normal r.v. models the additive effect of many independent factors well **

— This is formally stated as the central limit theorem (see Chap 7) : sum of a large
number of independent and identically distributed (not necessarily normal) r.v.’s has an
approximately normal cdf.



Note: Handouts DO NOT replace the book. In most cases, they only provide a

guideline on topics and an intuitive feel.

1 Multiple Discrete Random Variables: Topics

Joint PMF, Marginal PMF of 2 and or more than 2 r.v.’s

PMF of a function of 2 r.v.’s

Expected value of functions of 2 r.v’s

Expectation is a linear operator. Expectation of sums of n r.v.’s
Conditioning on an event and on another r.v.

Bayes rule

Independence

2 Joint & Marginal PMF, PMF of function of r.v.s, Expectation

For everything in this handout, you can think in terms of events {X = z} and {Y = y} and
apply what you have learnt in Chapter 1.

The joint PMF of two random variables X and Y is defined as
pX,Y(mvy) = P(X = ZIS‘,Y = y)
where P(X = z,Y = y) is the same as P({X =z} N{Y =y}).

— Let A be the set of all values of x,y that satisfy a certain property, then
— e.g. X = outcome of first die toss, Y is outcome of second die toss, A = sum of outcomes
of the two tosses is even.

Marginal PMF is another term for the PMF of a single r.v. obtained by “marginalizing”
the joint PMF over the other r.v., i.e. the marginal PMF of X, px(z) can be computed as
follows:

Apply Total Probability Theorem to px y(z,y), i.e. sum over {Y =y} for different values y
(these are a set of disjoint events whose union is the sample space):

px(z) = Z px,y(z,y)
y

Similarly the marginal PMF of Y, py (y) can be computed by “marginalizing” over X

py (W) =Y pxy(@.y)



e PMF of a function of r.v.’s: If Z = g(X,Y),
pz(z)= > pxy(n.y)
(z,9):9(zy)=2
— Read the above as pz(z) = P(Z = z) = P(all values of (X,Y") for which ¢(X,Y) = z2)
e Expected value of functions of multiple r.v.’s
It Z = g(X,Y),

E[Z] = Z g(xa y)px,y(w,y)
(z,y)

e See Example 2.9
e More than 2 r.v.s.

— Joint PMF of n r.v.’s: px, x,...x, (%1, %2,...2y)

— We can marginalize over one or more than one r.v.,
€.8 DXy Xop Xn1 (T1, T2, - Tn1) = D5, PX1 Xa,. X (T1, 2, - - Tp)
e.g. thXQ ([Bl, 1’2) = Zx37x47,,,xn pX1,X2,...Xn (.%'1, T2,y . .. mn)

e.8 Px1(T1) = D py var i PX1,X0,. X, (T1,T25 - - - Tn)
See book, Page 96, for special case of 3 r.v.’s

e Expectation is a linear operator. Fxercise: show this
E[ale +asXo+ ... aan] = alE[Xl] + GQE[XQ] —+ ... anE[Xn]

— Application: Binomial(n, p) is the sum of n Bernoulli r.v.’s. with success probability p,
so its expected value is np (See Example 2.10)

— See Example 2.11

3 Conditioning and Bayes rule

e PMF of r.v. X conditioned on an event A with P(A) >0

PU{X =z} N A)
P(A)

pxja(@) & PX = 2}]A) =

— pxja(7) is a legitimate PMF, i.e. Y px|a(x) = 1. Ezercise: Show this
— Example 2.12, 2.13

e PMF of r.v. X conditioned on r.v. Y. Replace A by {Y =y}

(X =2}n{Y =y}) pxy(®y)
PHY =y}) Py (y)

The above holds for all y for which p,(y) > 0. The above is equivalent to

pxpy (ely) 2 PULX = 2} [{Y = y}) = =

pxy(zT,y) = PX|Y($\y)pY(y)

pxy(2,y) = py|x (ylz)px (2)



— pxjy(zly) (with py(y) > 0) is a legitimate PMF, i.e. > pxpy(z|y) = 1.
— Similarly, py|x (y[z) is also a legitimate PMF, i.e. Zy pyix(ylz) = 1. Show this.
— Example 2.14 (I did a modification in class), 2.15

e Bayes rule. How to compute pxy(z|y) using px(x) and py x(y|r),

pX,Y(OE, Y)

Py (y)

py|x (ylz)px (x)
me Py|x (ylz")px (2')

pX\Y(90|y) =

e Conditional Expectation given event A
BIX|A] = prxm
Al = Zg(ﬂc)pxm(x)
P
e Conditional Expectation given r.v. Y =y. Replace A by {Y =y}

EX|Y =y| = Xﬁmwﬂy

Note this is a function of Y = y.

e Total Expectation Theorem

Zpy E[X]Y =y]

Proof on page 105.

e Total Expectation Theorem for disjoint events A1, A, ... A, which form a partition

§:P E[X|A;]

of sample space.

Note A;’s are disjoint and Uj_; A; = )

— Application: Expectation of a geometric r.v., Example 2.16, 2.17

4 Independence
e Independence of a r.v. & an event A. r.v. X is independent of A with P(A) > 0, iff

pxjalz) = px(z), forall x

— This also implies: P({X =2} N A) = px(xz)P(A).



— See Example 2.19
e Independence of 2 r.v.’s. R.v.’s X and Y are independent iff
px|y (zly) = px(z), for all x and for all y for which py(y) > 0
This is equivalent to the following two things(show this)

pxy (2, y) = px(x)py ()
py|x (y|r) = py (y), for all y and for all x for which px(x) >0

e Conditional Independence of r.v.s X and Y given event A with P(A) > (0 **
Px|y,A(T|y) = px|a(x) for all z and for all y for which py4(y) > 0 or that

pX,Y|A(9C, y) = pX|A(x)pY|A(y)
e Expectation of product of independent r.v.s.
— If X and Y are independent, F[XY| = E[X]|E[Y].
EXY] = Y aypxy(z,y)

= > aypx(@)py (y)
y oz
= D ypv(y) Y apx(z)

= FE[X]E[Y]
— If X and Y are independent, E[g(X)h(Y)] = E[g(X)]E[h(Y)]. (Show).
o If X1, X5, ...X, are independent,
PX1, X, X (L1, X2, - .. Tn) = px, (21)Px,(22) - . Px, (Tn)

e Variance of sum of 2 independent r.v.’s.
Let X, Y are independent, then Var[X + Y] = Var[X]| + Var[Y].
See book page 112 for the proof

e Variance of sum of n independent r.v.’s.
If X1, Xo,... X, are independent,

Var( X1+ Xo + ... X, = Var[Xi]| + Var[Xa] + ... Var[X,,]

— Application: Variance of a Binomial, See Example 2.20
Binomial r.v. is a sum of n independent Bernoulli r.v.’s. So its variance is np(1 — p)

— Application: Mean and Variance of Sample Mean, Example 2.21
Let X1, Xs,... X, be independent and identically distributed, i.e. px,(z) = px,(z) for

all 7. Thus all have the same mean (denote by a) and same variance (denote by v).
Sample mean is defined as S,, = W

Since E[] is a linear operator, E[S,] = Y1 | LE[X;] = 22 = q.

Since the X;’s are independent, Var[S,] = > 1, n—gVar[Xi] =21

n?2 — n

— Application: Estimating Probabilities by Simulation, See Example 2.22



Note: Handouts DO NOT replace the book. In most cases, they only provide a

guideline on topics and an intuitive feel.
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Multiple Continuous Random Variables: Topics
Conditioning on an event

Joint and Marginal PDF

Expectation, Independence, Joint CDF, Bayes rule

Derived distributions

Function of a Single random variable: Y = g(X) for any function g

)
Function of a Single random variable: ¥ = g(X) for linear function g
— Function of a Single random variable: Y = ¢g(X) for strictly monotonic g
)

Function of Two random variables: Z = ¢(X,Y) for any function g

Conditioning on an event

Read the book Section 3.4

Joint and Marginal PDF

Twor.v.s X and Y are jointly continuous iff there is a function fxy (z,y) with fxy(z,y) >
0, called the joint PDF, s.t. P((X,Y) € B) = [ fx,y(x,y)dxdy for all subsets B of the 2D
plane.

Specifically, for B = [a,b] x [c,d] £ {(z,y) :a <z < b,c <y < d},

d b
Pla<X <b,c<Y <d) :/ Ixy (z,y)dxdy

y=c Jx=a

Interpreting the joint PDF: For small positive numbers 41, do,
C+62 a+01
Pla<X<a+0,c<Y <c+d) = / / Ixy(z,y)dzdy = fxy(a,c)d162
y=c r=a

Thus fxy(a,c) is the probability mass per unit area near (a,c).

Marginal PDF: The PDF obtained by integrating the joint PDF over the entire range of
one r.v. (in general, integrating over a set of r.v.’s)

b 00
Pla<X<b) = Pla<X<b-o0<Y <) :/ / Ixy(z,y)dydx

r=a J y=—00

=—00

— fx(a) = /°° Ty (2. y)dy
Yy

Example 3.12, 3.13



4 Conditional PDF
e Conditional PDF of X given that Y = y is defined as

s fxy(z,y)

e For any y, fx|y(z|y) is a legitimate PDF: integrates to 1.
e Example 3.15

e Interpretation: For small positive numbers 01, d2, consider the probability that X belongs
to a small interval [z, z + 1] given that ¥ belongs to a small interval [y, y + J2]

Px<X<z+0,y<Y <y+d)

P(x§X§x+51|ySYSy+52) Ply<Y <y+d)

~ Ixv(x,y)0162
fY(y)52
= fxpy (zly)d1

e Since fx|y(z|y)d; does not depend on dz, we can think of the limiting case when
09 — 0 and so we get

Pa<X<z+§4|]Y =y)= 6lim0P(:1: <X<z+hly<Y<y+d) = fX|y(x|y)51 &1 small
2H

e In general, for any region A, we have that

POYCAY =y) =l PX € Aly <Y <y+8) = [ falalda
- xe

5 Expectation, Independence, Joint & Conditional CDF, Bayes
rule

e Expectation: See page 172 for E[g(X)|Y =y, E[g(X,Y)|Y = y|] and total expectation
theorem for E[g(X)] and for E[g(X,Y)].

e Independence: X and Y are independent iff fxy = fx (or iff fxy = fxfy, or iff
fyix = fy)

e If X and Y independent, any two events {X € A} and {Y € B} are independent.

e If X and Y independent, E[g(X)h(Y)] = E[g(X)|E[h(Y)] and Var[X+Y] = Var[X|+Var[Y]
Exercise: show this.

e Joint CDF:

y x
Fxy(z,y) = P(X <2,V <y) = / / fx,y (s, t)dsdt
t=—00 Js=—0o0



Obtain joint PDF from joint CDF:

O*Fxy
fX,Y(x>y) - away (;U?y)

Conditional CDF:

Fxy(zly) = P(X <2y =y) =Im P(X <zly<Y <y+9) = / fxy (tly)dt
- t=—o00

Bayes rule when unobserved phenomenon is continuous. Pg 175 and Example 3.18

Bayes rule when unobserved phenomenon is discrete. Pg 176 and Example 3.19.
For e.g., say discrete r.v. N is the unobserved phenomenon. Then for ¢ small,

P(N=iX €z,z+6]) = P(N=ilX € [z,z+])
P(n=1)P(X € [z,x + 0]|N =1)
P(X € [z,x +d])

(Z)fX|N i(7)d
Z pN(])fX\N 5(

()fX|N i(7)
Z pN(F) fxn=j(z)

Notice that the right hand side is independent of §. Thus we can take lims_,y on both sides

)4

and the right side will not change. Thus we get

pN (1) fx|n=i()
Z pn(J) fxin=j ()

P(N=iX=12)= ;ir%P( =X €xr,x+4]) =
e More than 2 random variables (Pg 178, 179) **

6 Derived distributions: PDF of ¢(X) and of g(X,Y)
e Obtaining PDF of Y = g(X). ALWAYS use the following 2 step procedure:

— Compute CDF first. Fy(y) = P(g(X) <vy) = fx|g(x)§y fx(z)dzx
— Obtain PDF by differentiating Fy, i.e. fy(y) = %¥(y)

Example 3.20, 3.21, 3.22

Special Case 1: Linear Case: Y = aX +b. Can show that

Proof: see Pg 183.

Example 3.23, 3.24

Special Case 2: Strictly Monotonic Case.



— Consider Y = ¢g(X) with g being a strictly monotonic function of X.
— Thus ¢ is a one to one function.

— Thus there exists a function h s.t. y = g(x) iff x = h(y) (i.e. h is the inverse function of
g, often denotes as h = g~1).

— Then can show that

fr) = Fr(h(y)) Z—Z@)r

— Proof for strictly monotonically increasing g:
Fy(y) = P(9(X) <Y) = P(X < h(Y)) = Fx (h(y))-
Differentiate both sides w.r.t y (apply chain rule on the right side) to get:

fr(y) = dd%(y) = %Z(y)) = fx(h(y))%(y)

For strictly monotonically decreasing g, using a similar procedure, we get fy(y) =
—Ix(h(y)) e (y)
— See Figure 3.22, 3.23 for intuition

Example 3.21 (page 186)

Functions of two random variables. Again use the 2 step procedure, first compute CDF
of Z = ¢g(X,Y) and then differentiate to get the PDF.

CDF of Z is computed as: Fz(z) = P(g(X,Y) < z) = f%y:g(x’y)éz Ixy(z,y)dydx.
Example 3.26, 3.27

Example 3.28

Special case 1: PDF of Z = ¢*X (moment generating function): Chapter 4, 4.1

Special case 2: PDF of Z = X + Y when X, Y are independent: convolution of PDFs of X
and Y: Chapter 4, 4.2



