‘ Motivation and Applications: Why Should | Study Probability ?I

e As stated by Laplace, “Probability is common sense reduzed t
calculation”.

e You need to first learn the theory required to correctly de¢he
calculations. The examples that | solve and those in the badkhe
homeworks will provide a wonderful practical motivationtasvhy you
need to learn the theory.

¢ If you patiently grasp the basics, especially the first 4 tdagof BT, it
will be the most useful thing you've ever learnt - whether yoausue a
career in EE or CE or Economics or Finance or Management aad als
while you try to invest in stocks or gamble in Las Vegas!

e Applications: communications (telephones, cell phon&s, 1), signal
processing (image and video denoising, face recognitranking



moving objects from video,...), systems and control (operaiimg
airplane, fault detection in a system,...), predicting religbof a system
(e.g. electrical system), resource allocation, internetqmols,
non-engineering applications (e.g. medicine: predictiogy prevalent a
disease is or well a drug works, weather forecasting, ecaa®)m



‘ Introduction: Topics Covered. Chapter 1, 1.1 - 1.6'

What is Probability

Set Theory Basics

Probability Models

Conditional Probability

Total Probability and Bayes Rule
Independence

Counting



‘What IS Probability? I

e Measured relative frequency of occurrence of an event.
Example: toss a coin 100 times, measure frequency of heamsoute
probability of raining on a particular day and month (usiagiyears’
data)

e Or subjective belief about how “likely” an event is (when dat have
data to estimate frequency).
Example: any one-time event in history or “how likely is iatra new
experimental drug will work?”
This may either be a subjective belief or derived from thesids; for
e.g. if | flip a symmetric coin (equal weight on both sides), ll get a
head with probabilityl /2.

e For probabilistic reasonindgwo types of problems need to be solved



1. Specify the probability “model” or learn it (covered intatsstics
class).

2. Use the “model” to compute probability of different ev&(tovered
here).

e We will assume the model is given and will focus on problermzhis
course.



‘ Set Theory Basici

Set: any collection of objects (elements of a set).

Discrete sets
— Finite number of elements, e.g. numbers of a die
— Or infinite but countable number of elements, e.g. set of eneg

Continuous sets
— Cannot count the number of elements, e.g. all real numbenskat
O and 1.

“Universe” (denoted?): consists of all possible elements that could be
of interest. In case of random experiments, it is the setlqfaasible
outcomes. Example: for coin tossés—= {H,T'}.

Empty set (denoted): a set with no elements



Subset:A C B: if every element of A also belongs to B.

Strict subset A C B: if every element of A also belongs to B and B has
more elements than A.

Belongs:<, Does not belong#

Complement: A’ or A¢, Union: A U B, Intersection/AN B
—- A2 {recQlz ¢ A}

— AUB = {z|x € A, or x € B}, x € Q is assumed.

— ANB = {z|lv € A, and x € B}

— Visualize using Venn diagrams (see book)

Disjoint sets: A and B are disjoint if AN B = ¢ (empty), i.e. they
have no common elements.



e DeMorgan’s Laws
(AUB) = A'nB’ (1)
(AnB) = A'UB (2)

— Proofs: Need to show that every element of LHS (left hand)sgle
also an element of RHS (right hand side), i.e. LHRHS and show
vice versa, l.e. RH& LHS.

— We show the proof of the first property
x If z € (AU B)’, it means that x does not belong to A or B. In
other words x does not belong to A and x does not B either. This
means X belongs to the complement of A and to the complement
of B,i.e.z € A’ N B'.
+ Just showing this much does not complete the proof, needits sh

the other side also.
x If x € A’ B’, it means that x does not belong to A and it does not



belong to B, i.e. it belongs to neither A nor B, iec (AU B)’
« This completes the argument

— Please read the section on Algebra of Sets, pg 5



| Probabilistic models'

e There is an underlying process calliexperimentthat produces exactly
ONE outcome
e A probabilistic model: consists of a sample space and a pibtydaw

— Sample space (denoté€l): set of all possible outcomes of an
experiment

— Event: any subset of the sample space

— Probability Law: assigns a probability to every set A of pbles
outcomes (event)

— Choice of sample space (or universe): every element sheuld b
distinct and mutually exclusive (disjoint); and the spauoewdd be
“collectively exhaustive” (every possible outcome of apesment
should be included).
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Probability Axioms:
1. Nonnegativity. P(A) > 0 for every eventA.

2. Additivity. If A and B are twodisjoint events, then
P(AuB)=P(A)+ P(B)
(also extends to any countable number of disjoint events).

3. Normalization. Probability of the entire sample spad&(f2) = 1.

Probability of the empty sef?(¢) = 0 (follows from Axioms 2 & 3).

Sequential models, e.g. three coin tosses or two sequenitgabf a die.
Tree-based description: see Fig. 1.3

Discrete probability law: sample space consists of a finit@iper of
possible outcomes, law specified by probability of singéednt events.

— Example: for a fair cointos$) = {H,T}, P(H) = P(T) = 1/2

— Discrete uniform law for any evem:
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P(A) = number of elements in A

n

e Continuous probability law: e.d2 = [0, 1]: probability of any single
element event is zero, need to talk of probability of a sudal, |a, b]
of |0, 1].

See Example 1.4, 1.5 (This is slightly more difficult. We wilveo
continuous probability and examples later).

e Properties of probability laws
1. If A C B,thenP(A) < P(B)

2. PLAUB)=P(A)+ P(B)— P(AN B)

3. PLAUB) < P(A) + P(B)

4. PIAUBUC)=PA)+P(A'NB)+ P(ANnB'NC)

5. Note: book used® for A’ (complement of set A).

6. Proofs: Will be covered in next class. Visualize: Venrmgdsems.
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‘Conditional Probability I

Given that we know that an event B has occurred, what is thiegimoty
that event A occurred? Denoted B\ A|B). Example: Roll of a 6-sided
die. Given that the outcome is even, what is the probabifiy 7
Answer: 1/3

When number of outcomes is finite and all are equally likely,
number of elements ol N B

P(A|B) = number of elements ab (3)
In general,
P(ANB
P(ajp) = 2 @)

P(A|B) is a probability law (satisfies axioms) on the univefse
Exercise: show this.
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e Examples/applications
— Example 1.7, 1.8, 1.11

— Construct sequential modelB(A N B) = P(B)P(A|B). Example:
Radar detection (Example 1.9). What is the probability ofaineraft
not present and radar registers it (false alarm)?

— See Fig. 1.9: Tree based sequential description
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Total Probability and Bayes RuIeI

e Total Probability Theorem: Let,, ... A,, be disjoint events which form
a partition of the sample spadel{ ; A; = §2). Then for any event B,
P(B) = P(AinB)+...P(A,NB)
= P(A,)P(B|A1)+...P(A,)P(B|A,) (5)

Visualization and proof: see Fig. 1.13

e Example 1.13,1.15

e Bayesrule: Letd,, ... A,, be disjoint events which form a partition of
the sample space. Then for any event B,B(tB) > 0, we have

 P(A)P(BJA;) P(A;)P(B|A;)
P(Ai|B) = P(B) - P(A)P(BJ|A)) +...P(A,)P(B|A,) (6)
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e Inference using Bayes rule

— There are multiple “causesi;, As, .. A,, that result in a certain
“effect” B. Given that we observe the effeBt what is the

probability that the cause was;? Answer: use Bayes rule. See Fig.
1.14

— Radar detection: what is the probability of the aircrafinggpresent
given that the radar registers it? Example 1.16

— False positive puzzle, Example 1.18: very interesting!
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‘ Independencﬂ

P(A|B) = P(A) and soP(AN B) = P(B)P(A): the fact that B has
occurred gives no information about the probability of acence of A.
Example: A= head in first coin toss, B = head in second coin toss

“Independence”. DIFFERENT from “mutually exclusive” (dis joint)

— Events A and B are disjoint iP(A N B) = 0: cannot be independent
if P(A) > 0andP(B) > 0.
Example: A = head in a coin toss, B =tail in a coin toss

— Independence: a concept for events in a sequence. Indeyende
events withP(A) > 0, P(B) > 0 cannot be disjoint

Conditional independence **

Independence of a collection of events
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— P(NijesA;) = ;s P(A;) for every subses of {1,2,..n}

e Reliability analysis of complex systems: independencaragsion often
simplifies calculations
— Analyze Fig. 1.15: what i’ (system fail$ of the systemd — B?

x Let p; = probability of success of component

* m components in serieg(systemfailg =1 — pi1ps ... pm
(succeeds if all components succeed).

x m components in parallel:
P(systemfail$ = (1 —p1)...(1 — p,,) (fails if all the
components fail).

e Independent Bernoulli trials and Binomial probabilities

— A Bernoulli trial: a coin toss (or any experiment with two gdde
outcomes, e.g. it rains or does not rain, bit values)

— Independent Bernoulli trials: sequence of independemt msEses
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— Binomial: Givenn independent coin tosses,what is the probability of
k heads (denoted(k))?

x probability of any one sequence withheads igak(l — p)n_k
+ number of such sequences (from counting argumeétéj):)

x p(k) = ( ; )p’“(l—p)”—’f,where( . ) = W_Lk'),k,

— Application: what is the probability that more tharwustomers need
an internet connection at a given time? We know that at a dives
the probability that any one customer needs connectipn is

Answer: Z p(k)
k=c+1
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Counting I

e Needed in many situations. Two examples are:

1. Sample space has a finite number of equally likely outcomes
(discrete uniform), compute probability of any event A.

2. Or compute the probability of an event A which consists Dihie
number of equally likely outcomes each with probabijitye.g.
probability of k heads im coin tosses.

e Counting principle (See Fig. 1.17): Consider a process stngiofr
stages. If at stage 1, there argpossibilities, at stage 2, possibilities
and so on, then the total number of possibilities®s . . . n,..

— Example 1.26 (number of possible telephone numbers)

— Counting principle applies even when second stage depentfeo
first stage and so on, Ex. 1.28 (no. of words with 4 distincelsit
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e Applications:k-permutations.
— n distinct objects, how many different ways can we picébjects
and arrange them in a sequence?

« Use counting principle: choose first objectirpossible ways,
second one im — 1 ways and so on. Total no. of ways:

n(n—l)...(n—k#—l):(n%!k)!

x If k& = n, then total no. of ways =!
+ Example 1.28, 1.29
e Applications:k-combinations.
— Choice ofk elements out of an-element set without regard to order.

— Most common example: There atgeople, how many different
ways can we form a committee bfpeople? Here order of choosing

the £k members is not important. Denote answer(byz )

— Note that selecting A-permutation is the same as first selecting a
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k-combination and then ordering the elementsi{indifferent ways,

: n! n
— Thus( " ) S

k El(n—k)!"
— How will you relate this to the binomial coefficient (humbédeays
to getk heads out of, tosses)?
Toss number | = person |, a head in a toss = the person (tossanumb

IS In committee

e Applications:k-partitions. **
— A combination is a partition of a set into two parts
— Partition: given am-element set, consider its partition inteubsets
of sizeni, ns,...,n, whereny + nyg + ...n, = n.
x Use counting principle ank-combinations result.
* Form the first subset. Choosg elements out ofi: ( o ) ways.
* Form second subset. Choasgelements out ofi — ny available

n
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n—nl

elements:( s ) and so on.
+ Total number of ways to form the partition:

n n —nq (n —mn1 —no...np_1) —
nq nog noy

n!

ni'na!...n,!
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