
CONVEX POLYTOPES

B. GRUNBAUM AND G. C. SHEPHARD

1. Introduction

The study of convex polytopes in Euclidean space of two and three dimensions
is one of the oldest branches of mathematics. Yet many of the more interesting
properties of polytopes have been discovered comparatively recently, and are still
unknown to the majority of mathematicians. In this paper we shall survey the
subject, mentioning some of the most recent results, and stating the more important
unsolved problems. In order to make the exposition as self-contained as possible,
in §2.1 and §3.1 we give a number of definitions with which the reader may not be
familiar. We have separated our account of the combinatorial properties of poly-
topes in §2, from those of a metrical character in §3. As will be seen, these two
aspects of the subject overlap, and distinguishing between them is, to a large extent,
a matter of expository convenience only.

It is beyond the scope of the present survey to indicate proofs of the results
mentioned. For these the reader is referred either to the original papers, or, for the
earlier results, to the standard textbooks. In the notes(1) references are given to
recent publications, and in these, precise references to the older literature may be
found. It has, of course, been necessary to make a small selection from the vast
amount of published material. To some extent the selection has been made according
to the authors' personal interests, but we hope that it nevertheless represents a
reasonably balanced account of our subject.

Before the beginning of this century, three events can be picked out as being of
the utmost importance for the theory of convex polytopes. The first was the publica-
tion of Euclid's Elements which, as Sir D'Arcy Thompson once remarked,(2) was
intended as a treatise on the five regular (Platonic) 3-polytopes, and not as an intro-
duction to elementary geometry. The second was the discovery in the eighteenth
century(3) of the celebrated Euler's Theorem (see §2.2) connecting the numbers of
vertices, edges and polygonal faces of a convex polytope in E3. Not only is this a
result of great generality, but it initiated the combinatorial theory of polytopes.
The third event occurred about a century later with the discovery of polytopes in
d ^ 4 dimensions. This has been attributed to the Swiss mathematician Ludwig
Schlafli;(4) it happened at a time when very few mathematicians (Cayley, Grassmann,
Mobius) realised that geometry in more than three dimensions was possible.

During the latter hah0 of the nineteenth century a large'amount of work concerning
polytopes was done, mostly extending the earlier metrical work to d ^ 4 dimensions.
The symmetry groups of polytopes were extensively studied (see §3.4) and the
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"regular" polytopes were discovered and rediscovered many times.(5) Many
famous mathematicians of this period made contributions to the subject, but very
little of their work was of a combinatorial nature, probably because one of the
central problems, the enumeration problem, had proved completely intractable
(see §2.1 and §2.5).

In spite of Minkowski's important work(6) on convex sets, and on convex poly-
topes in particular, there was a rapid decline in interest early in the present century.
Geometers began concentrating on other subjects, and the study of polytopes was
neglected by all except a very few. For this reason, a number of important results,
such as Steinitz' Theorem (§2.4) were unnoticed, and have become widely known
only during the last few years.

The modern theory of convex polytopes began about 1950. The work of Gale,
Motzkin, Klee and others caused a revival of interest especially in combinatorial
problems, and the publication of "Convex Polytopes"l7) in 1967 led directly to a
great deal of research. The influence of linear programming and other applications
to practical problems must also be mentioned.

In the present paper we shall be mainly concerned with the developments that
have taken place in this most recent period.

2. The Combinatorial Theory of Polytopes

2.1. The facial structure™

We work throughout in Euclidean space Ed (d ^ 0), using lower-case letters
x, y, etc. for points or vectors (we do not distinguish between these) and upper-case
letters for sets. All subspaces of Ed to be considered are affine subspaces, that is,
are given by a system of (not necessarily homogeneous) linear equations. A set of
points X = {x1}..., xn} is affinely dependent if there exist scalars (real numbers)
Xu ..., Xn, not all zero, such that

Alxl+ ... +Anxn = o, A 1 + . . . + A M = 0,

and X is affinely independent if no such scalars exist. An affinity, or non-singular
affine transformation, is a mapping A: Ed -* Ed which preserves affine dependence
and independence; it is a non-singular linear transformation followed by a trans-
lation. Any set S £ Ed is said to have (affine) dimension r (written dim S = r) if a
maximal affinely independent subset of S contains exactly r +1 points. The (unique)
affine subspace of smallest dimension containing S is called the affine hull of 5 and
is denoted by affS. Clearly dimS = dimaffS. In Ed, affine subspaces of d— 1
dimensions are called hyperplanes, those of 1 dimension are called lines, and we do
not distinguish betweeh a 0-dimensional affine subspace and the single point which
it contains.

A projectivity, or non-singular projective transformation, is a mapping of the
form

Lx+a
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where L is a linear transformation, a and b are fixed vectors of Ed and K is a constant
such that

W K)
det

If we write
T = {xeEd: <x,

so that T is a hyperplane if b ^ 0 and is empty otherwise, then the projectivity
maps Ed\T into Ed. (In the language of classical projective geometry, T is mapped
by the projectivity into the " hyperplane at infinity ".) Such a projectivity is said
to be permissible for a set S if S n T = 0 .

A set S £ Ed is convex if it has the property that for any pair of points x, y e S,
the line segment

with end points x and >», lies entirely in S. For any set S, the smallest convex set
containing S (the intersection of the family of all convex sets that contain S) is called
the convex hull of S, and is denoted by conv S. Clearly dim S = dim conv S.

A convex polytope P is defined to be the convex hull of any finite set of points
in Ed. A ^-dimensional convex polytope P will be referred to, for brevity, as a
d-polytope. A 2-polytope is called a convex polygon, but we shall refrain from
using the term " convex polyhedron " for a 3-polytope since the word " polyhedron "
has recently acquired a different technical meaning. The set of all d-polytopes in
Ed is denoted by 0>d.

A hyperplane H supports a closed bounded convex set S if H n S # 0 , and S
lies in one of the two closed half-spaces bounded by H. If H supports S, then H n S
is called a face of S. Every point of bd S (the boundary of S) lies on some sup-
porting hyperplane of S, and so belongs to some face of S. In the case of a d-poly-
tope P, the following properties hold:

(i) The faces of P are poly topes.

(ii) P possesses faces of every dimension 0, 1,..., d— 1. For brevity, a ./-dimen-
sional face is called a j-face of P. A 0-face is called a vertex, a l-face is called an
edge, and a (d— l)-face is called a. facet of P. The set of vertices of P is denoted
by vert P.

(iii) Every face of a face of P is also a face of P.

In certain applications it is convenient to introduce two improper faces, namely
0 (whose dimension is conventionally taken to be — 1) and P itself (a d-face of P).
If this is done then we have the following additional properties:

(iv) For every two faces F l 5 F2 of P, Ft n F2 is also a face of P. We write
Fj A F2 for Fi n F2.
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(v) For every two faces Flt F2 of P there exists a uniquely denned face Fx v F2

of P, namely the " smallest" face of P (in the obvious sense) which contains both
Fi and F2.

The combinatorial theory of polytopes is concerned with their facial structure,
and in this connection it is worth mentioning that properties (i), (ii), and (iii), on
which much of the theory depends, do not hold for convex sets in general. Let
2F{P) denote the set of all faces of P (both proper and improper). Then, with the
operations A and v denned in (iv) and (v) above, !F{P) is a lattice, called the face-
lattice of P. Two polytopes Px and P2 are said to be combinatorially equivalent
(written Px « P2) if their face-lattices ^"(PJ and .^(P2) are isomorphic. Equiva-
lently, Px « P2 if there exists a one-to-one inclusion-preserving mapping from
^(Pi) onto ^"(P2). Roughly speaking, combinatorially equivalent polytopes have
the same number of faces for each dimension arranged in the same way, but possibly
of different shapes. For example, every 3-polytope with 6 quadrilateral 2-faces is
combinatorially equivalent to the 3-cube. The combinatorial theory of polytopes
may be regarded as a study of the face-lattices ^"(P); it is concerned with combina-
torial equivalence classes of polytopes rather than with polytopes themselves.

It is clear that the image of a polytope P under a permissible projective trans-
formation is a polytope P' combinatorially equivalent to P. For certain d-polytopes
(for example those with d+\ or d + 2 vertices) the converse holds, that is, every
polytope combinatorially equivalent to P is the image of P under a permissible
projectivity. These are called projectively stable polytopes, an interesting class of
polytopes about which very little is known.(9)

The convex hull of d+1 affinely independent points is a d-polytope known as a
d-simplex (a 3-simplex is often called a tetrahedron). If all the proper faces of a
d-polytope P are simplexes, then P is called a simplicial polytope, and the set of all
simplicial d-polytopes in Ed is denoted by &>/. A d-polytope conv {(±1, ± 1,..., ±1)}
is called a d-cube, and a d-polytope all of whose proper faces are combinatorially
equivalent to cubes is called a cubical polytope. A number of other subsets of &A

t

defined by the combinatorial character of their proper faces have been studied, but
these two are the most important.

For each d-polytope P it is easy to establish by polarity that there exists a d-
polytope P*, called a dual of P, with the property that 2F{P) and ^"(P*) are anti-
isomorphic, that is, there exists a one-to-one inclusion-reversing mapping from
2F{P) onto 1F(P*). A dual of a simplicial polytope is called simple. A simplex is
an example of a self-dual polytope; many other such polytopes are known. A dual
of a d-cube is called a d-crosspolytope, the analogue of the familiar octahedron in £3.

If the ./-faces of a d-polytope P are simplexes for all j < r, and the fc-faces of a
dual P* of P are simplexes for all k ^ s, then we say that P is of type (r, s). In
this notation a simplicial d-polytope is of type (d— 1, 1) and a simple d-polytope is
of type ( l , d - l ) . It is easy to see that if r+s > d then P must be a simplex. It is
curious that no (r+j)-polytopes of type (r, s) different from the simplex are known
except when r or s is small.(10)
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Let c(v, d) represent the number of distinct combinatorial types of d-polytopes
with v vertices. (Clearly, only the case v > d ^ 3 is interesting.) The classical
enumeration problem is the determination of c(v, d) for all v ^ d +1. Apart from
the values c(d+1, d) = 1, and c(d+2, d) = [id2], only seven other values are known
and one of these has not been independently checked and so is open to doubt/11}

[Added in proof: Recently an explicit expression for c(d+3, d) has been found.
See note (62a).] Somewhat more is known about the number cs(v, d) of distinct
combinatorial types of simplicial d-polytopes with v vertices. We have cs(d +1, d) = 1,
cs(d+2, d) = [$d], and Perles' remarkable formula

where <\> is the Euler function, and the summation is over all odd divisors h of d + 3 .
This was determined using Gale diagrams (see §2.5). The only other values of
c£v, d) known(12) are cs(v, 3) for 7 < v ^ 12 and(13) cs(8, 4) = 37.

The central problem of the combinatorial theory may be stated as follows: find
necessary and sufficient conditions for a given lattice JSf to be isomorphic to the face-
lattice SF{P) of some polytope P. In this generality the problem seems completely
intractable except for the fact that the lattices of 3-polytopes may be characterised
by Steinitz' Theorem/13a) As this result is more naturally stated in terms of graphs,
we defer details until §2.4.

It is, of course, easy to find necessary conditions on &—to do this we need only
investigate the special properties of face-lattices. One such property is the following.
Let Fif F2 e ̂ (P) and Ft <= F2. To avoid triviality assume that dim Ft < dim F2 - 2
and consider the set of faces F e ̂ (P ) such that i^ £ F £ F2. These faces form a
sublattice of !F{P) and it is not difficult to prove that this sublattice is isomorphic
to the face-lattice of a (dimi5^ — dimFj — l)-polytope/14) We may denote this
polytope (or, rather, its combinatorial type) by F2/Fv For any face F, we have
F/0 « F. The polytopes P/F°, where F° is a vertex of P, have received considerable
attention in the classical literature where they are known as the vertex figures of P.
The most perspicuous proof of the above statements depends upon the fact that the
polytopes F2IFX can be exhibited as sections of P by affine subspaces of suitable
dimension. One might hope that the above property of the sublattices of 3F(P)
could be used as an inductive characterization of the face-lattices of polytopes.
This is, in fact, not the case/15)

By a maximal tower of faces of a d-polytope P we mean a sequence of faces

0 c F° c F1 cr ... c Fd~y c P

where each inclusion is proper and such that FJ is of dimension/ The study of such
towers may turn out to be a fruitful way of investigating ^(P) , although so far,
only one application of this idea is known/16)
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2.2. /-vectors of polytopes

Let P be any rf-polytope and write /}(P) for the number of /-faces of P. Then
we define the vector

in Ed to be the /-vector of P. It is convenient also to use the notation /(&), where
& is any family of polytopes, for the set {/(P): Pe&>}.

Since the problem of characterising the face-lattices of polytopes has proved too
difficult, it is natural to attempt the apparently simpler one of characterising the
/-vectors of polytopes. Although this problem is not completely solved, at least
some progress has been made, which we shall describe in this section.

The most basic result is:

THEOREM 1 (Euler's Theorem). For any P e 0>d, the relation

holds.

In other words, the /-vectors of all polytopes Pe^" 1 lie on a certain hyperplane
(the Euler hyperplane) in Ed. In a sense this is the best possible result for it is easy to
show that the set /(^d) lies on no affine subspace of smaller dimension, that is,
dimaff/(0)d) = d— 1. Many proofs of Theorem 1 are known; the most elementary
avoid all topological considerations/17)

For certain subsets & c ^ d , it may happen that d i m a f f / ^ ) < d— 1. The
case of simplicial polytopes is especially important:

THEOREM 2. dimaff/(^»/) = [\d], the [\d]-dimensional subspace aff/(0>/) being
defined by the equations

d-l

/or k= —1,0, 1, ...,d—l. (We adopt the convention /-i(P) = 1 and note that
k = — 1 leads again to the Euler equation.)

The equations of Theorem 2 are known as the Dehn-Sommerville equations/18)

The values k = d — 2, d — A, d — 6,..., lead to a linearly independent system which
can be solved to give about half of the numbers /}(P) in terms of the others. These
solutions are important in connection with the Upper Bound Conjecture stated
later in this section.

Although Theorems 1 and 2 give the exact dimension of aff/(^2"') and aff/(0>s
d)

respectively, they do not characterise the sets /(&**) and /(&/). That is to say,
not every vector with positive integral components belonging to the subspace defined
by Theorem 1 (or Theorem 2) is the /-vector of some d-polytope (or simplicial d-
polytope). In fact, the complete characterisation is known only in the case d = 3,
where we have the following theorem/19)

THEOREM 3. (i) ( / 0 , / i , / 2 ) e/(0>3) if and only i//QJx and/2 are integers satisfying
the relations/0-/l+/z = 2, 4 ̂ / 0 ^ 2/2-4, anc{ 4 ̂ / 2 < 2/0-4,
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00 (/o5/i./2)e/(^s
3) if and only iff0, ft and f2 are integers satisfying f0 ^ 4,

/ i = 3/o-M«rf/2 = 2/o-4.

The necessity of the condition (ii) is an immediate consequence of Theorem 2.
One surprising consequence of Theorem 3 is that no 3-polytope can have seven
edges. For d = 4 some partial results are known:(20)

THEOREM 4. (i) There exists a 4-polytope P with fo(P) = / 0 and /3(P) = / 3

if and only if the integers f0 and / 3 satisfy the inequalities 5 ^ / 0 ^ifsif^ — 3) and

(ii) There exists a 4-polytope P with fo(P) = / 0 and fy{P) =ft if and only if the
integers f0 and fx satisfy 10 ^ 2/0 ^fx ^ i / 0 ( / 0 - l ) , and (/0,/i) is not equal to
(6,12), (7,14), (8,17) or (10, 20).

Here, a feature of interest is the existence of the four exceptional pairs (fo,fi),
the last two of which seem " accidental" in that they are excluded by no known
general condition.(20a)

Since the precise characterisation of the sets f(^d) and / ( ^ / ) is unknown for
d ^ 4, an apparently simpler question regarding the numbers fj(P) has been exten-
sively studied, though again we are far from a complete solution. Given d and
v ^ d+l, consider the set of all d-polytopes with v vertices. Then it is clear that
for such polytopes P and for any j satisfying 1 < j <; d— 1, the set of integers fj(P)
must be bounded. The problem is to determine the least upper, and greatest lower,
bounds for this set, in terms of j , v and d.

Before stating the known results and conjectures, it is convenient to make a
digression by describing a special type of polytope known as a cyclic polytope.
Let us consider any v ^ d+l distinct points on the moment curve

{(T,T2, ...,xd): -oo < T < oo}

(or on any other rational normal curve) in Ed. Then the convex hull of these v
points is a d-polytope, denoted by C(v, d) and called a cyclic polytope. The com-
binatorial type of C(v, d) is uniquely determined in the sense that it depends only on
v and d and not on the choice of curve or of the v points on it. These cyclic poly-
topes have many interesting properties/21} They are simplicial and [JW]-neigh-
bourly. (A polytope is said to be ^-neighbourly if every subset of vert P containing
k points is the set of vertices of some face of P.) From this we deduce that, for

For [\d] ̂ j^d — \, slightly more complicated expressions for fj(C(v, d)) in terms
of binomial coefficients are known. We quote only
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Returning now to the problem of bounds for fs(P) we state the following con-
jecture:

THE UPPER BOUND CONJECTURE. For all Pe^d withfQ(P) = v, and for j = 1,
2 , . . . , d - l ,

fj(P)<fj(C(v,d)).

In other words, for each dimension j , the simplicial polytope C(v, d) has, for
given v and d, the maximum possible number of ./-faces. The fact that the maximum
is attained for a simplicial polytope is easily proved, but that/J(C(y, dfj is the least
upper bound has been proved only if v is either " sufficiently small", or else " suf-
ficiently large ", compared to d. More precisely, we have:

THEOREM 5. The upper bound conjecture holds for the following values ofj, v and d:

(i) For every j , 1 <y < [\d\.

(ii) For every j — n+p, and

(a) d = In and v ^ n-p-2+ ^— n(n+1),
p + 2

(b) d = 2n+l andv^n-p-2+?—-(n+l)(n+2).

(iii) For each j,\^j<d and v ^ d+3.

(iv) For each j , 1 < j < d and v < 8.

(v) For j = d-\ and

(a) d = 2nandv^nz-2,

(b) d = 2/1+1 and v > (w+l)2-3.

(vi) (a) For d = In, j = n, and v > %(n2 + 3n — 6).

(b) For d = 2n+1, j = n, and v > i(n2 + 5n-4).

(vii) For j = [%d], v = d+4.

(viii) (a) For d = 9, y = 4.
(b) Fo rd= 10,./ = 5 .

If will be observed that, in the case of facets (j = d— 1), for each dimension d,
the conjecture has been proved for almost all (that is, all except a finite number of)
values of v.

The proof(22) of Theorem 5 (some parts of which are very recent) is too technical
for us to describe here. It depends heavily on the Dehn-Sommerville equations
and their solutions (Theorem 2). It also makes use of a number of lemmas implying
linear inequalities between the numbers fj(P). Opinions seem to be divided as to
whether the conjecture will ever be completely proved by an extension of these
methods. The authors make the guess that a complete proof will become possible—
if ever—only when some completely new method is devised. Even the possibility
that the Upper Bound Conjecture fails for some large values of v and d should be
considered; pairs of the type v = 2d seem to be good candidates.
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Even less progress has been made in attempts to solve the other problem, that
of determining greatest lower bounds for the numbers fj(P). We have the
following:(23)

THEOREM 6. For all Pe0>d, 1 ̂  j < d-1 and 5 ^ d+1 < v < d + 4,

It has been conjectured that this result holds for all v with d +1 < v ^ 2d. For
v > Id no one has even ventured to guess the minimum possible value of fj(P) nor
the type of polytope for which the minimum is attained.

In the case of simplicial polytopes, rather more is known.

THE LOWER BOUND CONJECTURE. For all P e ^ / withfo(P) = v,

for l<J<d~2>

and fd.1(P)>(d-l)v~(d+ l)(d - 2).

These lower bounds are attained for polytopes obtained from the simplex by
(repeatedly) adjoining suitably low pyramids to its facets.

The extent of our present knowledge is summarised in the following theorem.(24)

THEOREM 7. The lower bound conjecture is true ifd^ 5 or ifv < d+11.

Strange as it may seem, though the restriction of our attention to simplicial
polytopes simplifies the extremal problems just described, restrictions to other classes
of polytopes seem, if anything, to make the problems more difficult. For example
let us consider the class ^o

d of d-polytopes that are centrally-symmetric. (We say
that P has a centre c if, for each xevertP, the point 2c—xevertP also. As far
as the combinatorial theory is concerned, centrally-symmetric means combinatorially
equivalent to some polytope with centre.) Then one can ask for the maximum
(minimum) number of ./-faces of a polytope P e ^ o

d with some specified number of
vertices. In this case no one has even conjectured the bounds, nor guessed for which
polytopes they are attained. In the case of the upper bound, one reason for this is
that centrally-symmetric polytopes cannot have neighbourliness properties analogous
to those of the cyclic polytopes. The following has been conjectured:

CONJECTURE/2
 5) Let P be a d-polytope with centre and with 2(d+ri) vertices

(n ^ 1). Then P is at most [(d+n-l)(n+\)~^-neighbourly.

(Here ^-neighbourly means that every subset of vertP containing k points,
but not containing any two vertices whose join passes through the centre of P, is
the set of vertices of a face of P.)

In the case of cubical polytopes, nothing is known about the bounds for fj(P),
and the same applies to, for example, self-dual polytopes. Many unsolved problems
remain in this area, none of which would appear to be easy.
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It has recently been remarked^6) that there are a number of quantities related to
complexes, besides the Euler characteristic, that are invariant under subdivision of
the cells. These are defined in terms of the numbers of incidences between the cells
of # of different dimensions. So far, it appears that these invariants have not been
used at all in the theory of polytopes.

2.3. Complexes

A completely different approach to the problem of characterising the face-lattices
of polytopes is through the theory of complexes, well-known (in the simplicial case
at least) in the investigation of topological spaces. Here we summarise the relevant
results.(27)

A topological polytope P' is the image of a convex polytope P under a homeo-
morphism $ : P ->£". The faces of P' are the images of the faces of P under 0,
and the dimension of P' is defined to be the dimension of P. Sometimes we shall
use the term geometric polytope for a convex polytope when we wish to emphasise
the difference from a topological polytope. A geometric (topological) cell complex
# = {C,-:/eJ} is a finite family of geometric (topological) polytopes (cells) in
Euclidean space E" such that

(i) Every face of a cell C,- of # is itself a cell of eS.

(ii) The intersection Cx A C2 of any two cells of # is a face (proper or improper)
of each of them.

Extending the notation for polytopes in the obvious way, the number of y-cells
in # is denoted by fffi). # does not, in general, form a lattice since Cy v C2 may
not be defined, but its cells are partially ordered by inclusion. An abstract cell
complex is any set of polytopes on which an operation A is defined, and which
satisfies (i) and (ii). We say that two complexes ^t and # 2 are isomorphic (combina-
torially equivalent) if there is a one-to-one correspondence between them which
preserves the relation of inclusion. Similarly, dual complexes may be defined.

The dimension of # is defined to be k if it possesses cells of dimension k, but no
cells of dimension k +1. For brevity, a ^-dimensional complex is called a k-complex,
to which we shall usually attach the adjective geometric or topological. A 1-comp.ex
is called a graph, the properties of which will be investigated in more detail in §2.4.

Let d be given. Then a geometric or topological /:-complex %> with k ^ d is
said to be geometrically (topologically) embeddable in Ed if there exists a geometric
(topological) /c-complex in Ed which is isomorphic to (€. If d = 2, then we shall
refer to an embeddable 1-complex (graph) as a planar graph. It is a consequence of
Steinitz' Theorem (Theorem 11 of §2.4) that in this particular case we do not need
to distinguish between geometric and topological embeddability.

We now summarise the known results about embeddability/2 8)
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THEOREM 8. (i) If an n-complex is simplicial it is always geometrically embeddable
in E2n+1, but some simplicial n-complexes are not topologically embeddable in E2".
(An example, for n = 1, is provided by the well-known non-planar graphs.)

(ii) / / an abstract n-complex is not simplicial then it may not be topologically
embeddable in any Euclidean space. (An example is provided by the 2-complex
containing 6 pentagons as 2-cells formed by identifying opposite vertices of a regular
dodecahedron.)

(iii) / / a topological n-complex is geometrically embeddable in some Euclidean
space, then it is necessarily geometrically embeddable in E2n+1.

(iv) Complexes exist which are geometrically embeddable in Ed, and topologically
(but not geometrically) embeddable in E" for some n < d.

A number of questions on embeddability are suggested by Theorem 8, of which
we mention only one:(28a) / / a simplicial k-complex is topologically embeddable in
E2k, is it necessarily geometrically embeddable in £2*?

The relevance of the above considerations to polytopes is as follows. Naturally
associated with each d-polytope P is a family of d +1 geometric complexes, namely
for 0 ^ k < d, the set of all y-faces of P with j ^ k. The A>complex so formed is
called the A:-skeleton of P and is denoted by skelft P. The 1-skeleton of P is called
its graph and the (d— l)-skeleton of P is called its boundary complex. A A:-complex
is called d-polytopal if it is isomorphic to the ^-skeleton of some d-polytope.

Although attempts to characterise polytopal complexes have proved just as
fruitless as the attempts to characterise face-lattices of polytopes (the problems are
clearly closely related), investigations have produced a number of interesting results
which are partial in the sense that they provide necessary (but not sufficient) condi-
tions for a given complex to be polytopal. Most of these concern graphs. We state
them in a theorem, following which is an explanation of the terms used.

THEOREM 9. (i) The graph of a d-polytope is d-connectedS29)

(ii) The graph of a d-polytope contains a subgraph which is a refinement of the
graph of a d-simplexP^

(iii) Given any m = [$(d+1)] pairs (ah bs) (i = 1, ..., m) of vertices of a d-polytope
P, there exist, in the graph of P, m disjoint edge-paths, the i-th path joining ax to biP

i)

The term edge-path is self-explanatory. A graph is d-connected if every pair of
its vertices (nodes) can be joined by at least d disjoint edge-paths. Equivalently,(32)

it is d-connected if it has at least d+1 nodes and if every graph formed by erasing
d— 1 or fewer nodes is connected. A graph <^ is a refinement of a graph <S2 if there
exists a homeomorphism 0 : | ^ J -> |^2I such that for each cell (edge or node)
C e # 2 , $~\C) = \9'\ for some subcomplex 3?' of £ , . (Here, as usual, \<3\ means
the set of all points belonging to the cells of ^.)

Various extensions of Theorem 8 are known. For example (i) and (ii) have been
generalised(33) to skeletons of dimension d > 1. It has been conjectured03a) that
in (iii) the result remains true if m = [%d]; it clearly cannot hold for any larger value
of m.
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Theorem 8 (i) implies that the graph of any poly tope can be embedded in E3.
This leads naturally to consideration of the following problem: What is the minimal
dimension of a Euclidean space in which the k-skeleton of a d-polytope may be geo-
metrically (topologically) embedded? The answer to this question is given com-
pletely by the following :(34)

THEOREM 10. Let P be a d-polytope. Then the smallest value of n such that
skelfc P is geometrically embeddable in En is equal to the smallest value of n such that
skelft P is topologically embeddable in E", and

n =

rd
d-l
,2/c+l

if
if
if 2k+2^d.

The problem of characterising the skeletons of polytopes is complicated by the
phenomenon of dimensional ambiguity. This means that it is possible for skelft P t

to be isomorphic to skelfc P2, even when PY and P2 are polytopes of different dimen-
sions. The simplest example of this is given by the isomorphism between the graph
of the 5-simplex and the graph of the cyclic polytope C(6,4) (defined in §2.2).
Dimensional ambiguity cannot arise(35) if k ^ [\d], but it is necessary to take
k = d - 2 for the isomorphism of skelfc i \ and skelfe P2 to imply the combinatorial
equivalence^6) of Pt and P2.

Theorem 10 implies that the boundary complex skel^-i P of a rf-polytope P can
be embedded in Ed but in no space of lower dimension. However, if we delete from
skeld_! P any one open (d- l)-cell (corresponding to a facet Fx

d~1 of P), the resulting
(d— l)-complex is geometrically embeddable in Ed~x. This embedding may be
carried out in the following way. Choose any point x e Ed which is on the same side
of aff Ff~x as P for each facet Fd~l of P with i # 1, and on the opposite side of
aff Fx*~x from P. Then projecting bd P\Fx

d~x by rays through x on to aff Fx
d~x

yields the required complex <6. Notice that \<6\ = F^'1. This particular complex
is known as a Schlegel diagram, and occurs frequently in the classical literature in
connection with problems on polytopes. Unfortunately, necessary and sufficient
conditions for a (d-l)-complex to be the Schlegel diagram of some polytope are
not known, a fact that has led to a number of errors in the past.(37)

2.4. 3-polytopes

We know a great deal more about 3-polytopes than about polytopes of higher
dimension. Even so, many questions of an elementary nature remain unanswered/38)

Continuing the treatment of §2.3, we shall be concerned mainly with the graphs
of 3-polytopes. The fundamental result, providing a converse to Theorem 9 (i), is
the following:

THEOREM 11 (Steinitz' Theorem). A graph is 3-polytopal if and only if it is planar
and 3-connected.
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This theorem has an interesting history, including the publication of a number of
incomplete proofs. Its importance lies in the fact that it enables us to deduce proper-
ties of 3-polytopes from graph-theoretic results, and vice-versa. It is a curious fact(39)

that several authors have used this technique without even noticing that Theorem 11,
or something equivalent to it, is necessary for the method to be valid. Several proofs
of Theorem 11 are known,(40) none of which is easy, and except for the partial result
of Theorem 9 (i), no extension to higher dimensions is known.

Theorem 11 has several immediate consequences. It shows that every graph 0
that can be topologically embedded in the plane can also be geometrically embedded,
that is, with straight edges. (If 0 is 3-connected, then it is isomorphic to skelj P
for some 3-polytope P, and so to the 1-dimensional skeleton of a Schlegel diagram
of P, see §2.3. This is a geometric complex.) The same argument also shows that
it can be embedded in such a way that each " country " (region of the plane bounded
by edges) is a convex polygon. From Theorem 11 we can also deduce that the iso-
morphism of the graphs of two 3-polytopes is sufficient to ensure their combinatorial
equivalence.

Theorem 11 may be proved by induction on the number of edges in the graph <S.
Roughly speaking, we can define a number of elementary transformations that
reduce 0 to a graph with fewer edges, whilst preserving the property that ^ is 3-
polytopal. Eventually we can reduce the graph to one with 6 edges, and since it is
3-connected, it is the graph of the 3-simplex and so is 3-polytopal. The same tech-
nique has been applied to the proof of several other properties of 3-polytopes, such
as the following, the second of which is metrical.

THEOREM 12. Every 3-polytope is combinatorially equivalent to one whose vertices
have rational co-ordinates in a given Cartesian co-ordinate systemS41)

THEOREM 13. If one face of a 3-polytope is an n-gon, then there exists a polytope
P' combinatorially equivalent to P, of which the corresponding face is any arbitrarily
prescribed n-S42^

These results are interesting in that the analogues in higher dimensions do not
hold (see §2.5).

The next few results can be formulated either in terms of graphs or in terms of
3-polytopes. We prefer the latter.

An edge-path in a polytope (corresponding to an edge-path in its graph) is said
to be simple if it contains no vertex more than once. If the final vertex of an edge-
path coincides with the first vertex, then it is called an edge-circuit, and an edge-
circuit is simple if it visits no vertex more than once. A simple edge-path or edge-
circuit on P is called Hamiltonian(43) if it passes through every vertex of P. It is
easy to show that not every 3-polytope has a Hamiltonian circuit, or even a Hamil-
tonian path. An example of a 3-polytope with these properties is illustrated in
Figure 1. It consists of a regular octahedron with a low triangular pyramid erected
on each of its eight triangular 2-faces. The fourteen vertices are of two types: six
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Fig. 1

0-stage vertices which belonged to the original octahedron (shown as • ) and eight
1-stage vertices (shown as o) which are the apexes of the pyramids on the faces of the
octahedron. It is apparent that if we list the vertices of P in the order in which an
edge-path visits them, then no two 1-stage vertices can occur consecutively in the
list (for no two vertices of this type are joined by an edge). Since there are only six
0-stage vertices available, not more than 7 1-stage vertices can occur in any simple
edge-path, and not more than 6 1-stage vertices can occur in any simple edge-circuit.
We deduce that this polytope possesses no Hamiltonian path or circuit.(44)

In 1880 Tait(45) conjectured that every simple 3-polytope possesses a Hamiltonian
circuit. This was proved false in 1946 by W. R. Tutte. If Tait's conjecture had been
true, then a very simple proof of the famous 4-colour theorem would have resulted.
We now have the following powerful result.(46)

THEOREM 14. There exist constants a < 1 and c such that for each positive integer
n ^ 4 there exists a simple 3-polytope Pn with n vertices such that the longest simple
edge-path on Pn contains less than [cna] vertices of Pn.

The best values of a and c, known at present,(47) are a = 1—2~u and c = 3/2.
Another result of interest*48* is:

THEOREM 15. Every ^-connected planar graph admits a Hamiltonian circuit.

On the other hand there are many unsolved problems, such as the following
conjecture of Barnette:

CONJECTURE. / / every 2-face of a simple 3-polytope is a polygon with an even
number of edges, then P admits a Hamiltonian circuit.

The corresponding result with " even " replaced by " divisible by 3 " is known
to be false.

Extensions of these results to d ^ 4 dimensions are of two types. Firstly we have
the extensive investigations of Klee into edge-paths on d-polytopes, of which an
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excellent account already exists.(49) Secondly we have the idea of Hamiltonian
(d — 2)-manifolds in a d-polytope. This seems to be a completely unexplored field
except for a single application in the case d = 4 by Barnette.(50)

The remaining properties of 3-polytopes to be described in this section are of a
numerical nature. Write pk(P) (or pk if there can be no confusion) for the number
of fc-gonal faces of a 3-polytope P (k^ 3). Then it is easy to prove from Theorem
1 (Euler's Theorem) that

£ 1 2 . (1)

If the polytope is simple then
Z 3 ( 6 - * ) A = 1 2 , (2)

and if P is 4-valent, that is, four edges meet at each of its vertices, then

E (4 -k)pk = 8. (3)

We shall say that the finite sequence (p3(P),P*(P), ...) is associated with the polytope
P. Consider the following problem: Given any finite sequence (ps,p^, ...) of non-
negative integers, find necessary and sufficient conditions for it to be associated with
some 3-polytope P, that is pk(P) = pk for all k ^ 3.

Relations (1), (2) and (3) give necessary conditions in the case of 3-polytopes,
simple 3-polytopes and 4-valent 3-polytopes respectively, but it is clear that they
are not sufficient. One reason is that/?6 is absent from (1) and (2) (and/?4 from (3))
yet the value of p6 (or p4) is of importance.

Sufficient conditions are known in a number of special cases. To begin with, let
us suppose that pk is zero for all except one particular value of k. Then (1) implies
that k = 3, 4 or 5 and we have the following results of Hawkins, Hill, Reeve and
Tyrrell:(5Oa) If pt = Ofor i # 3, then 3-polytopes exist for which p3 is any even integer
satisfying p3 ^ 4. If Pi = 0 for i ^ 4, then 3-polytopes exist for which />4 = 6 or is
any integer satisfying p4 ^ 8 . If pt = 0 for i # 5, then 3-polytopes exist for which
ps = 12 or is any even integer satisfying p5 ^ 1 6 .

If pk is non-zero for exactly two values of A;, then some similar results are known.
For example,(51) (p3,P4,Ps,P6) = (4, 0, 0, r) is associated with a 3-polytope if and
only if r is a non-negative even integer, and (p3, p4, Ps,p$) = (0, 0, 12, r) is associated
with a 3-polytope if and only if r = 0 or r ^ 2. Other results of this type (51a) apply
only to simple or 4-valent polytopes.

More generally, we have the following theorem:(52)

THEOREM 16. (i) (Eberhard's Theorem). Ifp3, /?4, p5, pn, p6, ... is a finite set of
non-negative integers which satisfies (2), then there exists a value ofp6 such that the
sequence {p3yPA.,P5,Pe,Pi, •••) is associated with a simple 3-polytope.

(ii) Ifp3, p5, p6, p1} ... is a finite set of non-negative integers which satisfies (3),
then there exists a value ofp4 such that the sequence (p3,P4,Ps,P6, ...) is associated
with some 4-valent 3-polytope.
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The proofs of both parts of the theorem are similar, and that of (i) is far from
easy. In neither case does the proof yield any information about the permissible
values of p6 (in (i)) or /?4 (in (ii)), for they depend on constructions in which immense
numbers of hexagon (or quadrilaterals) are introduced. Nothing is known about
the minimum permissible value of p6 in the case of simple polytopes, except when
p3 = p^ = 0, that is to say, when there are no triangular or quadrilateral 2-faces:(53)

THEOREM 17. If ps, plt p8, ••• are non-negative integers satisfying (2) with

Pz = P* — 0 a n d Pe ^ 8, then (ps,P6,Pi> • ••) « associated with a simple 3-polytope.

A similar result cannot hold without the condition p3 = p4 = 0 since sets of
integers p3, p4, ps, plt p8, ... are known for which the permissible values of p6 omit
infinitely many integer values.(54) A very recent result, which gives a lower bound
for p6, is the following:(55)

THEOREM 18. If P is a simple 3-polytope and Z pk{P) ^ 3, then
fc>6

8- i A(P)+i Z (*-
k=3 fc>7

By duality, exactly equivalent problems can be formulated for the valencies of the
vertices of a 3-polytope. Other relations are known connecting both the numbers
vk(P) of vertices of P with valency k, and the number pk{P). For example,

Z (6-k)pk(P) + 2 £ (3-k)vk(P) = 12, (4)
/ £ 3 k>3

and Z (4-A:)(pk(P) + yfc(P)) = 8. (5)

Each such equation leads to problems analogous to those following Theorem 16,
most of which are at present unsolved.(56) Other generalisations of these results to
non-polytopal graphs are known, but to discuss these would lead us too far from
the main topic of this paper.(57)

2.5. Gale diagrams and c.s. diagrams^58)

Some of the more important recent advances in the theory of convex polytopes
have used the idea of representing a polytope by a " diagram ". From a diagram
of P we can read off, in a simple manner, those subsets of vert P which are vertices
of faces of P, and in this way the whole combinatorial structure of P becomes ap-
parent. Further, if the number of vertices of P is not too large, then the dimension
of the diagram is small compared with that of P.

The idea originated in 1956 in a paper by David Gale/59) though its importance
was only realised as recently as 1966 by M. A. Perles. In 1968 another form of
diagram, called a c.s. diagram, was introduced. Here we shall describe the construc-
tion of both types of diagram, and explain some of their applications.

First let us consider Gale diagrams, as they are now called. If P is a d-polytope
with n vertices, then a Gale diagram of P consists of a set of n points in E"~d~* in
one-to-one correspondence with the vertices of P. We first describe how to construct
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a Gale transform. As before, write vertP for the set of vertices of P, and let
vertP = {*!, ...,*„}. Consider the set D(vertP) of affine dependences of vertP,
that is, the set of all vectors (Xit..., Xn) e E" such that

*!+ ... +XnXn = O, \

1 (1)

It is trivial to verify that D(vert P) is a vector space of dimension n—d—\, and we
choose a basis for it, say {au ..., an-d-^. Write ai — (aJU ..., a,n) for

j= 1, . . . , / i - d - l

and let
K \ /an • • • am \

<*n-d- an-d-l,n

be the (n—d — \)xn matrix with rows alt ..., an-d-i. Then for each i = 1, ..., n let

*i = (ai«> •••> a n - d - i , .-)6-En

be the i-th column of ^(vertP). The set 7= {x1} ..., xn}eEn~d~l is called a Gale
transform of F = vert P. Notice that in V several points may coincide, even though
V consists of distinct points. In the transform we must therefore label such points
with their multiplicities.

There is clearly much arbitrariness in the construction of a Gale transform: for
example there is freedom of choice of the basis of D(vert P). To see how V deter-
mines the combinatorial properties of P = conv V, it is convenient to make the
following definition. A subset Z £ V is called a coface of P if conv ( F \ Z ) is a
face of P. Also, for any subset Z s F w e write Z £ Vfor the set of transforms
xt of all the vertices xt of P in Z.

THEOREM 19. For any d-polytope P, with V = vert P, a subset Z £ V is a coface
of P if and only if, in a Gale transform V of V,

o G relint conv Z.

(o is the origin and " relint" means " relative interior of".)

x3 xA

Fig. 2

BULL. 3
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Fig. 3

Given a^Gale transform of vert P, Theorem 19 enables us to determine by inspec-
tion, those subsets of vert P that are vertices of a face of P. As examples, in Figures
2 and 3 we reproduce Gale transforms of two familiar 3-polytopes, the regular
octahedron and the triangular prism. In each case we have labelled the vertices of
P and the corresponding points of the 2-dimensional Gale transform of P.

For any Gale transform V of V, it is clear from the construction that o is the
centroid of V. Further, since each vertex of P is a face of P, by Theorem 19,
o e relint conv W where W c vert P is any subset formed by deleting exactly one
vertex of P. Equivalently, in any Gale transform V of V, at least two points of V
lie in every open half-space bounded by a hyperplane through o. If both these
conditions hold for an arbitrary set of n points in £"~d~1, then it can be shown that
this set is a Gale transform of vert P where P is some d-polytope with n vertices.
In fact, in a certain sense, the relationship between V and V is symmetrical.

Intuitively the algebraic construction of V described above is difficult to compre-
hend. Recently a geometrical construction for Gale transforms has been described.
In E"~l let Ld and Ln.d.v be orthogonal affine subspaces of dimensions d and
n—d—l, and write nd and nn-d-1 for orthogonal projections on to Ld and Ln_d^l

respectively. Let T""1 cz En~x be a regular (n — l)-simplex, that is one whose edges
have equal length, with centroid at o = Ld n Ln_d.l. Then

*„_,_! (vert T1"1) e l , , , . , . !

(with 7rn_d_ x Ld as origin) is a Gale transform of the set of points nd (vert Tn~l) <= Ld.
The one-to-one correspondence between these two sets of points arises in the obvious
way: If vert T""1 = {yu ...,yn} and xt = ndyh then xt = nn.d.lyi. Since it can
be shown that every d-polytope with n vertices is affinely equivalent to the image of
T""1 under orthogonal projection on to some suitably chosen rf-dimensional sub-
space Ld, the above construction defines a Gale transform of the set of vertices of
any polytope, at least within an affinity. The geometrical construction makes ap-
parent the symmetry between V and V mentioned above.

We now generalise the idea of a Gale transform. Let Y = {yu ...,>'„} and
Z = {zj, ...,zn} be two sets of n points in some Euclidean space. Then we say that



CONVEX POLYTOPES 275

Y and Z are isomorphic if, for every subset {iu ..., /,} of {1, ..., n} (1 ^ j ^ n) either
both the relations

oerelintconv{.ylV ..., yh}

and o e relint conv {zh, ..., zty}

hold, or neither does. Any set of « points in £"~d~1 which is isomorphic to a Gale
transform of vert P is called a Ga/e diagram(60) of P. Clearly every Gale diagram
of a polytope P determines the combinatorial type of P, and, in fact, Gale diagrams
are much more useful than Gale transforms. The reason for this is that it is possible
to find a Gale diagram for a polytope in canonical form. We shall illustrate this
statement in the case where n = d + 3, so that each Gale transform and Gale diagram
of P is 2-dimensional. Here there are two possible canonical forms, both of which
are essentially unique.

To begin with, if x e V and x ^ 0, we may replace x by any point on the same
ray from the origin (that is, on the open half-line containing x with o as end-point).
Hence there is no loss of generality in restricting attention to Gale diagrams in which
every point lies either at o, or on a unit circle S1 centred at o. Secondly, if points
of the diagram lie only at corresponding ends of " adjacent" diameters of Sl, then
they may be moved into coincidence, or split into more such diameters, without
altering the isomorphism type of the diagram (see Figure 4). Finally we may also
assume, for convenience, that all the diameters of S1 containing points of the diagram
are at equal angles to their neighbours. In this way we obtain the contracted standard
Gale diagram of P, which contains points on the minimum possible number of
diameters, and the distended standard Gale diagram which contains points on the
maximum possible number of diameters. These are the two canonical forms men-
tioned above. In Figure 4 the contracted and distended forms of the given Gale
diagram are shown. In Figure 3, the Gale transform illustrated is both a contracted
and distended Gale diagram; in Figure 2, the Gale transform is a contracted Gale
diagram and the corresponding distended diagram is illustrated in Figure 5.

contracted distended

Fig. 4
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Fig. 5

We now summarise some of the properties of Gale diagrams:

THEOREM 20. (i) A set Vofn points in En~d~i is a Gale diagram of a d-polytope
P with n vertices if and only if every open half-space in En~d~i bounded by a hyper-
plane through o contains at least two points of V (or, alternatively, all the points of V
coincide with o and then P is a simplex).

(ii) If Fd~x is a facet of P, and Z is the corresponding coface, then in any Gale
diagram V of P, Z is the set of vertices of a (non-degenerate) simplex with o in its
relative interior.

(iii) A polytope P is simplicial if and only if, for every hyperplane H containing

o $ relint conv (V n H).

(iv) A polytope P is a pyramid if and only if at least one point of V coincides with
the origin oeE"~d~1.

Numerous other results are known, for which the reader is referred to the original
publications. For example, it is possible to read off, from a Gale diagram of P,
Gale diagrams of the various faces of P, the vertex figures of P, and so on. It is
even possible to determine the symmetries of P and certain other metrical properties,
see §3.4.

The applications of Gale diagrams will be illustrated by four examples. All of
these, except II, lead to results which are inaccessible by other known methods.

I. Bearing in mind Theorem 20 (i) and (iii) we see that every simplicial d-polytope
corresponds to exactly one of the contracted standard Gale diagrams of the sequence
illustrated in Figure 6. The permissible multiplicities of the various points are
indicated.

etc.
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C(5,2) C(9, 6)

It is possible to enumerate the number of diagrams with a given number of
points using Polya's Theorem,(61) and hence we arrive at Perles' formula(62) for
cs(d+3,d) quoted in §2.1. This result is the only major advance in the enumeration
problem for convex poly topes in over half a century. It seems possible(62a) that
similar considerations may lead to a determination of c(d+3, d).

II. By considering Gale diagrams of the cyclic polytopes C(d+3, d) (see §2.2)
it is easy to establish(63) the Upper Bound Conjecture for d-polytopes with d + 3
vertices. The Gale diagrams are illustrated in Figure 7.

III. Certain configurations in the projective plane cannot be rationally embedded.
To find such a configuration C we need only choose a set of lines and points in such
a way that the incidences imply that one set of four points in C has irrational cross-
ratio. Then it is impossible for the co-ordinates of all the points of C to have rational
co-ordinates. For any such configuration one can construct a set of points in E3

satisfying the conditions of Theorem 18 (i) that cannot be rationally embedded.
This is a Gale diagram of a d-polytope P that cannot be rationally embedded in Ed.
The " smallest" example known of a polytope with this property is an 8-polytope
with 12 vertices;(64) in this way we have established the surprising fact that the
property of 3-polytopes stated in Theorem 12 does not hold for d-polytopes(65) with
d ^ 8. Whether or not this property holds also for d = 4, 5, 6 or 7 is an open
question.

IV. It can be shown by means of Gale diagrams that the 8-polytope mentioned
in III has the property that one cannot prescribe the shape of one of its facets, thus
showing that the analogue of Theorem 13 does not hold in d $s 8 dimensions.(66)

These four applications illustrate the usefulness of Gale diagrams in solving
combinatorial problems, especially when the number of vertices n is not much bigger
than d. If n > Id then the dimension of a Gale diagram is larger than that of the
polytope, and so there is not much advantage in using it. Since every centrally-
symmetric d-polytope has at least 2d vertices, it will be seen that Gale diagrams are
virtually useless in this case. For this reason c.s. diagrams were introduced. As in
the case of Gale diagrams, these can be formulated in both an algebraic and a geo-
metric manner.

Let P be a centrally-symmetric d-polytope with In vertices. Taking the centre
of P as origin, we may write vert P = X = {±xu ..., ±xn}. Write X+ = {xl}..., xn}
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and let L(X+) be the set of all linear dependences of X+, that is, the set of all vectors
(Al5..., Xn)sE" such that

Xtxt+ ... + Xnxn = o.

It is clear that L(X+) is a vector space of dimension n—d. Let aj = (o,1}. . . , <xJn)
for ; = 1, ..., n-d be a basis of L(X+) and let B(X+) be the (n-d)xn matrix whose
rows are au..., an_d. If we write xt = (<xu,..., an_d>,) for the i-th column of B(X+)
then the set of points {±x l 5 . . . , ±xn}eEn~d is called a c.s. transform of X. The
result corresponding to Theorem 17 is as follows:

THEOREM 21. Lef e^v,,,..., erxir (es = ± ) be any r points of X with distinct
suffixes j l 5 ..., ;r. Then

convfox,,, ...,erx,r}

is a face of P = conv X if and only if

BiX/,, + ... + srx,verelintconv{(±x/l± ... ±x,n_r)} (1)

where {j\, ...,yn-r} = {1, . . . , «} \0 ' i , . . . , U> ^w^ ^/ e expression on the right of (1)
is to be interpreted as o if n = r.

The geometrical construction for c.s. transforms is analogous to that described
above for Gale transforms—the only difference is that we use orthogonal projections
of the regular crosspolytope X" instead of projections of the regular simplex Tn~x.
(Xn, which is a dual of the n-cube, is defined by

Xn = con\{±el,..., ±en}

where eu ...,en are mutually orthogonal unit vectors.)
Isomorphic c.s. transforms are defined in a manner analogous to isomorphic

Gale diagrams (using Theorem 21 instead of Theorem 19) and, similarly, c.s. diagrams
are defined. Due to the comparatively complicated statement of Theorem 21 (as
opposed to Theorem 19), the use of c.s. diagrams does not immediately lead to the
solution of any enumeration problems. In fact, the simplest nontrivial case, that of
determining the number of combinatorial types of centrally-symmetric d-polytopes
with 2(d+ 1) vertices, is still unsolved. On the other hand, c.s. diagrams provided the
method of establishing the conjecture at the end of §2.2 on the neighbourliness
properties of centrally-symmetric polytopes in the case n = 1 and n = 2. They
have also been applied to the study of polytopes with an axis of symmetry, but as
these properties are metrical, their consideration will be postponed to §3.4.

3. Metrical^Properties of Polytopes

3.1. General remarks

The most famous problem in the metrical theory of convex sets is the classical
isoperimetric problem; one asks for the convex set of given volume that has the
smallest surface area. Consideration of this problem led Minkowski and other
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mathematicians into a detailed investigation of the volumes and mixed volumes of
convex sets. We shall not describe these here; for one thing, polytopes only play
an auxiliary part, and for another, excellent accounts already exist.(67) If Kt Kn

are n convex sets in Ed, and Xu ..., Xn are real numbers, then the linear combination
Xx Ki+ ... + XnKn is defined to be the convex set

{Ai*i + ... + Xnxn: x(€Ku i= 1, . . . ,«}.

If we write vd(K) for the volume of a convex set K in Ed in the Peano-Jordan sense
(it is easy to show that this always exists) then it can be proved that, for Xx ^ 0
( i = l , . . . , / f ) .

vd{XxK,+ ... +XnKn) = UtlAh...Xldv(Kit, ...,Kid),

where summation on the right is over all suffixes 1 < ^ < w, 1 ^ y < d. In other
words, vd{X1K1+ ... +XnKn) is a homogeneous polynomial of degree d in the Xt.
If we arrange that the coefficients v(Kh,..., Kla) are invariant under permutation of
the Kip then these coefficients are called the mixed volumes of the given sets. Many
properties of mixed volumes are known, though there are still a number of unsolved
problems.(68) The above definition of mixed volumes will be required in §3.3.

Although polytopes play no part in the classical isoperimetric problem or its
solution, there are a number of similar problems to which they are relevant.(68a) For
example, we may ask which 3-polytope of given volume has the shortest possible
total edge-length. Or, we may ask which packable 3-polytope of given volume has
the smallest possible surface area. Here packable means that E3 can be covered by
translates of the given polytope in such a way that these translates have intersections
of zero volume. Solutions to these problems, and many more of a similar nature,
are unknown.(69)

The idea of packable polytopes leads us immediately to the mention of their
relevance to the study of point sets in Ed. If, for example, p is one point of a lattice
of points in Ed, then the set of points x such that \\x— p\\ ^ \\x— p'\\ for all lattice
points p' distinct from p, is a convex polytope traditionally known as the Voronoi
polyhedron for the lattice. The relevance of these ideas both to the geometry of
numbers, and also to the difficult problems of finding closest packings of convex
sets will be apparent, and we refer the reader to the surveys of this topic that already
exist.<70>

We must also mention the many problems that have been considered concerning
the relationship between polytopes and spheres, quite apart, that is, from those that
arise in connection with sphere packings. For example there is Steiner's problem as
to whether there is a 3-polytope of every combinatorial type which is inscribable in a
sphere (that is, such that all its vertices belong to a sphere). The answer is known to
be negative, in fact, a counter-example is provided by the 3-cube truncated at one
vertex (so that it has one triangular, three quadrilateral, and three pentagonal 2-
faces).(/1) Every non-inscribable 3-polytope is known to have at least 7 2-faces,(72)

and the dual combinatorial type is non-circumscribable, that is, no polytope of this
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type has 2-faces which all touch a given sphere. A number of extremal problems
concerning 3-polytopes circumscribed to spheres (or whose edges touch spheres)
have been solved during the last few years/73)

It is well known that the set Xd of all closed bounded convex sets in Ed forms a
metrisable topological space. Several metrics have been defined,(74) the most com-
monly used being the Hausdorff metric p for which

p(Ku K2) = max { sup inf H^-jCaH, sup inf | |x2-*ill}
x2eK2xleKi xleKlx2eK2

where Ku K2eJfd. Alternatively, if, for any vector ueEd and KeJfd, we define
the supporting function h by

h(K, u) = sup <JC, M>
xeK

then p(Klt K2) = sup \h(Klt u)-h(K2i u)\,

the supremum being taken over all unit vectors u e Ed. The name supporting function
arises from the fact that for any u # o and K e Jfd,

H = {xeEd: (x, w> = h(K, u)}

is a supporting hyperplane of K.
With the topology induced by p, &d is dense in Jfd, and this leads us to the idea

of an approximation problem which is concerned essentially with discovering sub-
sets of &d (for example &d) which are also dense in Jfd (or in some specified subset
of Xd). There are a few recent results in this direction/7 5) but the following funda-
mental problem seems to be unsolved/76* Given any d-polytope P, find necessary
and sufficient conditions on the combinatorial type of a rf-polytope Q (in terms of
the combinatorial type of P) for P to be approximate, arbitrarily closely in the
Hausdorff metric, by polytopes combinatorially equivalent to Q.

In the following three sections we have selected those metrical topics in which
recent advances have beenmade, and which seem to be of sufficient interest to describe
in more detail. Some of this interest arises from the fact that they are relevant to,

or closely analogous to, combinatorial problems.

3.2. Angles of polytopes

At each vertex of a polygon, a (plane) angle is defined, and in the case of a 3-
polytope there are two sorts of angles: solid angles at its vertices and dihedral angles
at its edges. More generally, for a d-polytope P, at every proper face F of P, an
angle <£(P, F) may be defined as follows. Let z be a relatively interior point of F
and consider a small ball B(z, p) with centre z and radius p > 0. If p is so small
that B(z, p) does not meet any proper face of P other than those faces which are
incident with int F, then

<KP, F) = vd{B{z, p) n P)/vd(B(z, p)).
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In other words, it is the fraction of the volume of B(z, p) that lies in P. The value
of 0(P, F) does not depend on the choice of z. It will be noticed that $(P, F), as
defined, is an absolute measure of angle, being a real number in the interval [0,1].
This turns out to be more convenient than the more usual angle measures such as
radians.

A classical theorem is the following:

THEOREM 22 (The Gram-Eiiler Theorem). For any d-polytope P,

j=o J

where <£/(P) = E$(P, Fj), the sum being over all the j-faces FJ of P.

Several proofs of this theorem are known.(77) The quantity <j>j(P) is known as
the y-th angle-sum of P, and it is convenient to define the angle-sum vector

in Ed; this vector plays an important part in the theory. Theorem 22 shows that
(f>(P) has a similar property t o / ( P ) (see Theorem 1) namely that it lies on a certain
hyperplane in Ed. Further it can be shown that no affine subspace of dimension
less than d— 1 contains the angle-sum vectors of all d-polytopes.

The approach to Theorem 22, and to similar properties of polytopes, by integral
geometry depends upon the following idea. Let z e relint F, where F is a face of P,
and consider the set of all lines through z. <p(P, F) may be regarded as a measure
of the set of these lines which have non-empty intersection with int P. By con-
sidering orthogonal projections of P on to hyperplanes, these measures can be
ascertained, and so a proof of Theorem 22 follows without difficulty. In fact, equa-
tion (1) may be regarded as essentially an averaged form of Euler's Theorem applied
to all the orthogonal projections of P.

An immediate generalisation arises by considering ^-dimensional subspaces
(instead of lines) through z. These A:-dimensional subspaces correspond to points
on a Grassmann manifold Gk

d on which a measure can be defined, invariant under
the transformations induced by congruence transformations of Ed. The measure
of the subset of Gk

d corresponding to those ^-dimensional subspaces which intersect
int P is called the Ar-th Grassmann angle{18) of P at F and is denoted by <£(fc)(P, F).
The generalisation of Theorem 22 is as follows:

THEOREM 23. For any d-polytope P, and 1 ^ k ^ d-1,

T(
j = 0

where 4>/fc)(P) = 24>W(P, FJ),

the summation being over all the j-faces FJ of P.
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These Grassmann angles give information about the " shape " of the polytope
near each of its faces. For certain values of k they have a simple geometrical inter-
pretation. The case k = 1 is clear, and for k = 2,

is the quantity known as the angle deficiency of P at the face F. In fact

where summation is over all the facets Fd~l of P that are incident with F. It can
be shown,(79) that if 0 ^ dim F ^ d-3, then <5(P, F) > 0.

For k = d— 1 we consider the set of hyperplanes through zere l in tF which do
not meet int P, in other words support P, and we readily verify that (\>{d~X){P, F) is
the quantity known as the exterior angle of P at F. In the case d = 3, therefore, the
exterior angle at a vertex F° is equal to 1 — <5(P, F), a result that is equal to the well-
known formula for the area of a spherical triangle in terms of its angles.

In §2.2 we showed that when the faces of a rf-polytope P are of certain specified
combinatorial types, then the /-vector of P satisfied a number of additional linear
relations (for example, the Dehn-Sommerville equations (Theorem 2) for simplicial
polytopes). Exactly analogous properties hold for Grassmann angles when the
faces of P, of certain dimensions, have prescribed combinatorial types. Instead of
quoting these, we shall discuss additional results in a more general context, but, for
simplicity, state these for k = 1 (ordinary angles) only.(80)

By a regular projection of a rf-polytope P we mean the image of P under orthogonal
projection on to a hyperplane H where the direction of projection (the normal to H)
is not parallel to any face of P. For regular projection, the image of each y-face
of P is a y-polytope in if (0 < _/ ^d-1). The regular projections of P are clearly
of a finite number, say q, of combinatorial types, and we write P , , . . . , Pq for (d-1)-
polytopes representative of these types. For i — 1, ...,q, let

f(Pd = (fo(Pd, ...,/,-,(*,), 0) eE«,

where, as usual, y}(P,) is the number of y-faces of P,- and/d_i(P,) = 1.

THEOREM 24.

where S/<; = 1 and f.i-, > 0 for each i.
Equivalently,

( /)(P)erelintconv{|(/(P)-/(P;)) : / = 1, ...,q}.

Although very little is known about the set (</>(P): Pe^d) apart from this theorem,
we have the following result which shows that it is, in a sense, the best possible.
Let us write <f){sf(P)) for the set of all angle-sum vectors 0 ( 0 when Q runs through
all polytopes which are afHnely equivalent to P.
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THEOREM 25.

conv0(^(P)) = rel intconv{}(/(?)-/(?,•)) :i = 1,...,?}.

Of particular interest is the case q = 1. (This occurs, for example, in the case of
a 3-cube, all of whose regular projections are hexagons. Thus / ( P ) = (8, 12, 6)
a n d / ( P ^ = (6, 6, 0). It also occurs for zonotopes and for certain other classes of
polytopes.(81)) In this case 0 ( J ? / ( P ) ) consists of just one vector, so that its angle-
sums are invariant under affinities. (Hence all parallelepipeds in E3, being affinely
equivalent to the 3-cube, have angle sums $0(-P) = 1> $iCP) = 3, </>2(P) = 3.)

Theorem 24 enables us to deduce many numerical properties of angle-sums.
Clearly we can write down bounds for the j-th angle sum (f>j(P) in terms of the num-
bers fj(P) and fj(P{) ( /= 1, ..., q). Also, we see that the components of the vector
/ ( P ) —20(P) satisfy any linear equation that holds for all the components of the
vectors/(P,). For example, if P is quasi-simplicial (that is, all its (d — 2)-faces are
simplexes) then the P,- are simplicial and the numbers /j(P,) satisfy the Dehn-
Sommerville equations (in d— 1 dimensions). Hence for all quasi-simplicial P, the
vectors / ( P ) —2</>(P) lie on a [i(d— l)]-dimensional affine subspace. Similar con-
siderations apply to quasi-cubical poly topes (that is, poly topes whose (d — 2)-faces
are combinatorially equivalent to cubes).

It seems possible that further relations (such as non-linear inequalities) between
the angles and Grassmann angles of polytopes remain to be discovered/8la) No such
relations are known except those that follow as trivial consequences of the properties
stated above.

We explained how, in the combinatorial theory of polytopes, we were concerned
with the properties of combinatorial equivalence classes of polytopes rather than
with polytopes themselves. Similarly, in the metrical theory, the classes of con-
gruent polytopes are the fundamental objects of study. When we are interested in
the angles of polytopes only, it is convenient to consider rather larger classes of
polytopes. Extending the idea of similarity (or homotheticity) we write Pi a P2

if and only if Pl « P 2 and, if the face Ft of Px corresponds to the face F2 of P 2

in the combinatorial equivalence, then $ (P l s ^ i ) = ^(P^ F-i)- The study of these
(7-classes is a comparatively unexplored field. For example we may mention the
following weak version of a problem of Stoker: / / the corresponding dihedral angles
of two combinatorially equivalent 3-polytopes Pu P2 are equal, does it necessarily
follow that Pta P 2 ? An affirmative solution is known only in the case of simple
polytopes.(82) Another result of this nature is Schneider's ingenious characterisa-
tion(83) of the polytopes P with the property that, for all vectors t, if P n (P + 0 ^ 0 ,
then (Pn(P + t))<rP.

The above results on angle sums have been used in connection with a combina-
torial problem, which we shall now describe.(84) Let P be a d-polytope. Then P
is called facet-forming if there exists a (d+l)-polytope Q whose facets (d-faces) are
all combinatorially equivalent to P. Otherwise P is called a nonfacet. In the case
d = 2 it is obvious that triangles, quadrilaterals and pentagons are facet-forming
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polygons (for we may take Q to be a tetrahedron, cube, or regular dodecahedron,
respectively) but, from inequality (1) of §2.4, it is impossible for all the facets of a
3-polytope to be n-gons for n ^ 6. Thus hexagons, heptagons, octagons, ..., are
nonfacets. For d > 3 many facet-forming polytopes are known (for example,
simplexes, cubes, d-polytopes with d+2 vertices, duals of the odd-dimensional cyclic
polytopes, etc.), but it is only recently that nonfacets have been discovered. So far,
the only known method of proving that a given d-polytope is a non-facet depends
upon the properties of its angle-sums. The basic idea is as follows.

Let Pu ..., Pr be the facets of a (d+l)-polytope Q (so that r =fd(Q)). Then
4>j(Pd/fj(Pd m aY be called the average angle of Pt at its y-faces. Since every y-face
of a (d+ l)-polytope is incident with at least d+\ —//-faces, using the fact that the
angle deficiencies are strictly positive for j ^ d—2, we can easily deduce that

for all j such that 0 < / < d - 2 . Using the inequalities for angle sums implied by
Theorem 24, and remembering that we are interested in the case where all the Pt

are combinatorially equivalent to a given d-polytope P, we arrive at the following
result:

THEOREM 26. / / P is a facet-forming d-polytope, then for each j = 0, ..., d—3,

where mj(P) is the maximum number ofj-faces in any regular projection of any polytope
combinatorially equivalent to P.

To discover nonfacets we therefore find polytopes which violate the above condi-
tion. For example one can show that the d-crosspolytope is a nonfacet for d ^ 6
(the cases d = 4, 5 are undecided), and that the 600-cell (one of the regular polytopes,
see §3.4) are nonfacets. We can also deduce that for each d, the cyclic polytope
C(v, d) is a nonfacet if v is sufficiently large, and it has been conjectured that it is
only necessary to take v ^ d+3.

The case d = 3 is one of the most interesting, and, perhaps the most difficult.
The "smallest" 3-dimensional nonfacet so far discovered has 14 vertices, and is
illustrated in Figure 1 of §2.4; it is possible that 3-dimensional nonfacets with as few
as 6 vertices may exist.

To verify that the 3-polytope P with 14 vertices just mentioned is a nonfacet,
we need only note that as the longest edge-path on P contains 12 edges, it necessarily
follows that m^P) ^ 12. Substituting d = 3, j = 1, ft(P) = 36, we see that the
inequality of Theorem 26 does not hold, and therefore P is a nonfacet.

This example illustrates the (unexpected) connection between 3-polytopes that
are nonfacets, and those whose longest edge-circuits contain comparatively few
vertices. Bearing in mind the remarks of §2.4 it is not surprising that it is com-
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paratively difficult to find simple 3-dimensional nonfacets. Using Theorem 14,
along with the estimates of a and c given, one can show that there exists a simple
nonfacet with about 10977 vertices. The fact that this number is so large illustrates
the weakness of the angle-sum method just described; it is unlikely that any sub-
stantially better estimate of the size of the smallest 3-dimensional simple nonfacet
will be found until more powerful techniques have been developed.

Barnette has recently discovered a simple 4-polytope which is a non-facet, using
an exact analogue of the above methods, that is, by the study of the largest simple
manifold which is a union of 2-faces of the poly tope/8 5)

We conclude by remarking that many of the results on angle-sums have analogues
for spherical polytopes (that is polytopes on the surface of a sphere). For these we
refer the reader to the original papers.(86)

3.3. Analogues of Euler's Theorem

The reader will have noticed the remarkable resemblance between the form of
the equations in Theorem 1 (Euler's Theorem for the /-vectors) and Theorem 22
(for the angle-sum vectors). It is natural to enquire whether other functions that
arise in connection with the study of convex sets have similar properties. Let us
say that a function \j/, denned on the set & of all polytopes of dimension ^ d in Ed

satisfies an Euler-type relation if, for all d-polytopes P, and for some choice of signs
on the right,

where the second summation on the left is over all the y-faces FJ of P. A number
of such functions were discovered " by accident" but they are now known to be
consequences of a fundamental identity/87) which also leads to an alternative proof
of Theorem 22:

THEOREM 27. For any d-polytope P, and any vector u,

£ (-iyi*(F',!0= -K-P,U)
j = 0

where h(P, u) is the supporting function of P at u, and the second summation on the
left is over all the j-faces FJ of P.

We mention two examples. Firstly we have a relation between the mixed volumes
(see §3.1) of a poly tope and its faces:

THEOREM 28. For any d-polytope P, and any convex bodies Kr+1, ..., Kd,

£ (-\yWFJ,...,F\ Kr+u...,Kd) = (-\yv(-P,...,-P> Kr+1,...,/Q

where, in each mixed volume, the first argument is repeated r times.
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In particular, taking /• = 1 and K2 = ... = Kd = B (the unit ball) leads to the
fact that the mean width of a polytope is a function that satisfies an Euler-type
relation.

The second example(88) concerns the point now known as the Steiner point s(K)
of a convex set K. Originally introduced by Steiner in connection with an extremal
problem,(89) it has, more recently,(90) been shown to have the important additivity
property

= s(Kl)+s(K2) (1)

where, on each side + denotes vector addition.
In the case of a polytope s(P) may be defined in at least two ways. Firstly,

s(P) = — f uh(K,u)do) (2)
d s"-»

where ad is the volume of the unit ball Bd in Ed, and do is an element of surface area
of the unit sphere S d - 1 centred at the origin. Secondly, s(K) may be defined as the
centroid of the vertices of P, each vertex being weighted with the exterior angle of
P at the vertex (see §3.2). From either definition, (1) follows easily. Multiplying
the equation of Theorem 27 by u and integrating over S'*"1 yields immeidately:

THEOREM 29. For any d-polytope P,

This has the interesting feature that it is a vector relation; all the other known Euler-
type relations are scalar equations.

Because of (1), the Steiner point has proved useful in several investigations/91*
It is worth noting that s(K) is a uniformly continuous function of K with respect
to the Hausdorff metric (in contrast to, for example, the centroid of K which is a
continuous, but not uniformly continuous function).(92) It is an unsolved and
interesting problem whether s(K) is uniquely determined by property (1) and the
fact that

Ts(K) = s(TK)

for all congruence transformations T. The answer to this question is known to be in
the affirmative if we also require continuity.(93)

Following Sallee,(94) a function \j/ defined on !? will be called a valuation if

HPi)+HP2) = HPi n P2)+HPi u P2)

whenever Pu P2 and Px u P2 belong to 0>. Comparing Theorem 27 with the
easily proved relation

h(Plt u) + h(P2, u) = h(P, n P2, u) + h(Pt u P2, u)

it is not surprising that there is a close connection between valuations and functions
that satisfy Euler-type relations. We have the following:



CONVEX POLYTOPES 287

THEOREM 30. (i) A continuous function \p defined on & which satisfies

d ± \ j j (4)
J=0

for all d-polytopes P, with s = + 1 , is a valuation on 0.

(ii) Every valuation on 0 can be expressed as the sum of two valuations, one of
which satisfies (4) with e = + 1 , and the other satisfies (4) with e = — 1.

In particular, Steiner points are valuations.(95) The central problem in this area
is, of course, the characterisation of functions satisfying these conditions. Such
questions are closely related to certain classical problems discussed by Hadwiger.(96)

3.4. Symmetry and regularity

Let P be a given d-polytope and T be any isometry (congruence transformation)
such that TP = P. Then T is called a symmetry of P, and the group of all sym-
metries of P is denoted by S?(P). Conversely, given any finite group <& of isometries
of Ed, a family of polytopes may be constructed by taking the convex hull of the
orbit of any point under <&. For any such polytope P, clearly ^ is a subgroup of
Sf{P). In view of the enormous amount of classical literature on the symmetry
groups of polytopes, it is surprising that a systematic investigation of the polytopes
associated with each of the finite isometry groups of E3 has only recently been carried
out. Robertson and Carter have shown that, after factoring out by a suitable equi-
valence relation and introducing a topology, the family of all 3-polytopes may be
regarded as the points of a finite connected CW-complex in which the cells correspond
to different combinatorial types. These facts emerge from a general topological
theory of the orbits of finite subgroups of the orthogonal group in n dimensions due
to Robertson, Carter and Morton.(97) In this general theory, open manifolds replace
the cells of the 3-dimensional version.

If the symmetry group of P is non-trivial and all the symmetries of P leave an
affine subspace A point-wise invariant, then A is called an axis of symmetry of P.
If Sf(P) is transitive on the set vert P, then P possesses an axis of symmetry of at
least 0 dimensions, for the centroid of the set vert P is left invariant by each sym-
metry of P. If P has a centre (as defined in §2.2) then Sf(P) necessarily contains a
subgroup of two elements, namely that generated by central reflection in its centre.

Many problems on polytopes may be modified (and sometimes simplified) by
restricting attention to polytopes with some property related to Sf(P) such as posses-
sing an axis of symmetry of some specified dimension a, or a centre of symmetry.
We have already discussed a number of instances of the latter restriction in earlier
parts of this paper. Recently it has been shown that restrictions of this type enable
a number of enumerative results to be established/98* We cannot quote all of these
here, but remark on some curious coincidences for which there is no geometrical
explanation. For example, the number of combinatorial types of (2a-f 2)-polytopes
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with 2(a+2) vertices and an a-dimensional axis of symmetry, is equal to the number
of combinatorial types of (a+2)-polytopes with a + 4 vertices.

Many of these results have been achieved through the use of Gale diagrams and
c.s. diagrams. Firstly we remark that it is possible to construct a Gale diagram of a
given polytope P in such a way that Sf{P) is faithfully represented in the diagram.
We illustrate this by reference to a particular example, namely that of the octahedron
(Figure 2 of §2.5). By a symmetry of a Gale diagram Fez £"~d~1 we mean any
permutation of the points of F which induces a congruence transformation of E"~d~1.
In the example,

(X1} X2, X3, X4, X5, X6) -* (X5, Xg, X l s X2, X3, X4)

and (xl9 x2, x3, x4, x5, x6) -> (x2, x1} x3, x4, x5, x6)

are symmetries of V. The latter is called an implicit symmetry since it corresponds
to the identity mapping on E2. We define «9P( V) to be the group of all symmetries
(including implicit symmetries) of V. Then,

THEOREM 31. For every polytope P there exists a Gale diagram V such that

When P has a 2-fold axis of symmetry A, then vert P possesses a Gale transform
with special properties. Let each point of Ed be represented in the form (x, y) with
x e A and ye A1 (the orthogonal complement of A through o). Then the vertices
of P may be written in the form

M; = (zit o) i = 1, ..., m

wj = (*/» - ^ ) I J

P has m + 2/i vertices, m of which lie on A and the remaining 2n are paired with
respect to the axis A. The set of points VA = {zls ...,zm, xu ...,xn} cz A is called
the axis figure of P, and the set Vc = {±yu ..., ±yn} <=: A1 is called the coaxis
figure of P. In general neither the axis figure nor the coaxis figure is the set of ver-
tices of a convex polytope,*but we can still define their transforms algebraically as
in §2.5. The main result is the following:

THEOREM 32. / / P is the d-polytope with m + 2n vertices defined above, then there
exists a Gale transform F c ]?»i+2n-d-i o y v e r t p which has an (m+n — a—l)-dimen-
sional axis of symmetry A containing the points u l s ..., um. The set

{uu ..., um, vVi + vvV, ..., wn + vvn'} c A

is a Gale transform of the axis figure VA, and the centrally symmetric set of points

{±(wi-wl')>..., ±(wn-wn')} ^ A1

is a c.s. transform of the coaxis figure Vc.
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We have quoted these results in some detail for they initiate a new method of
investigating the symmetries and axes of symmetry of polytopes. This method
may turn out to be of wide application.

The idea of a symmetry may be extended. By an affine (projective) symmetry
of a d-polytope P we mean any affine (permissible projective) transformation
T : Ed -> Ed such that TP = P. In this way the affine symmetry group ¥ A(P)
and projective symmetry group SfP{P) of P may be defined. Each of these sym-
metries corresponds to an automorphism T* of the face-lattice 3?(P), and S7(P),
SfA(P), S?P(P) each correspond to subgroups of sf(P), the group of all automor-
phisms of 2F(P). This brings us to a problem of obvious importance, which is
unsolved(98a) even for d = 3.

Given any d-polytope P, does there always exist a polytope P' combinatorially
equivalent to P such that Sf(P') s sf(P') ( s st(P)) ?

In other words, we are asking if the automorphism group of P can always be
realised as the symmetry group of some P' & PI

The investigation of symmetry groups leads naturally to the idea of regularity of
polytopes.(99) Several equivalent definitions of regularity have been used. An
example of an inductive definition (100) is the following: A d-polytope P is regular if
its facets are regular and all its vertices are regular. (By a regular vertex F° of P
we mean one with the property that if Fi°, ..., Fr° are the end-points of the edges
of P that meet at F°, then conv{F1°, ..., Fr

0} is a regular (d-l)-polytope.) For
d = 2, the regular polytopes are, of course, the familiar regular polygons. There are
five regular 3-polytopes (tetrahedron, cube, octahedron, isosahedron, dodecahedron),
six regular 4-polytopes (simplex, cube, crosspolytope, 24-cell, 120-cell, 600-cell) and
three regular d-polytopes for d ^ 5 (simplex, cube, crosspolytope). An alternative
definition of regularity has recently been given by McMullen:(101) P is said to be
regular if £f(F) is transitive on the maximal towers of faces of P (see §2.1). Not
only has this the advantage of simplicity, but it is readily generalised. We say that
P is affinely, projectively, or combinatorially regular, if SfA(P), S^P(P) or s/(P),
respectively, is transitive on the set of maximal towers of faces of P. McMullen
recently proved the following powerful result:

THEOREM 33. An affinely (projectively, combinatorially) regular polytope is
affinely (projectively, combinatorially) equivalent to a regular polytope.

Relaxing some of the requirements in the definition of regularity we obtain
larger classes of polytopes, many of which are investigated in the classical literature.
For example, if all the facets of P are regular and SP(P) is transitive on the set vert P,
then P is called semi-regular. A further generalisation which has been investigated
recently is that of regular-faced polytopes, that is, polytopes whose facets (and so all
proper faces) are regular. Each of these concepts (and others which have not been
mentioned) lead to corresponding enumeration problems: How many d-polytopes
are there of the given types? The answers are known completely(102) for d = 3,
but our knowledge is very fragmentary for d ^ 4.

BULL. 3 3
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NOTES

(1) In particular, see Grunbaum [3] for a comprehensive account of the theory up to 1967, and

Griinbaum [5] for a survey of the most recent results. An alternative treatment of many

of the combinatorial theorems can be found in McMullen-Shephard [2]. Other relevant

texts are Alexandrov [1], Coxeter [1], Fejes T6th [1], and Hadwiger [2,3].
(2) Coxeter [1] p. 13.

<3) Klee[2].
(4) Coxeter [1] p. 141.
(5) According to Coxeter [1] p. 144, the regular polytopes were independently discovered at

least nine times between 1881 and 1900.
(6) Minkowski [1].
(7) Grunbaum [3].
(8 ) For a detailed account, with proofs, of the material in this section, see Grunbaum [3] Chapters

1-4, or McMullen-Shephard [2] Chapters 1 and 2.
(9) See Grunbaum [3] §4.8. The corresponding problem for centrally symmetric polytopes has

been completely solved by McMullen [4].
( 1 0 ) No (r+s)-polytopes of type (r, s) are known for r > 4, s > 4, and r+s > 9. For rf-polytopes

of types (2, d-2) and (3, d-3) see Grunbaum [3] pp. 65-66.
( U ) c(6, 3) = 7, c(7, 4) = 31, c(8, 5) = 116, c(9, 6) = 379, c(7, 3) = 34, c(8, 3) = 257 and the

unchecked result is c(9, 3) = 2607. See Grunbaum [3] p. 424, for a survey of earlier results,

and Federico [1] for a recent enumeration.
(12> cs(7, 3) = 5, cs(8, 3) = 14, cs(9, 3) = 50, cs(10, 3) = 233, cs(ll , 3) = 1249, c,(12, 3) = 7595.

The last value has not been independently checked. See Grunbaum [3] p. 424, for earlier

work, and Bowen-Fisk [1] for a recent enumeration.
u 3 ) Griinbaum-Sreedharan [1].
( 1 3 a ) Altshuler [1].
( l 4 ) McMullen-Shephard [2] Chapter 2, Theorem 16.
U S ) Grunbaum [3] p. 207.
( 1 6 ) McMullen [1]. See also §3.4.
( 1 7 ) For proofs of Euler's Theorem, with especial reference to convex polytopes, see Grunbaum

[3] Chapter 8, and McMullen-Shepherd [2] §2.4. Several " elementary proofs " of Euler's

Theorem that have been published are incomplete in that they implicitly assume certain

topological properties of polytopes. This remark applies to proofs based on the idea of

" building up " a polytope facet-by-facet, an operation of questionable validity in d > 4

dimensions.
( 1 8 ) Proofs of Theorem 2 are given in Grunbaum [3] Chapter 9, Hadwiger [5], and McMullen-

Shephard [2] §2.4. In the latter, the simplified method of solving the Dehn-Sommerville
equations recently devised by MacDonald [1] and modified by McMullen [3], is described.

See also Riordan [1] for other solutions. Analogues of Theorem 2 for cubical polytopes are
given in Grunbaum [3] §9.4. For similar equations in more general systems see Klee [1].

<l9) Steinitz [1], Grunbaum [3] §10.3.
( 2 0 ) Grunbaum [3] §10.4.

(2o«) p o r a n analogous investigation of pairs ( /o . / j ) see Reay [1].
( 2 1 ) Cyclic polytopes were originally discovered by Caratheodory [1,2] and rediscovered more

recently by Gale [1] and Motzkin [1]. For further information see Grunbaum [3] §4.7 and

Chapter 7, and McMullen-Shephard [2] §2.3 (vi). In these two references different methods
of determining the numbers fj(C(v, d)) are described, the latter following Shephard [11].

( 2 2 ) See Grunbaum [3] §10.1 and, for the parts that have been proved since 1967, McMullen-
Shephard [2] Chapter 4, Grunbaum [7], and McMullen [3].

<23> Grunbaum [3] §10.2.
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(24) Grunbaum [3] §10.2; of the more recent results, the cases d = 4, 5 are due to Walkup [1],
while the cases with v > d+4 have been established in unpublished work of M. A. Perles.

(25) McMullen-Shephard [1] prove this for n = 1, 2. However, the analogous conjecture for
centrally symmetric triangulations of the (d— l)-sphere (d > 4) is known to be false (Grun-
baum [9,10]).

<26) Grunbaum [5].
(27) Grunbaum [3,5].
(28) Grunbaum [3] Chapter 11.
(28«) F o r a n affirmative answer in special cases see Zaks [1], Griinbaum [11].
<29) Bal inski [1].
(30> G r u n b a u m [2].
(31) L a r m a n - M a n i [1].
(32) This result is a consequence of Menger 's Theorem, see Whitney [1], Dirac [1].
(33) Sallee [1], Grunbaum [3] §11.3. Fo r a different generalisation see Barnette [5].
(33» j n e g r s t noutrivial case of the conjecture, d = 4, has been settled in the affirmative by Jung [1]

and Mani [1].
<34> Grunbaum [3] §11.1 .
(35) Grunbaum [3] §12.2.
(36> G r u n b a u m [3] §12.3.
<37) Sec Grunbaum [3] §3.3 for illustrations of Schlegel diagrams. Bruckner [1] at tempted to

enumerate the simplicial 4-polytopes with 8 vertices by considering possible Schlegel diagrams.
For the reason mentioned he arrived at an incorrect value of cs(8, 4), later corrected by
Gri inbaum-Sreedharan [1]. See also the discussion in Barnette [3]. F o r a related topic
see Peterson [1].

O8) p o r a n elementary exposition of some of these, see Shephard [7].
(39> Grunbaum [5].
(40) Steinitz [2], Steini tz-Rademacher [1], Grunbaum [3] §13.1, Barne t t e -Grunbaum [2].
<41> G r u n b a u m [3] p . 244.
(42) Barne t t e -Grunbaum [1]. Very interesting is also the following recent result of Barnette [4]:

F o r every simple circuit in the graph of a 3-polytope P there exists a 3-polytope P' of the
same combinatorial type as P, such that the corresponding circuit in P' is the inverse image
of the boundary of some regular projection (see §3.2 for definition) of P'.

(43) Named after Sir William Hamil ton who, in 1857, posed the problem of finding simple edge-
circuits on a regular dodecahedron which visited every vertex. His solution of this problem
was an early application of group theory.

(44) The argument given here is due to Brown [1]. F o r further results see M o o n - M o s e r [1]
The " smal le s t " 3-polytope with no Hamil tonian circuit has 11 vertices, and the smallest
known 3-polytope with n o Hamil tonian path has 14 vertices. See Gr i inbaum [5], Shephard
[7], and Barnette-JucoviS [1].

<45) Tail [ 1 , 2 , 3 ] .
(46) Gr i inbaum-Motzk in [1]. The smallest known simple 3-polytopes with n o Hamil tonian

circuit, and with n o Hamil tonian path, have 38 and 88 vertices respectively. The former
were discovered independently by Lederberg [1], Bosak [1] and Barnette, and the latter by
T. Zamfirescu (private communication). Fo r extensions of these results and further references,
see Grunbaum [5] §1.4.

(47) These values are due to R . Forcade (unpublished).
(48) Tuttetf].
(49) Grunbaum [3] Chapter 17 (written by Victor Klee).
(50) Barnette [1].
<50°> See Hawkins-Hill-Reeve-Tyrrell [1]. The fact that the permissible values of p s are exactly

double those of />4 has been explained geometrically by Meek [1] and Crowe-Molnar (1].
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(51) Griinbaum[3]§13.4.
( 5 1 a ) See Crowe [1], Malkevitch [1,2], Gallai [1].
( 5 2 ) Eberhard's original proof is at the end of his book [1]. Simpler proofs are given in Griin-

baum [3] §13.3.
( 5 3 ) Grunbaum [6].
(54 ) Grunbaum [3] §13.4.
<55) Barnette [2]. A different lower bound for p6 was found by Jucovic" [3].
(so) p o r a s o i u t ion corresponding to case (5) see Grunbaum [8]. For the case of self-dual 3-

polytopes see Jucovic [4].

(57) p o r a s u r v e y o f the most recent results, see Grunbaum [5] §1.3.
<58) This section follows closely McMullen-Shephard [1].
(59 ) Gale [1].

(60) Notice that this differs from the usage in Grunbaum [3] §5.4.
( 6 1 ) Polya [1], DeBruijn [1].
( 6 2 ) In fact Perles enumerated the distended Gale diagrams. No details of his method have been

published except for the brief account in Grunbaum [3] §6.3.

(62a) since this was written, E. K. Lloyd (private communication) has used a modified form of

Polya's Theorem to find an expression for o(rf+3, d).

(63) McMullen-Shephard [2] §3.4.

(64) F o r fuji details, see Grunbaum [3] §5.5.
(65) The construction described is due to M. A. Perles. Before this example was discovered in

1966 many authors regarded it as " almost obvious " that every polytope could be rationally

embedded. It was Klee who originally raised doubts as to whether this is, in fact, the case.
Gale diagrams enable us to establish easily that every rf-polytope with at most rf+3 vertices
can be rationally embedded.

(66) Grunbaum [3] §5.5.
l67) See, for example, Blaschke [1], Bonnesen-Fenchel [1], Hadwiger [1,2].
(68) p o r t n e c i a s s i c a i theory of mixed volumes see Bonnesen-Fenchel [1]. For some more recent

results, see Shephard [1].
(6sa) p o r detailed and attractive accounts of some such problems and results, and for references

to the very substantial literature, see Fejes T6th [1, 2].
<69) Melzak [1] has shown that if we restrict ourselves to tetrahedra, then the regular tetrahedron

is the solution to the first problem, but nothing seems to be known when arbitrary combina-
torial types are considered. A 2-dimensional problem similar to the second question (the
isoperimetric problem for " honeycombs ") has been solved by Bleicher-Fejes-T6th [1].
See also Levy [1] for the problem of maximising the area of a polygon whose sides have
prescribed lengths.

(70) Rogers [1].
(71) A related, still unsolved problem is: Does every combinatorial type of 3-polytope have a

representative P such that, for a suitable point o, each perpendicular from o to the plane of
a 2-face of P has its foot in the 2-face?

(72) For a survey, see Grunbaum [3] §13.5. Also Jucovic [1, 2].
173) Besicovitch-Eggleston [1], Shephard [2].
174) Shephard-WebsterJ[l].
<73) Grunbaum [3] Chapter 15, Shephard [3], Perles-Shephard [3], Berg [1].
(76) It is known that fj(Q) >fj(P) for y = 0 , . . . . rf—1 is a necessary condition, see Eggleston-

Griinbaum-Klee [1] and Grunbaum [3] §5.3.
(77) Early proofs of Theorem 22 (see Grunbaum [3] Chapter 14) were long and depended upon

the idea of proving the result for simplexes, and then showing that it remained true for any
polytope " built-up " from simplexes. Recent proofs are much simpler, making use of the



CONVEX POLYTOPES 293

methods of integral geometry, the main idea being indicated later in this section. See Perles-

Shephard [2], Shephard [5].
( 7 8 ) This definition and the following discussion of Grassmann angles closely follows Griinbaum [4].
<7?> Shephard [8].
( 8 0 ) The following treatment follows Perles-Shephard [2]. For the corresponding properties of

Grassmann angles see Grunbaum [4].
( 8 1 ) For zonotopes, see Shephard [6]. Polytopes with q — 1 have been called equi-projective,

but no characterisation of equi-projective polytopes is known, even for d = 3.

(8ia) p o r n e w e r r e s u i ts on Grassmann angles see Larman-Mani [2].
( 8 2 ) Stoker [1], Karcher [1]. This question is closely related to the classical Cauchy rigidity

theorem, Lyusternik [1]. See also Barnette [6] for a related result.
( 8 3 ) Schneider [1]. A more general problem recently discussed by Gruber [1,2] and Schneider

[2] is that of determining all polytopes P such that, for all vectors t, either P n (P+t) = 0

or P n (P+t)oP for equivalence relations o other than that mentioned. If a is homothety

then an old result of Rogers and Shephard [1] states that P must be a simplex. If i \ aP2

means that Pt is a non-singular affine transform of P2, or that Px has the same number of

vertices as P2, or a is the relation mentioned in the text, then the corresponding class of

polytopes consists of all direct sums of simplexes.
( 8 4 ) The following treatment follows Perles-Shephard [1].
<85> Barnette [1].
( 8 6 ) Perles-Shephard [2], Grunbaum [4].
(87) p o r a p r o o f of this identity, and a survey of all the known Euler-type relations, see Shephard

m.
( 8 8 ) Grunbaum [3] §14.3.
( 8 9 ) Steiner[l].
( 9 0 ) Grunbaum [1].
< 9 l ) For example, Firey-Griinbaum [1], Flanders [1], Shephard [4].
( 9 2 ) Shephard-Webster [1].
( 9 3 ) For the case d = 2 see Shephard [10], and for d > 2 see Schmitt [1]. C. Berg has recently

shown that Schmitt's proof is incomplete. For another characterisation of Steiner points
see Hadwiger [4].

( 9 4 ) Sallee [3].
( 9 5 ) Sallee [2].
( 9 6 ) Hadwiger [1] and [3] pp. 236-243.
( 9 7 ) Robertson-Carter [1], Robertson-Carter-Morton [1].
( 9 8 ) McMullen-Shephard [3].
(98a) Barnette [7] established an affirmative answer for 3-polytopes P such that J&(P) is the 2-element

group.
( 9 9 ) See Coxeter [1], which contains an extensive bibliography of the classical literature on this

subject.
( 1 0 0 ) Fejes T6th [1].
(ion McMullen [1, 2].
dO2) p o r d — •>) there are 13 semiregular polytopes (apart from the five regular ones, the polygonal

prisms and antiprisms). There are 92 regular-faced 3-polytopes apart from the semiregular

ones. See Johnson [1], Zalgaller [1], and Grunbaum [3] §19.1.
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