ENSCI 524B – Assignment #2 Solutions Photochemical Reactions

- 8.12 Indicate whether the following halocarbons are CFCs, HCFCs, HFCs, or halons, and give their designation numbers:
 - (a) C₃HF₇
 - ✓ C_3HF_7 is an HFC, or hydrofluorocarbon, designation number HFC 227
 - (b) $C_2FH_3Cl_2$
 - ✓ $C_2FH_3Cl_2$ is an HCFC, or hydrochlorofluorocarbon, designation number HCFC 141
 - (c) $C_2F_4Cl_2$
 - ✓ $C_2F_4Cl_2$ is a CFC, or chlorofluorocarbon, designation number CFC 114
 - (d) CF₃Br
 - ✓ CF_3Br is a halon, designation number H 1301
- 8.13 Write chemical formulas for the following:
 - (a) HCFC 225
 - $\checkmark~$ The chemical formula for HCFC 225 is $C_3 HF_5 Cl_2$
 - (b) HFC 32
 - $\checkmark~$ The chemical formula for HFC 32 is CH_2F_2
 - (c) H 1301
 - ✓ The chemical formula for H 1301 is CF_3Br
 - (d) CFC 114
 - ✓ The chemical formula for CFC 114 is C₂F₄Cl₂
- 8.36 The photon energy required to cause the following reaction to occur is $306 \frac{kj}{mol}$. What is the maximum wavelength that the photon can have (you might want to refer back to Example 2.6)?

$$NO_2 + hv \rightarrow NO + O$$

$$\checkmark \quad \lambda_m \le \frac{1.19 \times 10^{-4} \left(kJ \cdot \frac{m}{mol} \right)}{\Delta H^0 \left(\frac{kJ}{mol} \right)} = \frac{1.19 \times 10^{-4} \left(kJ \cdot \frac{m}{mol} \right)}{306 \left(\frac{kJ}{mol} \right)} = 3.89 \times 10^{-7} m = 389 \ nm$$

8.37 Photodissociation of oxygen requires $495 \frac{kJ}{mol}$. What maximum wavelength can the photon have to drive this reaction (refer to Example 2.6)?

$$0_2 + hv \rightarrow 0 + 0$$

$$\checkmark \quad \lambda_m \le \frac{1.19 \times 10^{-4} \left(kJ \cdot \frac{m}{mol} \right)}{\Delta H^0 \left(\frac{kJ}{mol} \right)} = \frac{1.19 \times 10^{-4} \left(kJ \cdot \frac{m}{mol} \right)}{495 \left(\frac{kJ}{mol} \right)} = 2.40 \times 10^{-7} m = 240 \ nm$$

In reality, wavelengths of up to 290 nm can achieve this reaction, important in the stratosphere to make ozone.

- 9.6 Assuming that Figure 9-4 represents the relationship between NO_x , VOC, and O_3 concentrations for an urban area, determine the percent reduction or increase in the ozone concentration for the following strategies. The concentration of VOCs is $1.2 \, ppmC$ and the concentration of NO_x is 0.08 ppm. Assume that a reduction in the VOC and NO_x emissions is equivalent to the reduction in the concentration of these pollutants. (a) Reduce NO_x emissions by 75 percent while holding VOCs constant, (b) Reduce VOC emissions by 75 percent while holding NO_x constant, (c) Reduce NO_x and VOCs by 75 percent.
 - (a) Reduce NO_x emissions by 75 percent while holding VOCs constant
 - ✓ With NO_x concentration decreased from 0.08 ppm to 0.02 ppm and the VOC concentration held constant at 1.2 *ppmC*, we would see a decrease in O_3 concentration from 0.27 ppm to 0.11 ppm which is a 59% reduction in ozone concentration.
 - (b) Reduce VOC emissions by 75 percent while holding NO_x constant
 - ✓ With VOC concentration decreased from $1.2 \, ppmC$ to $0.3 \, ppmC$ and the NO_x concentration held constant at 0.08 ppm, we would see a decrease in O₃ concentration from 0.27 ppm to 0.13 ppm which is a 52% reduction in ozone concentration.
 - (c) Reduce NO_x and VOCs by 75 percent
 - ✓ With N0_x concentration decreased from 0.08 ppm to 0.02 ppm and the VOC concentration decreased from 1.2 *ppmC* to 0.3 *ppmC*, we would see a decrease in 0_3 concentration from 0.27 ppm to 0.09 ppm which is a 67% reduction in ozone concentration.

It is to be expected that values calculated will vary as reading these graphs is challenging for accurate readings. Your % removals could easily be 5% or more lower or higher.