So, a graduate student, huh? How come you guys can go to the moon but you can't make my shoes smell good?

Homer Simpson (1994)

Introduction to Odor

Jacek Koziel

Dept. Agricultural & Biosystems Engineering Dept. of Civil, Constr. & Environmental Engineering Iowa State University Ames, Iowa, USA <u>koziel@iastate.edu</u>

WINNING BY A NOSE

Laureates' research has demystified the sense of smell

won this year's Nobel Prize in Physiology or Medicine for shedding light on the inner workings of the sense of smell.

Scientists had long wondered how the olfactory system recognizes and remembers more than 10,000 different odors. Richard Axel, 58, a Howard Hughes Medical Institute investigator and professor of biochemistry and mospanning receptor proteins found in a small patch of cells inside the nose. Mice make an astonishing 1,000 or so different kinds of these odorant receptor proteins. Humans, who don't rely as much as mice on their sense of smell, make about 350 different ones. Axel and Buck showed that these odorant receptor proteins belong to a family of proteins called Gprotein-coupled receptors, a class

THE R. L. DOLLER MALLER DRIVENED IN

lecular biophysics at Columbia University and Linda B. Buck, 57.

that also includes the rhodopsin proteins that initiate vision.

HOW THE NOSE KNOWS Axel and Buck figured out how the binding of odorants (geometrical shapes at bottom) to protein receptors on the surface of cells in the nose causes electrical signals to be sent first to a region of the brain called the olfactory bulb and then on to the parts of the brain that control thought and emotion.

factory researcher Peter Mombaerts of Rockefeller University. "While the term 'breakthrough,' is all too often used, I believe this paper is one of the clearest examples," he adds.

Later, Axel and Buck—who started her own lab after her postdoc stint with Axel—independently showed that each cell in this region expresses only one type of odorant receptor protein. Each odorant molecule in a given scent activates several different types of odorant receptor proteins. As a result, a given scent gives rise to a unique signature of activated cells, allowing the brain to recognize and remember more than 10,000

National Geographic September 2007 (Polish edition) (by Magda Tilszer)

- trafiają do kadzi z fermentującym miąższem.
- Tajemnica zepsutego wina zajął się dr Jacek Kozieł z Uniwersytetu Stanu Iowa w Ames. Zbadał
- on skład chemiczny substancji, jakie biedronki
- wydzielają pod wpływem stresu, np. gdy zbliża
- się drapieźnik. Stwierdził, że Harmonia axyridis,

Wilczy apetyt bożej krowki

Mimo niewinnego wyglądu i sielankowych skojarzeń, jakie budzą,

biedronki (na szczęście dla nas) są żarłocznymi drapieżnikami.

Heras Joel/Biosphoto/Photolink

BIEDRONEI 103

My world of odors

- Livestock and poultry odor
- Vodka
- Insects
- Biofuels
- Wine
- Human breath
- Animal mortalities
- Indoor air
- Spices
- Lion's urine
- Particulate matter

World of odors

- Very complex mixtures of gases (beer?)
- Not all gases odorous
- Some are extremely odorous
- Very low concentrations
- 'needle in the haystack'
- Link between concentration and perceived odor?
- What gases cause the characteristic odor?
- How to solve odor problems?
 - (advanced oxidation (ozone, UV))
- How to use this information?

WHAT IS THAT SMELL?

Jacek Koziel is a master of odours. On a pig farm in Iowa, he shows **Erik Vance** some of the peaks and troughs of life as a human detector.

Link between VOCs & odor with SPME-multidimensiona GC-MS-Olfactometry

- •Wright et al., 2003
- •Bulliner et al., 2006
- •Cai et al., 2006
- Cai et al., 2007
- •Koziel et al., 200
- •Lo et al., 2008

So the key question is... ③

 ...what causes the characteristic smell of concrete and steel? (materials are evidence of smells from environment)

Odor measurement with non-nose sensors

- Gas chromatography
 - separation of VOCs including odorants
 - MS, FID, PID, PFPD, ...
 - ppq ppt
 - gas concentrations
 - mature technology
- Real-time analyzers
 - Total VOCs or specific compounds (NH₃, H₂S)
 - ppb–ppm
 - gas concentrations
 - mature technology

- Sensor arrays (a.k.a. 'electronic noses')
 - ppb–ppm
 - evolving technology
 - principal component analysis (PCA)
 - PCA almost always "work"
 - What compounds cause problems?
 - Why odor mitigation works?

Long-term goals

- Solving livestock odor problem
- Solving odor problems
 - Bad breath
 - Ladybugs
 - Food (e.g., wine)
 - Consumer products
 - Nuisance and air quality

Approach

- Simultaneous chemical + olfactometry analysis
 - GC-Olfactometry approach
- Identification of key compounds responsible for odor "finding stinky 'needles' in the haystack of odor"
- Methods development for field measurements
- Development and evaluation of odor control technologies

Background

- Odor analysis is challenging
- Odor sources are complex (thousands of VOCs)
- Actual malodor is caused by small subset of high impact odorants
- Solving malodor problems involves isolation, identification, and reduction of high impact odorants

Simultaneous chemical and odor analysis

SPME-MDGC-MS-Olfactometry system

Simultaneous chemical and odor analysis

Sorbent tubes-MDGC-MS-Olfactometry system

Finding characteristic, odor-defining compounds

Characterizing odor caused by separated chemicals from one sample

Odor Character		r	Hedonic tone			Odor Intensity		
🔏 Data Acquisit	ion AromaTrax	t .						_ IX
Aroma Data A Active Descript	Aroma Data Acquisition Active Descriptors 0 Method Name SORBENT TUBE.M Status Ready Elapsed Time 0.00 Run Time 40.0							
Start Cancel Event Eleg Elescriptor Stop Hide Signals Show Preview Close								
Acidic	Buttery	Sweet	Sulfury	Mushroom	Burnt	Characteristic	Pleasant +4	100-
Aldehydic	Rancid	Fruity	Skunky	Moldy	Burnt food	Naphthalenic	Pleasant +3	80-
Ammonia	Foul	Urinous	Sewer	Barnyard	Burnt plastic	Piggy	Pleasant +2	70-
Herbaceous	Spicy	Nutty	Fecal	Body odor	Roasted	Potato	Pleasant +1	
Soapy	Potato	Winey	Onion	Gasoline	Smoky	Resiny	Neutral 0	40-
Citrus	Mint	Plastic	Garlic	Solvent	Phenolic	Urinous	Unpleasant -1	
Grassy	Floral	Cardboard	Cabbage	Estery	Medicinal	Unpleasant -3	Unpleasant -2	20
Fatty acid	Natural Gas	Mercaptan	Milky	Rotten eggs	Taco Shell	Unpleasant -4	Unknown	

10

Unknown

15.92

0.19

File Data Acquisition Data Analysis Aroma Dilution Analysis Display Options Help

28

531

_ 🗆 🗙

Inte

Simultaneous chemical and olfactometry analysis of odor

Sampling of odorants with Solid Phase Microextraction (SPME)

Sampling with Solid Phase Microextraction (SPME)

Methodology – Sample Analysis

- 7: Filter
- 8: Injector

14: Heartcut Sweep 15: Non-Polar Pre-column $(12 \text{ m} \times 0.53 \text{ mm} \times 1.00 \text{ } \mu\text{m})$ 20: Humidifier 21: Air in 22: Sniff Port

GC-FID-O No Heartcut Flow Schematic

- 3: Heartcut Valve
- 4: CO₂ Cryotrap
- 5: Precolumn Backflush
- 6: Solenoid
- 7: Filter
- 8: Injector

9: Backflush Sweep 10: Fixed Restrictor to Inlet 11: Liquid CO_2 Feed 12: CO_2 Cryotrap 13: Midpoint Pressure 14: Heartcut Sweep 15: Non-Polar Pre-column (12 m × 0.53 mm × 1.00 µm) 16: Polar Column (25 m \times 0.53 mm \times 1.00 μ m) 17: Fixed Restrictor to MSD 18: Open Split Interface (OSI) 19: OSI Seep 20: Humidifier 21: Air in 22: Sniff Port

- 4: CO₂ Cryotrap
- 5: Precolumn Backflush
- 6: Solenoid
- 7: Filter
- 8: Injector

9: Backflush Sweep 10: Fixed Restrictor to Inlet 11: Liquid CO₂ Feed 12: CO₂ Cryotrap 13: Midpoint Pressure 14: Heartcut Sweep 15: Non-Polar Pre-column (12 m × 0.53 mm ×1.00 μm) 16: Polar Column (25 m \times 0.53 mm \times 1.00 μ m) 17: Fixed Restrictor to MSD 18: Open Split Interface (OSI) 19: OSI Sweep 20: Humidifier 21: Air in 22: Sniff Port

Finding 'characteristic' swine odor

- Clean steel exposed for 1, 3, and 7 days
- Plates adsorb odor
- ISU swine research barn in Ames, Iowa
- Analysis at AAQ Laboratory
- Useful long-term storage of odor on plates

Simultaneous Chemical and Olfactometry Analysis

SPME

SPME-MDGC-MS-Olfactometry system

Multidimensional GC-MS-O: identification of characteristic odorants

GC-O mode: "screening" for characteristic odorants

Multidimensional GC-MS-O: identification of characteristic odorants

GC-O mode: "screening" for characteristic odorants

Selection of heart-cutting regions with characteristic swine odorants

HC	GC-O mode RT (min)	Odor Character
1	0.48 - 0.8	Fecal, sewer, foul
2	3.45 - 4.10	Skunky, buttery, body odor, fatty acid, foul
3	4.40 - 5.10	Body odor, fatty acid, buttery
4	9.90 - 13.55	Barnyard, medicinal, phenolic, characteristic, naphthalenic, piggy, taco shell, urinous, acidic
5	15.40 - 18.30	Barnyard, fecal, sewer, characteristic, piggy, naphthalenic

Multidimensional GC-MS-O: identification of characteristic odorants

Multidimensional GC-MS-O mode: isolation and identification of characteristic odorants

Multidimensional GC-MS-O: identification of characteristic odorants

Multidimensional GC-MS-O mode: isolation and identification of characteristic odorants using "heart-cutting" from pre-column to the column 31

Impact of p-cresol (key characteristic swine odorant)

Identification of priority swine odorants of the highest impact downwind

Identification of priority swine odorants of the highest impact downwind

Near source: 20 min exposure of SPME fiber

Identification of priority swine odorants of the highest impact downwind

Far from the source: 20 min exposure of SPME fiber to ambient air

Identification of priority swine odorants of the highest impact downwind: chromatogram

Identification of priority swine odorants of the highest impact downwind: aromagram

Identification of priority beef cattle odorants of highest impact downwind

Analysis of beef cattle odor (aromagrams)

- p-cresol
- isovaleric acid
- 🛧 butyric acid
- 😣 DMTS
- acetic acid
- methyl mercaptan
- trimethyl amine
- •Odorous VOCs and semi-VOCs undergo dispersion and chemical reactions
- •Need to include chemical reactions with OH, NO_3 , O_3 to model "odor"
- •P-cresol is one of the most important odorants (and also a HAP)

Identification of priority beef cattle odorants of highest impact downwind

Samples collected with Carboxen/PDMS 85 micron SPME, 1 hr exposure to ambient air <u>16 km downwind</u> from (50,000-head beef cattle feedlot in Texas

Identification of priority beef cattle odorants of highest impact downwind: chromatogram

Identification of priority odorants of highest impact downwind: aromagram

Air samples collected 16 km downwind from a large beef cattle feedyard

Evaluation of biofilter performance – swine finisher barn exhaust

Odor 'cell' biofilter

• Odor cell biofilter exhaust (treated air)

Sampling with SPME and odor bags

Evaluation of biofilter

• Comparison of aromagram and TIC between inlet and open bed BF exhaust air.

Effectiveness of biofilter treatment on swine odor

Fifteen characteristic odorants responsible for swine odor selected for further evaluation including:

Sulfides (3); Phenolics (3); Indolics (2); VFAs (7);

The relative % reduction used to evaluate the effectiveness of different diet treatments.

% Reduction =
$$\frac{Ci - Ti}{Ci} \times 100$$
 %

where:

- *Ci* = peak area count of compound or odor "i" for the inlet gas, and
- *Ti* = peak area count of compound or odor "i" for the biofilter exhaust gas.

Example of chemical analysis and odorant % reduction

8-13-2007	Inlet, LR 3 South		BF exhaust, LR 3 South				
Compound	Average	Stdev	RSD%	Average	Stdev	RSD%	Reduction %
Dimethyl sulfide	3,486	217	6	3,684	1,069	29	-6
Dimethyl disulfide	4,308	1,921	45	5,516	1,076	20	-28
Dimethyl trisulfide	2,882	1,567	54	1,372	699	51	52
Acetic acid	5,157,131	476,728	9	100,094	46,234	46	98
Propanoic acid	1,729,513	108,229	6	42,374	11,395	27	98
Dimethyl propanedioic acid	347,178	6,891	2	43,498	2,107	5	87
Butanoic acid	6,560,819	368,405	6	164,784	47,724	29	97
Isovaleric acid	1,135,089	32,655	3	115,007	21,484	19	90
Valeric acid	2,298,297	67,572	3	0	0	0	100
Hexanoic acid	545,006	226,587	42	0	0	0	100
Phenol	528,587	37,970	7	111,670	23,427	21	79
p-Cresol	3,007,607	364,541	12	405,035	98,601	24	87
4-Ethyl-phenol	363,173	44,167	12	49,933	19,845	40	86
Indole	30,400	12,963	43	8,989	4,860	54	70
Skatole	26,602	9,738	37	9,469	3,167	33	64
Avg.			19			27	4.8

Odor Cell Biofilter

Odor Cell Biofilter

Open Bed Biofilter

Open Bed Biofilter

Correlation between odor intensity and gas concentration (mass on sorbent tube) (both swine and dairy sites – 1 month data)

Typical VFA emitted from livestock facilities

Turk, A, et al. Human responses to environmental odors. Academic Press. 1974

Correlation between odor intensity and concentration (mass on sorbent tube) (both swine and dairy sites – 1 month data)

Weber-Fechner Law

Typical phenolic emitted from livestock facilities

Correlation between odor intensity and gas concentration (mass on sorbent tube) (both the swine and dairy sites – 1 month data)

 $R^2 > 0.750$

Weber-Fechner law

No.	Compound	Correlation equation	R²
2	p-cresol	y = 6.38ln(x) + 13.8	0.826
3	4-Ethylphenol	y = 4.90ln(x) + 11.3	0.756
4	2-Aminoacetophenone	y = 11.6ln(x) + 43.4	0.844

Phenolics and other odors emitted from livestock facilities

Correlation between odor intensity and gas concentration (mass on sorbent tube) (both swine and dairy sites – 1 month data) Weber-Fechner law

 $R^2 > 0.750$

VFA emitted from livestock facilities

Correlations between ODT and concentrations – IA4B (swine barn)

Correlations between ODT and concentrations – IA4B (Swine barn)

Summary

- Combining chemical and olfactometry analysis is very useful in solving odor problems
- SPME-MDGC-MS-O approach is very useful well for sampling, separation, isolation and identification of characteristic odorants/aromas
- Only few analytes determine characteristic odors of any sample
- P-cresol appears to have the greatest characteristic swine odor
- GC-O approach and dilution olfactometry approach
- Measured odor concentration (ODT) appears to be correlated with the simultaneous chemical and sensory analysis
- Collection of large database of ODT, C_{gas}, hedonic tone, intensities for target VOCs, NH₃, and H₂S (Larry Jacobson – PI)