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9.1 Introduction 

RNA profiling analysis and new techniques such as proteomics are 
yielding vast amounts of data on gene expression and protein levels. This 
points to the need to develop new methodologies to identify and analyze 
complex biological networks. This chapter describes the development of a 
Java™-based tool that helps dynamically find and visualize metabolic 
networks. The tool consists of three parts. The first part is a text-mining tool 
that pulls out potential metabolic relationships from the PubMed database. 
These relationships are then reviewed by a domain expert and added to an 
existing network model. The result is visualized using an interactive graph 
display module. The basic metabolic or regulatory flow in the network is 
modeled using fuzzy cognitive maps. Causal connections are pulled out from 
sequence data using a genetic algorithm-based logical proposition generator 
that searches for temporal patterns in microarray data. Examples from the 
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regulatory and metabolic network for the plant hormone gibberellin show 
how this tool operates. 

The goal of this project is to develop a publicly available software suite 
called the Gene Expression Toolkit (GET). This toolkit will aid in the 
analysis and comparison of large microarray, proteomics and metabolomics 
data sets. It also aids in the synthesis of the new test results into the existing 
body of knowledge on metabolism. The user can select parameters for 
comparison such as species, experimental conditions, and developmental 
stage. The key tools in the Gene Expression Toolkit are:  

 
• PathBinder: Automatic document processing system that mines 

online literature and extracts candidate relationships from 
publication abstracts.  

• ChipView: Explanatory models synthesized by clustering 
techniques together with a genetic algorithm-based data-mining tool.  

• FCModeler: Predictive models summarize known metabolic 
relationships in fuzzy cognitive maps (FCMs). 

 
Figure 1 shows the relationship between the different modules. The 

PathBinder     citations   are    available   to  the   researcher   and    smoothly 
transferable for use in annotating displays in other parts of the package and 
as links in building models. ChipView searches for link hypotheses in 
microarray data. The FCModeler tool for gene regulatory and metabolic 
networks is intended to easily capture the intuitions of biologists and help 
test hypotheses along with providing a modeling framework for putting the 
results of large microarray studies in context. 

9.2 Structure of Concepts and Links 

The nodes in the metabolic network represent specific biochemicals such 
as proteins, RNA, and small molecules, or stimuli, such as light, heat, or 
nutrients. There are three basic types of directed links specified: conversion, 
regulatory, and catalytic. In a conversion link (black arrow, shown as a 
heavy dotted line), a node (usually representing a chemical) is converted into 
another node, and used up in the process. In a regulatory link (green and red 
arrows, shown as solid and dashed arrows respectively), the node activates 
or deactivates another node, and is not used  up  in  the  process.  A  catalytic  
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Figure 1. The Gene Expression Toolkit consists of PathBinder, FCModeler, and 
ChipView. The inputs to the system are the literature databases such as PubMed; 
experimental results form RNA microarray experiments, proteomics, and the expert 
knowledge and experience of the biologists that study an organism. The result will 
be a predictive model of the metabolic pathways. 

 
link (blue arrows, shown as a thick line) represents an enzyme that enables a 
chemical conversion and does not get used up in the process. Figure 2 shows 
a small part of a graph for the Arabidopsis metabolic and regulatory 
network. There is also an undirected link that defines a connection between 
two nodes and does not specify a direction of causality. 

In the metabolic network database, the type of link is further delineated 
by the link mechanism and the certainty. Some of the current mechanisms 
are: direct, indirect, and ligand. Direct links assume a direct physical 
interaction. Indirect links assume that the upstream node activates the 
downstream node indirectly and allows for the existence of intermediate 
nodes in such a path. The ligand link is a “second messenger” mechanism in 
which a node produces or helps produce a ligand (small molecule that binds) 
and either “activates” or “inhibits” a target node. Often the nature of the link 
is unknown and it cannot be modeled in the current framework. The link 
certainty expresses a degree of confidence about the link. This will be used 
for hypothesis testing. 

Other key features include concentrations of the molecules (nodes), 
strengths of the links, and subcellular compartmentation. These data can be 
added as they are identified experimentally. Currently the biologist  user  can  
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Figure 2. This is a map of a simple metabolic model of gibberellin (active form is 
GA4). The sequence is started by translation of 3_beta_ hydroxylase_RNA into the 
3_beta_ hydroxylase protein. Bold dashed lines are conversion links, bold lines are 
catalytic links, thin solid lines are positive regulatory links and dashed thin lines are 
negative regulatory links. 

 
 

include or ignore a variety of parameters, such as subcellular 
compartmentation and link strength. Since the node and link data is entered 
into a relational database, individual biologists can easily sort, share, and 
post data on the web. Future versions will distinguish between regulation 
that results in changes in concentrations of the regulated molecule, and 
regulation that involves a reversible activation or deactivation. 



Dickerson, Berleant, Cox, Qi, Ashlock, Wurtele & Fulmer 5 

9.3 PathBinder: Document Processing Tool 

PathBinder identifies information about the pathways that mediate 
biological processes from the scientific literature. This tool searches through 
documents in Medline for passages containing terms that indicate relevance 
to signal transduction or metabolic pathways of interest. Microarray data can 
be used to hypothesize causal relationships between genes. PathBinder then 
mines Medline for information about these putative pathways, extracting 
passages most likely to be relevant to a particular pathway and storing this 
desired information. The information is presented in a user-friendly format 
that supports efficiently investigating the pathways. 

Related Work on Knowledge Extraction from Biochemistry Literature 
 
An increasing body of works addresses extraction of knowledge from 

biochemical literature. Some works compare documents, such as MEDLINE 
abstracts, and extract information from the comparisons. For example, 
Shatkay et al. and Stapley assess the relatedness of genes based on the 
relatedness of texts in which they are mentioned [Shatkay, 2000; Stapley, 
2000]. Shatkay et al. get documents containing a particular gene, compare 
the set of documents to the set relevant to other genes, and if two sets are 
similar then the two genes are deemed related. Stapley compares the 
literatures of two genes and assesses relatedness of genes based on the rate at 
which papers contain both of them. The system presented by Usuzaka et al. 
learns to retrieve relevant abstracts from MEDLINE based on examples of 
known relevant articles [Usuzaka, 1998]. 

Other works directly address the relationships among entities such as 
proteins, genes, drugs, and diseases. An initial requirement for such a system 
is identifying relevant nouns. This can be done by extracting names from 
free text based on their morphological properties. Sekimizu et al. [1998] 
parse text to identify noun phrases, rather than concentrating on the nouns 
themselves. The GENIA system and the PROPER system address the need 
to identify relevant terms automatically to enable automatic maintenance of 
lexicons of proteins and genes [Fukuda et al., 1998; Collier, 1999]. Proux et 
al. [1998] concentrate on gene names and symbols. 

Once the lexicon problem has been addressed, text can be analyzed to 
extract relationships among entities discussed therein. Andrade and Valencia 
[1998] extract sentences that contain information about protein function. 
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Rindflesch et al. [1999] concentrate specifically on binding relationships 
(among macromolecules). Rindflesch et al. [2000] emphasizes drug-gene-
cell relationships bearing on cancer therapy. Thomas et al. [2000] use 
automatic protein name identification to support automatic extraction of 
interactions among proteins. Sekimizu et al. [1998] use automatically 
identified relevant noun phrases in conjunction with a hand-generated list of 
verbs to automatically identify subject-verb-object relationships stated in 
texts in MEDLINE. Craven and Kumlien [1999] extract relationships 
between proteins and drugs. They investigate two machine-learning 
techniques in which a hand-classified training set is given to the system, 
which uses this set to infer criteria for deciding if other passages describe the 
relevant relationships. One machine learning technique is based on modeling 
passages as unordered sets of words, and assumes word co-occurrence 
probabilities are independent of one another (the Naïve Bayes approach). 
Tanabe et al. [1999] extract relationships between genes and between genes 
and drugs. Their MEDMINER system supports human literature searches by 
retrieving and serving sentences from abstracts on MEDLINE over the Web, 
based on their keyword content. MEDMINER is tuned to finding 
relationship-relevant sentences in abstracts that contain a gene name and 
relationship keyword, pair of gene names and relationship keyword, or a 
gene and a drug name and relationship keyword. MEDMINER can also 
handle arbitrary Boolean queries, such as those containing two protein 
names. In such cases MEDMINER takes a query consisting of an OR’ed list 
of “primary” terms and an AND’ed list of “secondary” terms. A returned 
sentence must contain a “primary” term and a relationship word. 
Relationship words are from a relatively large lexicon of such terms 
predefined by the system. 

A number of works address extracting relationships among proteins from 
biochemical texts. A solution enables both automatic construction of 
biochemical pathways, and assistance to investigators in identifying relevant 
information about proteins of interest to them. 

Humphreys et al. [2000] specifically address enzyme reactions extracted 
from Biochimica et Biophysica Acta and FEMS Microbiology Letters. Such 
interactions are intended to support metabolic network construction. 
Rindflesch et al. [1999] apply non-trivial natural language processing (NLP) 
to extract assertions about binding relationships among proteins. Noun 
phrases are identified by a sophisticated combination of text processing and 
reference to existing name repositories. 
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Other systems have been reported that extract many interactions among 
diverse proteins. Blaschke et al. [1999] extracts such interactions by first 
identifying phrases conforming to the template protein... 
verbclass ...protein, where verbclass is one of 14 sets of 
pathway relevant verbs (such as “bind”) and their inflections. Protein names 
and synonyms are provided as an input and sentences containing extracted 
phrases are returned. The BioNLP subsystem, a component of a larger 
system, extracts sentences containing pathway relevant verbs determined by 
the user and applies templates to them to identify path relevant relationships 
among proteins [Ng, 1999; Wong, 2001]. Protein names are determined 
automatically. The subsystem, CPL2Perl, thresholds the results so that it 
ignores interactions with a single relevant sentence. This is useful if the 
sentence analysis was mistaken. Such a thresholding strategy tends to 
increase precision at the expense of reducing recall. Thomas et al. [2000] 
distinguish between verbs that are relatively more and less reliable in 
indicating protein interactions. Their system automatically recognizes 
protein names and relies on the strategy of tuning an existing sophisticated 
general-purpose natural language processing system to the protein 
interaction domain. Ono et al. [2001] use part-of-speech (POS) tagging, key 
verbs, and template matching on phrases to extract protein-protein 
interactions. Their system has an information retrieval effectiveness measure 
of up to 0.89 [Ding et al., 2002]. 

PathBinder Operation 
 

The PathBinder system, like previous works, extracts relevant passages 
about protein relationships from MEDLINE. The PathBinder work differs 
from these due to a combination of system design decisions. PathBinder 
avoids syntactic analysis of text in favor of word experts for pathway 
relevant verbs. Word experts are sets of rules for interpreting words 
[Berleant, 1995]. PathBinder also is oriented toward assisting humans in 
constructing pathways rather than fully automatic construction, thus 
avoiding some information retrieval precision limitations. We are also 
investigating the relative performances of several algorithms for identifying 
relevant sentences, including verb-free algorithms that rely instead on 
protein term co-occurrences. PathBinder relies on the sentence unit rather 
than abstracts, phrases, or other units because sentences rate highly on 
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information retrieval effectiveness under reasonable conditions [Ding et al., 
2002]. 

How PathBinder Works 
 

Step 1: user input. Keyboard input of biomolecule names in pathways of 
interest by the user. 

Step 2: synonym extraction. A user-editable synonym file is combined 
with a more advanced module that will automatically access the HUGO 
(http://www.gene.ucl.ac.uk.publicfiles/nomen/nomenclature.txt) and OMIM 
(www.ncbi.nlm.nih.gov/htbinpost/Omim/) nomenclature databases, and 
extract synonyms. 

Step 3: document retrieval. PubMed is accessed and queried using terms 
input in Step 1. The output of this step is a list of URLs with high relevance 
probabilities. 

Step 4: sentence extraction. Each URL is downloaded and scanned for 
pathway-relevant sentences that satisfy the query. These sentences constitute 
pathway-relevant information “nuggets.” 

Repetition of steps 2 through 4, using different biomolecule names 
extracted from qualifying sentences. These new biomolecule names are 
candidates for inclusion in the pathways of interest. 

Step 5: sentence index. Process the collection of qualifying sentences 
into a more user-friendly form, a multi-level index (Figure 3), with the 
number of levels dependent on the sentence extraction criteria. This index 
conforms to a pattern, displayed by a Web browser, and the sentences in it 
are clickable. When a sentence is clicked, the document from which it came 
appears in the Web browser. 

Step 6: integration with the rest of the software and the microarray data 
sets. The index can be used to create a graphical representation in which 
verbs are represented by lines, interconnecting the biomolecule names and 
forming a web-like relationship diagram of the extracted information. 

PathBinder is useful as both a standalone tool and an integrated 
subsystem of the complete system. The multilevel indexes transform 
naturally  into  inputs  for  the   network  modeling  tools.  The networks  that 
PathBinder helps identify will form valuable input to the clustering, display, 
and analysis software modules. 
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Protein A 
        Protein B 
                Associates/Associated/etc. 
                        Sentence 1 
                        Sentence 2 
                        . . . 
                Binds/Binding/Bind/etc. 
                        Sentence M 
                        Sentence M+1 
                        . . . 
                Regulates/Regulating/etc. 
                . . . 
        Protein C 
                Associates/Associated/etc. 
                        Sentence M+N 
                        . . . 
                Binds/Binding/Bind/etc. 
                . . . 
Protein B 
        Protein D 
                Associates/Associated/etc. 
                        Sentence M+N+P

Figure 3. The long and somewhat disorganized sentence set that PathBinder extracts 
is converted into a multilevel index which is more suited to a human user. “Protein 
A”, “Protein B”, etc. are placeholders for the actual name of a path-relevant protein, 
and “Sentence 1”, “Sentence 2”, etc. are placeholders that would be actual sentences 
in the PathBinder-generated index. 

Example of a Sample PathBinder Query 
 

The query is to find sentences containing (either gibberellin, gibberellins, 
or GA) AND (either SPY, SPY-4, SPY-5, or SPY-7). Three relevant results 
were found and incorporated into the metabolic and regulatory visualization. 
A single sentence example is show below. 

Sentence: “The results of these experiments show that spy-7 and gar2-1 
affect the GA dose-response relationship for a wide range of GA responses 
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and suggest that all GA-regulated processes are controlled through a 
negatively acting GA-signaling pathway.” 

Source Information: UI—99214450, Peng J, Richards DE, Moritz T, 
Cano-Delgado A, Harberd NP, Plant Physiol 1999 Apr; 119(4):1199-1208. 

9.4 ChipView: Logical Proposition Generator 

Gene expression data is gathered as a series of snapshots of the 
expression levels of a large number of genes. The snapshots may be 
organized as a time series or a sequence of organism states. When multiple 
gene expression experiments are performed, the choice of genes, time points, 
or organism states often varies. Finally, the data gathered often contain many 
unusable points for a number of reasons. The variation in which data is 
collected, the noisy character of the data, and the fact that data is often 
missing mean that a gene expression analysis tool must be designed with all 
these limitations in mind. Current analysis tools, mostly built around 
clustering of various sorts, are quite valuable in cutting through the thickets 
of data generated by gene expression technology to find nuggets of truth (see 
for example [Eisen et al., 1998; Brown et al., 2000]). These tools, however, 
do not currently suggest possible interpretations to the researcher and 
incorporate many ad hoc assumptions about the mathematical and 
algorithmic behavior of various clustering techniques. 

One possible way of addressing both the data collection limitations and 
lack of theoretical foundation is the Logical Proposition Generator. The key 
features of this tool are: 

 
• Filtration of data items by behavioral abstractions that yield both 

interpretation of data and partial resistance to variations in data 
collection. 

• Incorporation of a vast space of clustering techniques into the tool to 
create data driven, problem-specific clustering on the fly. 

• Designing the tool so that its basic data objects are logical 
propositions about the data it is working with. 

 
This makes the analogy to clustering in the logical proposition generator 

one that transparently supplies multiple potential interpretations of the data. 
The output of the tool is in the form of logical sentences with atoms drawn 
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from absolute and differential classifications of expression profiles and 
relative abstractions of pairs of gene expression profiles. The prototype tool 
was written for gene expression profiles that are time series. The goal is to 
extend the logical proposition generator to have logical primitives that are 
appropriate for non-time series data are one of the goals as well. 

Operation of the Logical Proposition Generator 
 
Let us now specify the atoms and connective of the logical proposition 

language that is the target of the tool’s search of the data for meaning. The 
tool permits the user to specify the expression level E that they believe 
specifies up or down regulation of a gene and the minimum change in 
expression level D that represents a significant change between adjacent 
time points. The tool recognizes classes of expression profiles given by the 
regulation state at each time point. Thus, “up, not down, not unchanged, 
down, down, not up, unchanged,” specifies one of the possible classes of a 
seven point time series. Likewise, if +/− means significant change up or 
down since the last time step “+++00 − −” would represent a class of profiles 
that first increased, then stayed level, and later decreased their regulation 
between time steps. These two types of classes of expression profiles form 
the single expression profile atoms of the language. 

The tool also uses logical atoms that compare pairs of profiles. These 
compute representative facts about the profiles, such as “profile one has its 
maximum before profile two”, “the maximum change in regulation of the 
second profile exceeds that of the first”, or “upregulation in the first profile 
does not occur unless a change in regulation has occurred in the second”. 
The absolute and differential (single expression profile) atoms and the 
relative (two expression profile) atoms both return a “true” or “false” result. 
With these atoms available we then use traditional Boolean connectives 
AND, OR, NOT, XOR, etc. to build logical propositions. 

Once we have the ability to make logical statements about gene 
expression profiles, the problem them becomes locating interesting and 
informative propositions. Statements that are always true, tautologies, are 
not interesting. Instead, we use a form of evolutionary computation, genetic 
programming [Koza, 1992; Kinnear, 1994; Koza, 1994; Angeline, 1996] to 
locate propositions that are true of subsets of the expression profiles. While 
this can be done blindly, with utility similar to clustering, it is also possible 
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to force the expressions to be true when one of their arguments comes from a 
restricted class of genes of interest, e.g. a class we are trying to modify the 
expression of by some intervention. Thus, to find genes important to the 
upregulation of a class of genes X, we would search for propositions [ ]yxP ,  
that are often true when x is in X, seldom true when x was not in X, for some 
substantial but not universal collection Y of values for y. These vague 
statements about “usually true” and “substantial” become mathematically 
precise when embedded into the evolutionary search tool as a fitness 
function. One target of the research is an understanding of which fitness 
function among those possible provide results useful to biological 
researchers. 

The relation { } { } { }ybeforeupfirstxyx ∧∈∧∈ 55666662233333  
defines a binary relation of expression profiles. x must not change 
significantly at first while y must change at first. Later, x must not go down 
while y must not go up OR the first significant upregulation of x must be 
before that of y. Evolving such expressions permits the computation of 
interesting hypotheses about relations between profiles including 
relationships that use edges in the graphical models. 

The logical proposition generator, by working with abstractions of the 
data in the form of the logical atoms described above yields the advantage 
that it is resistant, though certainly not immune, to variations in exactly 
which data are collected. The absolute and differential expression classes 
represent primitive fragments, which Boolean operations fuse together into 
data partitions, i.e. clusters. This means that the clustering techniques 
required to make sense of gene expression data are incorporated 
transparently into the logical proposition generator. Finally, in addition to 
locating genes that are implicated in the regulation of genes of interest, 
something clustering tools can do to some degree, the logical character of the 
tool will sometimes simultaneously suggests the “what” or “why” of the 
relationship, easing the work of interpretation and providing a source of 
tentative links for the other tools. This tool is not intended to replace 
clustering tools but to complement them. One way to locate a target set of 
genes, for example, might be to choose a tight cluster containing a few genes 
of interest and use this as a group of interest for the logical proposition 
generator. 
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Code Measurement Change 

1 Upregulated 

2 Didn't change significantly 

3 Didn't downregulate 

4 Downregulated 

5 Changed significantly from the baseline 

6 Didn't upregulate 

7 Matches anything 

 
         Table 1. Codes for changes in the expression profiles. 
 

Example of Logical Proposition Generator Operation 
 
The logical proposition generator operates on sets of expression profiles. 

It characterizes desired sequences as a series of numbers, e.g. Y in L: 124 
means that Y is in the set of profiles that are in the state “Upregulated, didn’t 
change, and downregulated”. Table 1 gives the codes used in this example. 
An example logical proposition is given below: 
 

(  
(

(  in : 757243126155) 
(  ( Pr   ) )) 
(   (  (  (   )))

)
)

NAND
NOR

Y L
NAND Same o Y X F
AND T NOT NOT NOR F T

 

 
This is a logical proposition that acts on two 12-time-point expression 

profiles X and Y. It uses the logical operations NAND, NOR, NOT, and AND 
and the constants T and F. The logical proposition uses the binary predicate 
“SamePro” which is true if two profiles are significantly up-and-down 
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regulated in the same pattern. It also uses the unary predicate “Y in 
L:525634163157” which tests to see if Y is in the class of profiles that 
displays a particular pattern of up and down regulation in its twelve time 
points according to the scheme in Table 1. 

Logical propositions of this form have the potential to encode very 
complex classes of expression profiles in very short statements. The 
following logical proposition also uses OR and Say, which we use to encode 
the logical identity, as well as differential classes, e.g. “X in 
D:73512467452” which check for changes in regulation since the last time 
step rather than as compared to the baseline: 

 
(  (  (  in :73512467452)) 
     (  (  (  (  in :71661716551) (  in :177621456644)) 
          (   (  (  in :13376357161))))
     )
)

NOR Say X D
Say OR OR X D X L

NAND T Say Y D  

 
The Say operation does nothing but it leaves space in an expression that 

makes it easier for the evolutionary training techniques we use to move 
around sub-expressions that form coherent logical units. 

9.5 Fuzzy Cognitive Map Modeling Tool for Metabolic 
Networks 

The FCModeler tool for gene regulatory and metabolic networks 
captures the known metabolic information and expert knowledge of 
biologists in a graphical form. The node and link data for the metabolic map 
is stored in a relational database. This tool uses fuzzy methods for modeling 
network nodes and links and interprets the results using fuzzy cognitive 
maps [Kosko, 1986a; Kosko, 1986b; Dickerson and Kosko, 1994]. This tool 
concentrates on dynamic graphical visualizations that can be changed and 
updated by the user. This allows for hypothesis testing and experimentation. 
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Metabolic Network Mapping Projects 
 
Two existing projects for metabolic networks are the Kyoto 

Encyclopedia of Genes and Genomes [Kanehisa and Goto, 2000] (KEGG 
http://www.genome.ad.jp/kegg) and the WIT Project [Overbeek et al., 2000] 
(http://wit.mcs.anl.gov/WIT2/WIT). The WIT Project produces “metabolic 
reconstructions” for sequenced (or partially sequenced) genomes. It currently 
provides a set of over 39 such reconstructions in varying states of 
completion from the Metabolic Pathway Database constructed by Evgeni 
Selkov and his team. A metabolic reconstruction is a model of the 
metabolism of the organism derived from sequence, biochemical, and 
phenotypic data. This work is a static presentation of the metabolism 
asserted for an organism. The purpose of KEGG is to computerize current 
knowledge of molecular and cellular biology in terms of the information 
pathways that consist of interacting genes or molecules and, second, to link 
individual components of the pathways with the gene catalogs being 
produced by the genome projects. These metabolic reconstructions form the 
necessary foundation for eventual simulations. 

E-CELL is a model-building kit: a set of software tools that allows a user 
to specify a cell's genes, proteins, and other molecules, describe their 
individual interactions, and then compute how they work together as a 
system [Tomita et al., 1997; Tomita et al., 1999; Tomita, 2001]. Its goal is to 
allow investigators to conduct experiments “in silico.” Tomita's group has 
used versions of E-CELL to construct a hypothetical cell with 127 genes 
based on data from the WIT database. The E-CELL system allows a user to 
define a set of reaction rules for cellular metabolism. E-CELL simulates cell 
behavior by numerically integrating the differential equations described 
implicitly in these reaction rules. 

EcoCyc is a pathway/genome database for Escherichia coli that describes 
its enzymes, and its transport proteins [Karp et al., 2000] 
(http://ecocyc.DoubleTwist.com/ecocyc/). MetaCyc is a metabolic-pathway 
database that describes pathways and enzymes for many different organisms. 
These functional databases are publicly available on the web. The databases 
combine information from a number of sources and provide function-based 
retrieval of DNA or protein sequences. Combining this information has 
aided in the search for effective new drugs [Karp et al., 1999]. EcoCyc has 
also made significant advances in visualizing metabolic pathways using 
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stored layouts and linking data from microarray tests to the pathway layout 
[Karp et al., 1999]. 

Visualizing Metabolic Networks 
 
The known and unknown biological information in the metabolic 

network is visualized using a graph visualization tool. Figure 4 shows a 
screenshot of the FCModeler tool display window. The graph visualization is 
based on for visualizing and interacting with dynamic information spaces. 
FCModeler uses Diva, a Java-based software information visualization 
package (see http://www.gigascale.org/diva/) for its basic graph data 
structure, rendering, and interaction controls. In addition, it extends Diva to 
provide custom graphics-related features such as dynamic figures, graph 
layout, and panning and zooming. This allows for a greater variety of 
visualization objects on the display. The front end of the FCModeler tool is a 
Java TM interface that reads and displays data from a database of links and 
nodes. The graph layout program is dot, which is part of the Graphviz 
program developed at AT&T research labs (see http://www.research.att.com/ 
sw/tools/graphviz/). 

The nodes and edges in the FCModeler graph have properties, which can 
be specified in an XML file or created at run-time by the user. There is a set 
of properties for nodes and also one for edges. In a bioinformatics 
application, a node property may be “type of node”. Then each node would 
have a specific value for this property, such as “DNA”, “RNA”, “protein”, 
“environmental factor”, etc. Similarly, an edge property could be “type of 
reaction” with the specific values “conversion” or “regulatory.” Figure 5 
shows the visual property window from FCModeler for some of the nodes 
and edges of the Arabidopsis graph shown in Figure 4. 

Interaction 
 
FCModeler currently supports several forms of user interaction with the 

graph model and view. One basic form of interaction is selection. Node and 
edge figures can be selected individually by clicking on them with the 
mouse, or by dragging a selection rectangle around a group of them. The 
selected node and edge figures are then visually distinguished from  the   rest  
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Figure 4. Screenshot of an FCModeler graph. The bold blue arrows represent 
catalyst links. The dashed arrows are conversion links. The proteins are shown as 
ellipses. The rectangles are small molecules. Nodes of interest can be highlighted by 
the user. 

 
 

 
 
Figure 5. The attribute editor in FCModeler. The color, shape, and fill of the nodes 
can be changed according to the existing properties. The color, line thickness, and 
dash pattern can be changed for the edges. 
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by some form of highlighting. Selection of node and edge figures can 
provide a starting point for other operations on the graph. 

The user can reposition the nodes and edges on the screen by dragging 
them with the mouse. All of the selected figures will then be translated in the 
direction of the mouse movement. In addition, edge figures are rendered as 
Bezier curves [Angel, 2000] and dragging with the mouse relocates the edge 
figures’ individual control points. 

FCModeler supports graphical modification the underlying metabolic 
map model. Node and edge figures can be added to and removed from the 
view. The user can also change the tail or head node of an edge by dragging 
the desired edge end to a new node figure. 

Zooming and panning allow the user to examine different parts of the 
graph in varying levels of detail. The graph may just be too large to be 
viewed as a whole on the screen, or a layout algorithm could use more space 
than is viewable at once for its layout. The view port can also be 
programmatically set to arbitrary coordinates. 

Graph Layout 
 

Any Diva graph view can use an arbitrary graph layout algorithm to 
compute the positions of its node and edge figures. Diva comes with several 
layout algorithms, but opens its views to custom implementations. 
FCModeler uses the Dot graph layout engine, which is part of the Graphviz 
graph drawing software from AT&T labs (http://www.research.att.com/ 
sw/tools/graphviz/). Dot produces fairly nice layouts, and is easy to use. 
However, other more specialized layout algorithms may produce better 
layouts for the specific kinds of graphs visualized in FCModeler [Becker and 
Rojas, 2001]. Diva makes pluggable layout algorithms easy by separating 
the view logic from the layout logic. 

Database and Object Properties 
 

FCModeler allows nodes and edges in the graph model to have 
properties. The specific values of these properties determine the visual 
attributes of the corresponding node and edge figures in the view. These 
mappings from properties to visual attributes are encapsulated by a set of 
mapping rules, which can be specified in an XML file or created at run-time 
by the user. 
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Figure 6. The property viewer displays information about the selected nodes and 
edges. The properties are defined in an XML graph file generated by the relational 
database. 

 
The node and link information is stored in a relational database that 

interacts with the graphical modeling program. The purpose of  this database 
is to store information such as links and nodes data, search results, literature 
sources, and microarray data in a searchable database to support 
development of the Gene Expression Toolkit. This system will be used to 
model the structure of metabolic networks using data provided by users. It 
will also track the results from the tests. Figure 6 shows a property window 
that displays the database information about the highlighted nodes and links. 

Animation 
 
The visual attributes of the node and edge figures can be changed over 

time, producing an animation of the graph view. This animation consists of 
discrete time steps, each having a set of mapping rules. An animation 
controller in FCModeler applies the mapping rules to the node and edge 
figures for each time step in order, with a configurable delay between time 
steps. The node and edge figures are set back to a permanent state at the 
beginning of each time step, and then the new mapping rules are applied to 
all figures in the view. Thus, the mappings only last for a single time step, 
and then the figures revert back to their previous state. The user specifies the 
sets of mapping rules for each time step of the animation in an XML file. 
This file is similar to the attributes XML file, but with the addition of time 
step tags. Users can produce these animation files to show how the nodes 
interact with each other in the graph. 
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Metabolic Network Modeling using Fuzzy Cognitive Maps 
 
The FCModeler tool models regulatory networks so that important 

relationships and hypotheses can be mined from the data. Some types of 
models that have been studied for representing gene regulatory networks are 
Boolean networks [Liang et al., 1998; Akutsu et al., 1999], linear weighting 
networks [Weaver et al., 1999], differential equations [Tomita et al., 1999; 
Akutsu, 2000] and Petri nets [Matsuno, 2000]. Circuit simulations and 
differential equations such as those used in the E-cell project require detailed 
information that is not yet known about the regulatory mechanisms between 
genes. Another problem is the numerical instability inherent in solving large 
networks of differential equations. Boolean networks analyze binary state 
transition matrices to look for patterns in gene expression. Each part of the 
network is either on or off depending on whether a signal is above or below 
a pre-determined threshold. These network models lack feedback. Linear 
weighting networks have the advantage of simplicity since they use simple 
weight matrices to additively combine the contributions of different 
regulatory elements. However, the Boolean and weighting networks are 
feedforward systems that cannot model the feedback present in metabolic 
pathways. Petri nets can handle a wide variety of information, however their 
complexity does not scale up well to systems that have both continuous and 
discrete inputs [Alla and David, 1998; Reisig and Rozenberg, 1998]. 

Fuzzy cognitive maps (FCMs) have the potential to answer many of the 
concerns that arise from the existing models. Fuzzy logic allows a concept or 
gene expression to occur to a degree—it does not have to be either on or off 
[Kosko, 1986a]. FCMs have been successfully applied to systems that have 
uncertain and incomplete models that cannot be expressed compactly or 
conveniently in equations. Some examples are modeling human psychology 
[Hagiwara, 1992], and on-line fault diagnosis at power plants [Lee et al., 
1996]. All of these problems have some common features. The first is the 
lack of quantitative information on how different variables interact. The 
second is that the direction of causality is at least partly known and can be 
articulated by a domain expert. The third is that they link concepts from 
different domains together using arrows of causality. These features are 
shared by the problem of modeling the signal transduction and gene 
regulatory networks. 

We use a series of +/− links to model known signal transduction 
pathways and hypothesized pathways. A third link type suggests a 
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relationship between concepts with no implied causality. These links will be 
constructed by mining the literature using PathBinder and from Gene 
Expression Toolkit Database that contains the expert knowledge of 
biologists. Given the metabolic network, FCModeler contains advanced 
tools that: 

 
• Locate and visualize cycles and strongly connected components of 

the graph. 
• Simulate intervention in the network (e.g. what happens when a node 

is shut off) and search for critical paths and control points in the 
network. 

• Capture information about how edges between graph nodes change 
when different regulatory factors are present. 

Metabolic Network Modeling 
 
Fuzzy cognitive maps are fuzzy digraphs that model causal flow between 

concepts or, in this case, genes, proteins, and transcription factors [Kosko, 
1986a; Kosko, 1986b]. The concepts are linked by edges that show the 
degree to which the concepts depend on each other. FCMs can be binary 
state systems called simple FCMs with causality directions that are +1, a 
positive causal connection, -1, a negative connection, or zero, no causal 
connection. The fuzzy structure allows the gene or protein levels to be 
expressed in the continuous range [ ]0,1 . The input is the sum of the product 
of the fuzzy edge values. The system nonlinearly transforms the weighted 
input to each node using a threshold function or other nonlinear activation. 
FCMs are signed digraphs with feedback. Nodes stand for causal fuzzy sets 
where events occur to some degree. Edges stand for causal flow. The sign of 
an edge (+ or -) shows causal increase or decrease between nodes. The edges 
between nodes can also be time dependent functions that create a complex 
dynamical system. Neural learning laws and expert heuristics encode limit 
cycles and causal patterns. One learning method is differential Hebbian 
learning in which the edge matrix updates when a causal change occurs at 
the input [Dickerson and Kosko, 1994]. 

Each causal node Ci(t) is a nonlinear function that maps the output 
activation into a fuzzy membership degree in [ ]0,1 . Simple or trivalent 
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FCMs have causal edge weights in the set {-1,0,1} and concept values in 
{0,1} or {-1,1}. Simple FCMs give a quick approximation to an expert’s 
causal knowledge. More detailed graphs can replace this link with a time-
dependent and/or nonlinear function. 

FCMs recall as the FCM dynamical system equilibrates. Simple FCM 
inference is matrix-vector multiplication followed by thresholding. State 
vectors Cn cycle through the FCM edge matrix E, that defines the edges eki 
where k is the upstream node and i is the downstream node. The system 
nonlinearly transforms the weighted input to each node Ci: 

 
( ) ( ) ( )1i n ki n k nC t S e t C t+  =  ∑  

 
S(y) is a monotonic signal function bounded function such as the sigmoid 

function: 

( ) ( )
1

1 j j
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e

− −
=
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In this case c=1000 and Tj= 0.5 for all nodes. This is equivalent to a step 

function with a threshold at 0.5. The edges between nodes can also be time 
dependent functions that create a complex dynamical system. 

Regulatory Links: The regulatory edges are modeled using a simple 
FCM model that assumes binary connecting edges: }1,1{−=kie for the single 
edge case. When there are multiple excitatory or inhibitory connections, the 
weights are divided by the number of input connections in the absence of 
other information. As more information becomes known about details of the 
regulation, for example how RNA level affects the translation of the 
corresponding protein, the function of the link models will be updated. The 
regulatory nodes will also have self-feedback since the nodes stay on until 
they have been inhibited. 

Conversion Links: Conversion relationships are modeled in different 
ways depending on the goal of the simulation study. The first case 
corresponds to investigating causal relationships between nodes. The node is 
modeled in the same manner as a regulatory link in which the presence of 
one node causes presence at the next node. When information about the rate 
of change in a reaction is available, a simple difference equation can model 
the gradually rising and falling levels of the nodes. When stoichiometric 
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information is available, the links can be modeled as a set of mass-balance 
equations. The step size depends on the reaction rate and the stoichiometric 
relationship between the nodes. 

Catalyzed Links: Catalyzed reactions add a dummy node that acts upon a 
conversion link. This allows one link to modify another link. In the current 
model, the catalyzed link is simulated by weighting the inputs into the 
dummy node in such a way that both inputs much be present for the node to 
be active. Another method of modeling catalyzed links is an augmented 
matrix that operates on the edges between the nodes. The catalyst node acts 
as a switch that allows a reaction to occur in the proper substrates are 
available. Since all of the compounds must be present in these links for a 
reaction to occurs the pieces must be modeled as a logical AND operation. 
This operation is commonly modeled as a minimum function, however, it 
can also be modeled as a product of all the input values [Kosko, 1992]. 

Forcing functions: In biological systems such as cells, many of the 
metabolic network elements are always present. This is modeled as a node is 
active unless it is being inhibited. This is modeled as: 

 
( ) ( ) ( )1 1i n ki n k nC t S e t C t+  = + ∑  

9.6 Example of PathBinder-FCModeler Integration 

This example shows how the pieces of the Gene Expression Toolkit can 
be used to create or update metabolic maps of a system using expert 
knowledge. The process starts with a map created by an expert or an existing 
metabolic pathway from a database such as KEGG or WIT [Kanehisa and 
Goto, 2000; Overbeek et al., 2000]. The next step is to perform a PathBinder 
literature search for new relationships between the nodes of the existing 
graph. These relationships can then be assessed and added into the metabolic 
map. FCModeler models the effects of the changes for biologist user. An 
expert in the area of gibberellin metabolism constructed the map shown in 
Figure 7. Next a PathBinder Query is performed as shown below. 

Query: Find sentences containing (either gibberellin, gibberellins, or 
GA) AND (either SPY, SPY-4, SPY-5, or SPY-7). 

Sentence: “Here we describe detailed studies of the effects of two of 
these suppressors,  spy-7  and  gar2-1,  on  several   different  GA-responsive  
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Figure 7. Network of gibberellin metabolism in Arabidopsis. Heavy lines are 
catalyzed links, heavy dashed lines are conversion links, and thin lines are 
regulatory links. All proteins are shown in elliptical boxes. 
 

 
 
Figure 8. The updated metabolic map based on the PathBinder query result. The new 
nodes are shaded in. 
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growth processes (seed germination, vegetative growth, stem elongation, 
chlorophyll accumulation, and flowering)  and  on  the  in  plant  amounts  of  
active and inactive GA species.” Source: UI—99214450 Peng J, Richards 
DE, Moritz T, Cano-Delgado A, Harberd NP, Plant Physiol 1999 
Apr;119(4): 1199-1208. Figure 8 shows the new graph after the information 
provided by the new links is added into the graph. 

9.7 Example of Network Modeling 

The metabolism and signal transduction of the plant hormone gibberellin 
in Arabidopsis [Hedden and Phillips, 2000; Sun, 2000] was used to test this 
modeling scheme. Figure 7 shows the nodes used in this test. An expert 
researcher in the field created the link types and causality directions. The key 
element in this graph is the block labeled GA4. This compound regulates 
many other regulatory mechanisms in plants. GAI, GRS, SPY, and 
GA_MYB had forcing functions applied to them. Figures 9 and 10 show 
visualized networks at different time steps to analyze the interactions in the 
network. Figure 9 shows the operation of the catalyzing node, 
3_beta_hydroxylase. When the node is active, GA4 is produced. These 
figures show how GA4 can regulate its own production through the 
transcription factor SHI. The result is a homeostatic control of GA4 levels. 
The oscillation of the GA levels directs the generation of biomolecules that, 
in the absence of other constraining factors, are implicated in the formation 
of new cellular proliferation centers, referred to as meristems. Many key 
features of this model, including timing, can be tested experimentally and 
relatively rapidly by globally monitoring temporal profiles of mRNA, 
protein, and metabolite. 

9.8 Conclusions 

The integration of a graph visualization tool with literature mining and 
directed searches in microarray data allows biologists to gather and combine 
information from the literature, their expert knowledge, and the public 
databases of mRNA results. Metabolic and regulatory networks can be 
modeled   using   fuzzy  cognitive  maps.  Future  plans   include:  simulating  



26 Computational Biology and Genome Informatics 

 
 
Figure 9. The catalyst, 3-beta-hydroxylase is present at this step. This allows GA9 to 
be converted into the active form of gibberellin, GA4. Active nodes are shaded. The 
nodes, SPY, GRS, and GAI are forced high in this simulation. 
 

 
 
Figure 10. GA4 regulates its own production through the transcription factor SHI. 
SHI inhibits the 3-beta-hydroxylase-RNA, which eventually shuts down the 
production of GA4. 
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intervention in the network (e.g. what happens when a node is shut off), 
searching for critical paths and control points in the  network,  and  capturing 
information about how edges between graph nodes change when different 
regulatory factors are present. 
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