* dentifying an unknown system has been a central is-
sue in various application areas such as control,
channel equalization, ccho cancellation in commu-
##... nication networks and teleconferencing, g@ophvsi—
-cal signal processing, and many others. Identification is
the procedure of specifving the
unknown model in terms of the
available cxperimental evidence,
that is, a set of measurements of
a) the input-outpur desired re-
sponse signals, and k) an appro-
priately chosen error cost function that is optimized with
respect to the unknown model parameters. Adaptive iden-
dfication refers to a pardicular procedure where we learn
morc about the model as each new pair of measurements is
received, and we update our knowledge to incorporate the
newly received information.
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In this review article we focus on a particular type of
system—the linear Finite Impulse Response (FIR) sys-
tem. In other words, the class of models in which the
scarch for the optimum filter is conducted assumes that
cach output value is determined by a weighted combina-
tion of a fixed, finite number,
M, of past values of the input
signal.

The performance of an algo-
rithm can be measured by
number of factors stuch as
4 The accuracy of the obtained solution with respect to
the theoretically expected set up
& Its convergence speed
4 Tts tracking ability with respect to time-varying statistics
& Its computational complexity
& Its robustness to round off error accumulation

1EEE SIGNAL PROCESSING MAGAZINE 13

1053-5888/99/810.00 9 19991EEE



A 1. The FIR systems identification setup.

Parallelism and pipelining in the computational flow
can also be performance-related issues when
multiprocessor machines are utilized.

Over the last three decades, a wealth of algorithms have
been designed, around the squared error cost function,
with a goal to achieve the “best” tradeoff (from a practical
point of view) among the above performance factors. The
least mean squares (LMS) and recursive least squares
(RLS) [10], [11] schemes are the most celebrated exam-
ples from this list of “algorithmic happening.”

The goal of this review article is to present in a unified
and systematic way the most well-known and widely uscd
least-squares (LS) transversal adaptive algorithms. Algo-
rithms such as the LMS, transform-domain LMS, RLS,
quasi-newton RLS, fast-Newton, affine-projection,
block-approximate implementations, and block-exact
implementations are seen as offsprings of a single generic
recussion. Such a view makes the trip around all these al-
gorithms easier, and at the same time, reveals the underly-
ing affinity between all these schemes. Furthermore, an
extensive list of related references is provided, including
the most recent of these algorithms.

As expected, we could not include all the existing
schemes. We focused on the basic philosophies and chose
to present typical examples.

This overview is organized as follows. The basic LS
FIR filtering setup is formulated in “The Wiener Filter.”
Next, we introduce the concept of stochastic approxima-
tion. Different adaptive algorithms are derived in “Adap-
tive Gradient Algorithms,” “Accelerating the Adaptive
Gradient Methods,” “Adaptive Gauss-Newton Algo-
rithm,” and “Adaprtive Quasi-Newron Algorithms,” by
applying a stochastic approximation procedure, either to
the steepest descent or to the Gauss-Newton method. We
then consider fast-adaptive transversal algorithms in the
next section. Fast-block-adaptive algorithms and
block-exact-adaptive schemes are presented in “Block
Adaprive Filtering.” Finally, the performance of some of
the most representative adaptive algorithms is evaluated
in “Simulation Results,” by means of computer simula-
tions, in the context of the system identification.

The following notation is used throughout the article:
scalar quantities are denoted as lowercase math, while
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vector and matrix quantitics are denoted as lowercase
bold roman and uppercase bold roman respectively.

The Wiener Filter

Adaptive filtering and system-identification algorithins
deal with the estimation of a set of paramerers of a model
of an unknown plant, which, once estimated, gives suffi-
clent information about the system dynamics. Linear sys-
tem parameterization 1s an important class of system
modeling with a wide area of applications. The most pop-
ular among the class of linear models is the one with an
FIR structure. This restriction is either intrinsic in the
physical system modeling or it is imposed in order to sim-
plify the estimation task and to reduce the computational
load in real-time applications. Both static and dynamic
FIR models have been considered in the past, and a great
variety of algorithms has been proposed for the efficient
estimation of the model parameters, [1]-[14].

The system model is described by the difference equation

y(n)= 3 ¢ x(n—it1+min;
Zf (1)

where x(n) is the input signal, ¥(») is the output signal,
and ¢, and ¢=1,... A1, are the filter coefficients. Signal
1(n) is a disturbance signal. The above equation is com-
pactly written as

y{m)=x, (n)e’, +n(n) (2)
where
x ,, (m)=[x(n) x(n—-1).. x(n—M+1)]" (3)

is the regressor, or the dara vector, of dimensions M1,
and

0

€

— ¥
=[e]e; .65 ] {4)
is the filter coefiicients vector, of dimensions M x1.

The FIR estimator for the system (1) is defined by

l)=x;, (m)e (5)

_ T ; . B
where ¢, =[c;c, .0 f'ff] is an estimate O.f the system pa
rameters ¢, . In this case, the estimation error Is ex-
pressed as the difference berween the measured and the
predicted system output,

e(m)=y(m)=Fm)=yn)=X 3, (n)e (6)

The FIR system identification set up is illustrated in
Fig. 1. Given a sequence of an input signal x(n) and a de-
sired measured output signal y(#), the optimum parame-
ters of the FIR model of (5) are estimated by minimizing
the mean-squared-error (MSE) criterion

Ve, =€’ (m)]=E[(y(m)-5(m))" ] (7
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where £[-] denotes the expectation operator, Thus,

¢, =srgminT (e ., )=ugmin€(yon—x}, (e, ) 1 (8)
The cast fﬁnctiom (7)isa (‘;uadratic functional of the form
Vi )=Ely” m+ey, R e, —2d) ¢, ©)

R ,, is the autocorrelation matrix of the input signal x(s),
and d , is the cross-correlation vector between the input
signal x(z) and the system desired output signal y(n), re-
spectively, L.e.,

R, =E[x , (m)x, ()], 4, =E[x ,, (m)y(n)] (10}

Minimization of the cost functicn (7), with respect to the
filter coefficients vector, is obtained by setting the gradi-
entof Fic, jequaltod, ie.,

VP (¢, )=0-R

d, =0 (11)

mCa Dy

The above condition gives rise to a set of linear cquations,
the so-called normal equations

Re,=d,. (12}
The minimum MSE attained is given by
ESR=gly* m)]-d’, ¢ . (13)

Linear prediction can be cast as a special case of FIR
filtering. Let us assume that the signal x(#)is described by
the auto-regressive {AR) model equation

M
leiox(%*i):ff(%).
i=0 (14}
Here,a | is set equal to one, i.c., 2 =1, and g(n) is the driv-
ing noise signal. The forward predictor for the system
(14) is given by

B S R T B B R G S R e B

The most popular among the
class of linear models is the one
with an FIR structure.

where,a, =[a.a, .2, ]" isavector of dimensions Ax1
thar carries the forward predictor coefficients. In this
case, the optimum forward predictor, in the Wiener
sense, is obtained as the solution of the normal equarions

__f
RMaM LY

{16)

where rf =€x ,, (n—1)x(%)]. The backward predictor for
the system (14) is treated in a similar way.

Application of cither direct or iterative methods for
the solution of {12) and (16), can be effectively utilized
when the joint statistics of the input and desired output
signals, x(#) and y(#), are known in advance. When only
measurements are available, stochastic approximation
methods come into the scene.

Stochastic Approximation Methods

The typical problem for stochastic optimization can be
stated as follows [15]-{21],
Minimize Ve, =EO(e,, n] (17)
where ¢, eX¥ is the optimum parameter sought.
(e, M) is a funcdon whose distribution is unknown.
Assuming ergodicity, two basic directions have been sug-
gested for the stochastic approximation of a stochastic
optimization problem: the mon-recrsive and recupsive
methods, [15]. In the first case, sampled data of the ran-
dom variable are used and an approximation of (17} is
adopted, 1.c.,

Minimize 17, (¢, ):—;j—i(Q(CM (7). (18)

}E(M’):"xﬁi (n>aM (15)

Tnitialization
¢ (-D=0

*

gny=y(n)-x 1, (m)c , (-1

€ (my=c , (n-D)+ulmx . (n)eln)

M (

4 |L(n) constant, the LMS algorithm
B, ()x(n)

x

A= e(0,2),05B, the Normalized LMS (NLMS) algorithm

A u(n)=rf(ﬂ—,62 (m)=Ac? (n=1)+e2, (n), A&(0,1],0<0:<2/ M, the Power Normalized LMS (PNLMS) algorichm

(2)
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Recursive stochastic approximation
methods result from appropriate
modifications of various iterative
deterministic optimization
algorithms.,

In this way, the stochastic optimization problem is trans-
formed into a deterministic one. The solution of (18) is
used to approximate the solution of the original probiem
(17). Application of the non-recursive stochastic approxi-
mation method to the system identification problem
gives rise to the familiar least-squares estimarion

¢, (N)=argminV, (¢,,)
1T T 2
=argmin— » (¥(#)—x, (nje, ]°.
i N; M AFIC (19)

The non-recursive stochastic approximation method is a
barch-processing algorithm. This is a major drawback for
many real-time applications because a large amount of data
has to be collected and stored in advance. Altcrnative ways
to alleviate this difficulty are the recursive stochastic ap-
proximation schemes, which update the estimator of the
optimum parameters whenever new data are available,

Recursive stochastic approximation methods result
from appropriate modifications of various iterative deter-
ministic optimization algorithms. Tterative deterministic
optimization schemes require the knowledge of either the
cost function V(e ,, } and/or its gradient V¥ (e ,, ), and/or
its Hessian matrix V2 V(e ), [22]-[23]. The stochastic ap-
proximation connterpart of a deterministic optimization
algorithm is obtained if the cost function, the gradient,
and the Hessian, ate replaced by unbiased estimates, i.c.,
V&, VV(¢, ), and V2V (¢, ), respectively.

Descent algorithms are perhaps the simplest determin-
istic optimization methods. The recursive estimator has
the form
¢ =0l HE VY, (20)
At each iteration step, 7, the update of the estimate is per-
formed along the direction of v, . Variable jt, regulates
the effect of the update on the current value of the
estimate. In some cases, it is choscen so that the cost func-
tion at step ¢ is minimized, using a line search optimiza-
tion method, [15],]22]
ul,:argrnuinf/'(ci,;l1 LV, ). (21}
The most common choice of ¥, is the direction deter-
mined by the negative gradient of the cost function

which results in the gradient or steepest descent algorithm, Tt
has the form

i el i1
o =c -1, V(e ) (23)
The Newton-Raphson method attempts to improve the
performance of the steepest descent method by using a
propezly chosen weighting matrix

S| i i1
e, = WL VIV (el ). (24)
The simplest form of the Newton-Raphson algorithm
utilizes the inverse Hesstan as a weighting matrix, i.c.,

i i—1 2 -1 y1-1 -1
¢ = W VIV T VI, (25)
thus forcing the correction direction to point to the mini-
mal point, in case of quadratic cost functions, such as {9).
The step factor ., can be fixed, (usually set to W, =1), or
be estimated by a line search optimization.

Whenever the Hessian is not positive definite or in-
vertible, other suitable weighting directions can be ap-
plied. Among them, the Levenberg-Marguardt method,
suggests the form

Pl 2 i-1 -1 -1
o, =, [V (e )L, T V(e {26)
where $>0 and is selected so that the weighted matrix is
positive definite. In some other cases, where the Hessian
is very cumbersome to caleulate, an approximation, A’ ,
may be used instead, L.c.,

;i i 11 il
¢, =oAL T VP, (27)
In the later cases, the resulting optimization methods are
known as Quasi-Newton methods. W), may also be set
equal to a constant matrix. These methods which are ap-
parently a special case of the Quasi-Newton approach, are
often called precondizioning methods.

For all the above deterministic iterative optimization
schemes, a number of stochastic approximation algo-
rithms exist, It suffices to replace the cost-function-related
terms with appropriate approximate values, which are
computed iteratively as each new set of input/output sam-
ples {x{n), ¥ (7)) is reccived. Thus, in the stochastic approxi-
mation schemes iteration steps coincide with time updares.

Summarizing, the recursive stochastic approximation al-
gorithm may be cast as follows

€0 1, (D)W, () 09 25

where ¢ ,, () denores the estimate of the unknown system
parameters vector at time instants. g, (#) is an estimate

Viu :fVV(c’; \ (22)  of the gradient at time instant
g, (m)=VVie, )=VcM(M) RN (29)
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where the expectation operator £] | has been replaced by a
time average estimate £, []. W, (#}is a (time-dependent)
weighting matrix, nsually set to be the estimate of the in-
verse Hessian or its approximation. The factor 4 is used
metely for convenience, [8]. Of course, all these substitu-
tions raise Important questions concerning convergence
1ssues of the recursive equation. Such issues arc not con-
sidered here.

Time-adaptive algorithms designed for the estimarion
of the oprimum FIR filter parameters by minimizing (7)
can be interpreted as special cases of the basic recursive
stochastic approximation scheme of (28).

Adaptive-Gradient Algorithms

Adaprtive-gradient algorithms result from the basic
scheme dictated by (28), bysetting W, (s)=1, . Thus,
()g , (72).

¢, n)=c,,

1
(n—.l.)—iu (30)

Depending on the choice of the stochastic approxima-
tion, several known adaptive methods are derived.

Memoryless Approximation of the Gradient
A popular approximation of the averaging operator, orig
nnllv introduced bV Wlndrow-Hoﬁ in the carlv 19609 18

point, [7] Thus,

Ve, =¢* (),

(31)
which results in the gradient estimarte

g (0)=-2%,, (n)e(n), (32)
where

e(my=y(n)-x}, (e, (n-1) (33)

is known as the a priori filtering error.

Thus, the celebrated LMS algorithm resules, [7], [8].
The algorithm is listed in Table 1. Tt is perhaps thc most
popular method tor adaptive filtering and system identifi-
cation, mainly due to the simplicity of its underlying
structure and the extensive theoretical analysis and experi-
mental verification of the fundamental propertics of the
method (convergence, tracking ability, and robuetnuq)
The algorithm is trimmed by the so- called step-size™ fac-

When . is optimized as dictated by (21), the normal-
ized LMS algorithm results, [8]. In this case, p is time
varying and is given by

—_ . 1 .
“(%)_xL (m)x, (1)

(35)
The normalized TLMS algorithm also allows for a deter-
ministic interpretation, as the filter thar minimizes the cx-
ror 1norm

Car (n):I{?E“Hc 21 =€ (1) :

(36)
subject to the constraint imposed by the modei (5),1.¢.,

(e

I11 this context, the NLMS algorithm is also known as #he

projection algoritim, | 2]. A more robustalgorithm may re-
sult by replacing the optimum step size by a slightly dif-
ferent formula,

y(n)=x 1\ "

o

W)ZBHL o

— 0.e0,2), 0<B.

(37)
The presence of [f guarantees that the denominator never
becomes zero, while ¢is a relaxation factor. Another vari-
ant, known as the power-normalized 1LMS, [1]-[3], results
by setting

Wimy=—rr

S’ <f) (38)

where? (1} is the power of the input signal. For station-
ary signals with power 62, p{#) can be constant, and in

; "-Tablez The Slidirig-Window LMS

-~ (SW-LMS) Algorithm.
Inirializanion
cu(-1)=D
X,’wa( ) [Xﬂf ( ) Af 1) X M (% L+1)] (1)
y L ()=lym)y(n-1). - L)) (2)

€ (W)ZY I (;Z)_X"I’l;f,l, (%)C M (ﬂ—l) ]
X, (e, () (3)

tor |L. Ihc LMS algorithm converges in the mean to the gy )=

optimum solution (12} when the step-size factor [ is re-

stricted to be insidc the interval, - )_ B LEL(mE,, ()

0<M<# gm ) M. (%)XM L (n)rgvm (72} (4)
A’ max (R M ) (34)

where A(R,,) denotes an eigenvalue of the ¢ (m)=¢ , (p-D+Il(myg,, (n) (3)

autocorrelation matrix.
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305X, ) 1 (=) M
o Ka O 0D
X lx (-1 2)

' : ”>:XM (r2)~ o)X M_:(:ﬁ_%i) : (3)

Copem
)

< 01, (O ) 5

Inidialization

Ca(-1)=0

Given an estimate of the forward: Erc%dictor a,,(n) i

ey (e, ) ()
eM=[e(n)e(n—1)...g(n-M+1_)-]‘if_ Sy
of (n)=stnyral () (3-1) - e
e -l e (D! =MLY ()
Fmmlnal e, ) B
¢y (1)=c o, (n=Tyspieh, ), () e

this case, O<o<2., The normalized LMS (N-LMS) and
the power-normalized LMS (PN-LMS) algorithms are
listed in Table 1. The basic advantage of these algo-
rithms is the faster convergence rate compared to the
original method.

The LMS algorithm as described in Table 1, requires
M operations for the estimation of the a priori filtering
error, and M additional operations for the update of
the filter parameters vector. Thus, a total of 2.A4{+). op-
erations is required per processed sample. More effi-
clent schemes have been proposed recently [106], that
perform block (exact) adaptive filtering at a lower com-
plexity per processed sample, at the expense of an in-
put-output delay caused by the specific block
implementation of these methods, [98], [106]-]108],
[135]-[137]. Finally, the NLMS requires 3M+1 oper-
ations while the power-normalized LMS needs 2 M+2
operations only. Further computational simplifica-
tions to the LMS algorithm have also been proposed, in
order to reduce its complexity. The guantized-error
LMS applies a quantization to the error signal e(z}. The
quantized form of the error, gle(n)] is now a discrete
value function. The simplest form of the quantized
LMS is the sign LMS, which uses three levels, —1,0,1 for
the error. If pu(s) is chosen to be a power-of-two num-
ber, then the coefficient updating can be implemented
without multiplications, using only bit shifts and addi-
tions, [27].

The convergence rate of all the above algorichms is
heavily dependent on the eigenvalue distribution of the
autocorrelation matrix of the input signal. Thus these al-
gorithms converge at unacceptably low rates when the in-
put signal is colored noise or speech,
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Sliding-Window Approximation

of the Expectation

An alternative to the time-averaging operator is the incor-
poration of a sliding-window approximation of the form,
[24]-[33],

1 M
&L= 2, 1

L, ;u (39)
L determines the memory of the approximator and may
besmaller, equal, or greater than the filter order M. Thus,

Pley )= N[ o))

le:}z—f_+l (40)
which results in the gradient estimate
2 7
8 (== XX, (B(y(ky—x], (ke (n-1)).
M Lk:ﬂZI,+IM " " (41)

Consider the input data matrix of dimensions Mx L
Xz {(m)=[x ,, (m)x , (=1)...x ,, (n—L+1}] (42}

and the desired response data vector, of dimensions Zx1

¥ =y -1 y-L+D]". (43)
Using (42} and {43), (41) takes the form

2
g, )= LXM,L (n)e, (#), (44)

where
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. ums (TB-LMS) Atg

Initializanon

EM (_-1 )“_'O

Given a unitary wansform matrix 8,

u,, (m)=S, x, (n) Y
elmy=yim—ul @&, (11 @
¢, (my=¢c ,, (m-Ly+e(myu , (n)e(n) . (3)

e, =y, (7”5)7}(.11 L (W)CM (=1} (45)

If we plug the above equations into the general formula-
tion of the stochastic approximation’s stecpest descent al-
gorithm of (30), a stochastic gradient algorithm, called
thereafter, the sliding-window LMS algorithm
(SW-LMS), of Table 2 appears, where we have set

B (M)=58,, ().

The i (z}in Table 2, is the result of a line-search procedure,
¢.g., (21). Aspecial case of the SW-LMS algorithm appears
when the step size factor is set constant, 1., Lz )=t V.
The SW-LMS algortthm has better convergence prop-
erties compared to the memoryless time-averaging ap-
proximation algorithms of Table 1, [30]. However, the
computational complexity is now increased by a factor of
L, being 4 LM+3L. This hinders the use of the algorithm
in real-time applications, unless efficient schemes for the
computation of (44) and (45) are adopted by exploiting
the special structure of the involved matrices, ¢.g., [30].
Furthermore, this algorithm is directly related to the re-

cently proposed, fast implementation of the attine projec-
tion algorithm, considered in “The Fast-Affine Projec-
tion Algorithm.”

Exponentially Forgetting Approximation

of the Expectation

Introducing a time-averaging operator having an expo-
nential-forgetting form,

£ =Y A 0<nsl

another variant of the LMS can be produced, the expones-
tinlly forgetting window EFW-LMS). In this case,

Vie, )= 5?»“ "Te* ()] )

This approximacion results in the gradient estimate

g, )=2(d (n)-R,, (m)e , n-1)), {48)
where
R, =3 A""x, (Bx ()
and
d, (m=Yy “x,, (kyylk).
k=0 {49)

Initalization-

eM (_1)=Cl

Given a unitary transform matrix S,

w, w8, %, 0 SN
italiacion U, ()=lu ,, (), (n=D)..u ,, (n~LA1)] @)
EM 1= : : . _ .

_ ) _ ¥y, (m=lyon)y(-1).. y(n-L+1)] (3)
Given a unitary transform marrix 8 _ . :
w, #)=8,x, #) (L] e =y (n)-Uy  (me, -1 ' (4)
e(n)=y(m-u ), (mE , (n=1) D) [Ba )=, (e () : : (5)
R, ()=IR ,, (n-1) (1 A)tiag( s, () -y ), | Ry (m)=2R oy Gr=Ly+(=h)cliag o, 0) 1 ot () ),
Ae(0,]) 3y (A0 - (6)
&, (m)=¢ ,, (n=Lyu(m)R 3, (m)u , (m)e(n) (@) [€,, m)=C ,, (r=1pHu(mR T, (m)u ,, (m)e(n) | (7)
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Accelerating The Adaptive-Gradient
Methods

In an attempt to accelerate the convergence speed of the
adaptive-gradient algorithms, which are deeply affected
by the eigenvalue spread A /A . of the input
autocorrelation matrix, while, at the same time, keeping
the computational complexity at a low level, several
methods have been proposed that work on input data that
have been preconditioned, e.g., pre-whitened or
decorrelated, [7], [34]-[35], [36].

max

Time-Domain Decorrelation

Among others, one way to achieve this task 1s to use the
decorrelation method proposed in [35]. Consider the de-
scent algorithm of (20). A stochastic approximatjon of
this scheme can be obtained by choosing

Yy (=X, (m)—a(n)x , (n-1), (50)
where
ain)= 1514 (m)x,, (n=1)

Xy (n-1)x, (=1) (51)

is the decorrelation coefficient between x,, (1) and
X, (#—1) at time instant #. Thus, the filter updating re-
cursion takes the form

¢ (My=c (1) it(m)v,,, (). (52)
The optinmum step size L is obtained by minimizing (21),
which finally results in

e(#)

W)=
T v )

(53)

This method can be viewed as an adaptive instrumental
variable method, [1]-[3], where the instrument is defined
by (50). The algorithm is presented in Table 3a. The im-
proved convergence properties of the method are dis-
cussed in [35].

The methed of [34] goes a step further. The forward
prediction error of order M is utilized to construct the in-
strument as

v, (my=e’ (m)=[¢’ e’ (n-1)...e* (n—M+1)]" (54)
where
e/ (m)=x(n)+a’, (n)x,, .(n—l) (55)

is the AM-th order forward-prediction error of the input
data signal, and a ,, (#) is an estimate of the forward pre-
dictor at time instant #. Moreover, the instantaneous er-
ror e(n) is filtered by the forward predictor at time », L.e.,

Z(n)=e(n)ra’, (n)e,, (n),

20 IEEE SIGNAL PROCESSING MAGAZINE

where
e, (m)=[elm)e(n-1).. e(n—M+1)T".

The forward predictor a ,, (%) is adaptively estimated by
means of an LMS algorithm. The algorithm, known as fil-
tered-x LMS, is tabulated in Table 3b. Other
decorrelation and/or pre-whirening techniques for im-
proving the convergence of the LMS algorithm are dis-
cussed in [36].

The computational complexity of the decorrelation
LMS type algorithms that appear in Table 3, is O{A),
[371-[54].

Transform-Domain Decorrelation

An early attempt to improve the performance of the LMS
algorithm was the use of unitary transformations on the
input data vector, x , (#). The resulting algorithms may
have increased the convergence rate for some classes of in-
put signals, vet the computational complexity remains
similar to that of the original LMS scheme. The algorith-
mic family established and the variations followed arc
known as the transform-domeain-adaptive-filtering algo-
rithms, [37]-[54].

The transform-domain algorithm can be interpreted
as a special case of (28). A properly chosen
fixed-weighting matrix is utilized to decorrelate, or pre-
condition, the direction vector. Unitary transtorms, such
as the discrete Fourier transform, the discrete cosine
transform and the discrete Hartley transform have been
efficiently utilized in the past to speed up the convergence
of the LMS algorithm. This preprocessing followed by
normalization reduces the eigenvalue spread of the input

Initialization
¢, (-1D=0, R:\} (wl):IM8,8>O

W 0= R D ) Cay
o Ol T ) 2
eln )=y (e, (1) i S | E <:?.':’>l)f
e(ﬂ):a% | o | o i(lz;'):
© s W)=y =Tyt (rheln) | E’s:)’j

o Ao whw () __
A
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signal autocorrelation matrix, and thus, affects the con-
vergence speed of the LMS algorithm. The performance
of these methods depends on the degree of the
orthogonalization achicved when the unitary transforma-
tons are applied to the underlying data. Theoretical re-
sults, as well as experimental evidence, is given in
[37)-(54].

Let§ | be a unitary transform (within a constant sca-
lar) of 01der M e,
SMS:ILII =B, (56)
H stands for the Hermitian operator {(conjugatc and
transpose). Then, the a priori filtering error of (33) can
be rewritten as

elmy=y(m)—u' (me  (n-1), (57)
where

u, (#)=8, %, #) (58)
1s the ransformed input data vector, and

¢, m-1=S ¢ (n-1)/p. (59)

Thus, now the elements of the data vector are not shifts ofa

single sipnal sequence, as is the case with the elements of

x(n). The elements of the transformed data vector, u , (1),
can be viewed as a batch of multichannel signals, s, (%),
i=1,2... M, which are expected to be less correlated than
the original set of shifted signals x(n—i+1). Thus, the sin-
gle-channel FIR filter of order A has been transformed to
an equivalent multichannel form by passing the original in-
put x ,, (#) through a sec of M filters, as {58} suggests.
When the DFT is used as a unitary transformation, u , {#)
becomes the sliding-window Fourier transform, [49]. The
estimated filter ¢, (n)1s the frequency response of the time
domain counterpart, ¢, (#). Thus, we may say that the ad-
apration takes place in the frequency domain (i.c., fre-
quency-domain adaptive filtering).

Application of a unitary transformation to the LMS re-
cursion gives rise to the transform-domain LMS
(TD-LMS)
¢, (m=¢,, (n—LHu(mu , (n)e(n) (60
The algorithm is tabulated in Table 3c. The TD-LMS
converges to the same MSE error as the original LMS al-
gorithm, and the coefticients converge to the trans-
formed MSE solution

€ =S, e, /B.

A more claborate version of the TD-1.MS is obrained
by introducing a power normalization of the transform
domain data vector. Let us define the diagonal matrix

R, (m)=AR , (n=1)+(1-) )diag{w, w)

) 61

[])(
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oF %%’5@: optimum
ceelerated when

The search
filter can ?%:%

L3 ree
the gra @ﬁ%@%ﬁ%%} ector is properly
deviated to the minimum point

where % denotes the square value of the #-th element of
vector u, (n) Then,

EM (”)ZEM (%_l)_“‘ (n)RT}') (ﬂ)u M (n)g(n)

The algorithm, known as the power-normalized-
transform-domain LMS (PN-TD-LMS), [49], is tabu-
lated 1 Table 3d.

The computational complexity of the TD-LMS de-
pends on the way the transformation dictated by (58) is
c,omputcd FastO( Mlog , M) algorithms exist for the of-
ficient implementation of the DFT the DCT and the
DHT. Whm the DFT is utilized, the cost per direct
and/or inverse transformation is #log, (M), when the
input signal x(n) is real data, [1 ()9] A more efficient
method has recently been proposed for the compuration
of the SW-DFT with & samples hopping, [116]. For real
mput data, this figure is M(log, (£)+3)-2k, which re-
duces to 3M-2 for the single-step sliding-window case.
Efficient methods for estimating the required transfor-
mations by means of partitioning have also been derived,
[1107-[123]. Such methods are also discussed in the
companion: paper [36].

The decorrclation and the transformation techniques
applicd to accelerate the LMS algorithm can be applied to
the SW-LMS as well, to obtain the N-TD-SW-LMS,
which is tabulated in Table 3e. Fast convolution methods
can also be applied to reduce complexity, [26]-{31],
[37]-154], [110]-[123].

Another approaah to improve the performance of the

1.MS algorithm is based on the application of subband
dccomposltmn of the pertinent signals and the adaptive
filtering within cach subband, [1 24] -[131]. Thisisa gen-
eralization of the transform-domain adaptive filtering,
where, the application of the DFT as a preconditioner can
be also interpreted as a filter-band decomposition [491.
Wavelet transform domain adaptive algorithms are pre-
sented in [135]. The adaptive subband filtering is dis-
cussed in some more detail in [36].

{62)

Adaptive Gauss-Newton Algorithm

The search for the optimum filter can be accelerated when
the gradient vector is properly deviated to the minimum
point, [22], [15], [11]. The adaptive Gauss-Newton al-
gorithm results when the weighred matrix W, () of
(28) is selecred to be the inverse of the estimated Hessian
of the least squares cost function, i.e.,
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: Imtlahzatton
: _'_=0 tyi~ 1)43>0t(~l)%]z 1,2...M-1

T (ﬁ) [tﬁ “( )],:0 1Mv13
y =01 M—l

£ f_m (n— 1)+x(%)x(%—z)
L. M- LA

%'é:(@:%f.@-x

L(n)cﬂ;f(nal). | (1)
€ 1= (LT (9 o (e @)
L
XL X (3)

W=V V@01 =1V, ) Gl DI g3
where the expectation operator €[ has been replaced by a
time average estimate £-].

Let us consider an exponential forgetting window for
the approximation of the expectation operator, i.c., (46).
Then the gradient estimate 1s given by (48) and the
Hessian estimate is

VP (e, =R, ()

The optimum step size is estimated to be piz)=1. Thus,
€, {n)=

¢, (n=D+R7 (m)(d, (n)-R , (m)e,, (n-1)), (64)

which results in the well-known least-squares algorithm

¢ (=R, ()d, (),

which is the same form obtained if the deterministic feast
squares approach had been followed.

Equation {65) can be solved in a time-recursive way,
resulting in the well known RLS adaptive algorithm [8].
The derivation of the RLS algorithm is based on the
low-rank updating properties that the sampled
auto-correlation matrix and the sampled
cross-correlation vector possess, [8], [10], [11], that is,

(65)

The RLS algorithm is tabulated in Table 4.
Variable w ,, (%), appearing in Table 4, is the Kalman
guin vector defined as, [59],

AR, (n=1yw, (n)=x,, (n) (68)
The solution at time # is then estimated by
€ (m)=C o (=)W, (n)e(n) (69)

where e(m)=y(n)—x’,
filtering error.

The RLS algorithm of Table 4 is exponentially stable,
[64]. However, when it is implemented in finite precision
arithmetic, instability effects may be noticed. Special care
should be taken to prevent the loc;s ot symmetry and posi-
tive definiteness of matrix R3} (»), [65]-[67]. In an at-
tempt to cope with this problem, numerically stable
square-root RLS algorithms have been developed for the
update of the Kalman gain vector and/or the filtering er-
ror, [3], [8], [10]. Among them, Bierman’s algorichm
propagates the upper triangular factor I and the diagonal
factor Dofthe UD U™ factorization of matrix R} (). It
is well known, [1]-[11] that the inverse of the
autocorrelation matrix R, () of the input signal allows
for a UDUT factorization of the form

(n)e,, (n)isthe so-called a posteriori

R, (0)=U, (D ()U? (n), (70)
where

18 6n) & () n B, )]

0 1 &m.. .8 m) b, (#

0 0 1 .. bjPH () b2 )
U, m=: : :

0 0 0 b m byl

0 0 0 .. 1 bjjjl (n)

-0 0 0 s 0 1 i (71)
and
D;; (n)=dlagJV bl 3 bl EXRRE B ! }

LO\'.O(%) (xl %) OﬁM_l (W) (72)

Vectors

m

b,, ()=[b,, (w5, ()b, ()67 (m) |7

arethe L8 backward optimal linear predictors of order #,

and scalarsa”, (#)are the corresponding backward predic-
tion error powers, #=1,2... A1 It can be shown, [10],
that Bierman’s algorithm propagates these predictorsina

R, (m=AR,, (n-Lytx, (n)x" (n) (66)  time-and-order recursive fashion. The overall complexity
is the same as that of the RLS. The matrix factorization of
and R, (#) (R (n)) and the efficient update of these factors
gives rise to another large family of algorithms not dis-
d, (m)=Ad , (n—Ty+x , (m)y(n). (67)  cussed in this review. These are known as lattice and QR
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LS adaptive schemes, [8]-]10], [71], depending on the
particular algorithmic scheme used for the factorization.
The distinct characteristic of these algorithms is that they
propagate aset of error variables and not the unknown fil-
ter parameters vector. Numerical properties of these
methods are discussed in [ 74]. Finally, schemes based on
Householder factorization have becn suggested, e.g.,
[72], which, besides numerical robustness, exhibit a high
degree of parallelism in their compurational flow,

Adaptive Quasi-Newton Algorithms

Toeplitz Autocorrelation Matrix Approximation
Let us consider the basic recursive stochastic estimation
scheme of (28) and the memorvless approximation of
the expectation operator. If the weighting matrix,
W, (#), is set equal to the true inverse of the
autocorrelatton matrix given by (10), then, the New-
ton-LMS algorithm results, i.e.,

1 X, (ne(n)

Clearly, (73) is of academic interest only, unless macrfx
R, is somehow cstimated using the input signal statis-
tics, or the input dara themselves. Depending on the
choice of the estimatc of R, several algorithms appear,

[81]-[84].

¢, m)=e, (n-T+u(m)R (73)

Let,

T, (7). (74)

where, T, (#) is a Toeplitz approximation of R
mated from the data as

TA/I(M’) [ i j|(n)] []i,,M—_ll’

=01 M

t (m)=ht, (n-+xinxin-i},
5=0,1... -1, Ae(0,1)

W, (»)=

, esti-

(75)

In this case, the optimum step size is found to be
1

u(n):*%
X ()T, ()%, ()

The above “Quasi-Newton” algorithm, based on the

Toeplitz approximation, (T-QN), is listed in Table 5a.

Banded Inverse Autocorrelation

Matrix Approximation

In an attempt to reduce the computational complexity of
the R1S scheme, several methods that take into account
the special structure that the input signal x(x) might pos-
sess, appear in [85]-[89]. For example, when the input
x(») is a speech signal, a low-order autoregressive model
can be adopted to modelits generation. Let P be the order
of the AR model of the input signal x(s). Then, it can be

- Tab! o Sb The Quasa-Ne T shown that the backward predictors of higher than P or-
. “ Inverse Autocorrelation Matrix Approximation der, by, (m), i=L..M-P-1, appearing in {71), are re-
placcd bv time-delayed and zero-padded backward
Initialization prcchctorc of order P b {#). The corresponding back-
&, (=1)=0 ward error powers OLP+ (n) are also replaced by
time-delaved versions of o, (#). This stems from an
. autocorrelation matrix approximation, using a min-max
e(n)=y(m)x,, (e, (n=1) () optimum extrapolation of the autocorrelation matrix of
€ 4 ()= (n= Ly ()R ()X, (m)el) (2)
Initalization
. I : 2, (~1)=0
R, 0= 3 ()b (n=f)fer’, (nj) €a=1)
7=0 .
P ¢, (m=y , (n)-X',  (m)c, (-] (1)
+3.b, (b7 (myod! () t ’ e
j=0 o '
(3[R =X X, ()01 _
0, b in) =R, (%—1)~—XL(%—L)X?,:(f’t*L)i-XL{ﬂ)XE(ﬂ)(z}
= | Pelmd / : '
b, (n—7)= 1 b (my= 1 L :
' 0. . w, (=R (n)e(n) (3)
0 Pl M=j-1 (4) .
Vo )=X (e (2) (3)
1 .
R T ST ? | S
b R (0% () B e, e, Dby, () (4)
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Expectation Apptoximation.

|- Cost Function

EL [BIEY [ ]
R B0L Sl oerzp | T L)
Es ] Zk o ML :0<_7le > e )]

Sca.rc’h Diéction = o S

1| vp(n=

2 v in)=
Lvmel )

()=-S

. ="IVM 4 MgM(n”)...

=4 (1)

XM(W)—&(%)XM(W -1)

We1ght1ng Ma:t_:r;i:'_.g% ﬁ. o -

Bl W

B2 | W, (m=R}m)

(=1,

order M, from the autocorrelation matrix of order
P, [85], [86]. Thus, we have the approximation

w0 (). (76)

Factor D (») is constructed using the method
discussed akjovc R p () turns out to be a banded
matrix corrcspondmg to an approximation of the
inputsignal x(z2) by an AR model of order P, [85]

Ry (=R} (n)=n,,

M-P-1

R, (= 3 b (n=f)b] (n=pyjoc (=)
+ b, b /)
= (77)
[0
N O
by (=) | bj.(n)zl 1 J
0 _ LOng—l

M-P-j-1

Taking (31) again for the approximation of the
cost function, and W, (%) as

W, (#)=R (78)

mz ()

we obtain the quasi-Newton algorithm developed

X% (n )X“ (n)+51)#

_ : “Expectation Direction | Weighting

: -~ |Approximation Matrix

1 [NEMS Fl Al Bl

2 | SLMS | E1 Al Bl

3. [ LMS El Al Bl

4L SW-LMS 1E2 Al Bl

5. | EFW-LMS E3 Al Bl

6 piMs Bl A2 Bl

70 XLMS El A3 Bl

8711 TD-LMS EL- A4 Bl

9 INPTD-IMS | EL Ad B2

10°:| NP-TD-SW-LMS | E2 Ad B2

11| RS | B3 Al B3

120 TN Bl Al B4

13 F-QN El | Al B5

14| APA: F3 Al B6
24 IEEE SIGNAL PROCESSING MAGAZINE

B3 :.;; .‘..NM(”):RQ;(”) | in [85]. In this case
B4 f:: \.'W,;,[.(n):'TJL}-( " i )— -

Alternatively, u{#)may be kept constant. The al-
gorithm is rabulated in Table 5b. A fast version of
this scheme, known as the “fast-Newton” adaptive
filtering algorithm, has been developed in [85].
Other, low complexity, quasi-Newton adaptive
algorithms have been developed by proper choice
of the weight matrix W _{»), [88], [89].

Pseudo-Inverse Autocorrelation

Matrix Approximation

Let us now consider the time averaging approxi-
mation of (39), and the resulting equations for
the residual error, e, (41)-(45). A stochastic
quasi-Newton algorithn is obtained by selecting
W,, () to be the pseudo-inverse

W O X, 00X, )
:LXM, 1_ (my(X 3\4, L (ﬁ)XM,L {#n)) N

(XL,L(ﬂ)XM,L(%))A] Xfﬁ,f,(”) (79)
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In this case, it can be shown that u(m)=l. An
over-relaxation form of the algorithm is obtained by set-
ting pin)=l, W(n)e0,2). This stochastic approximaticn
method results in the so-called affine prajection algorithm,
or (APA), 191]-[105]. The ATA, in a regularized and
over-relaxation version, is listed in Table 5¢. The APA
may be also interpreted as a deterministic block projec-
tion algorithm that estimates the filter, which minimizes
the error norm

a, (n-1) b, (r-1)
1 b
wn=1) = wy, () > W, (#)
\ \
a, (n) b, (n)

Auxiliary vectors a , (#) and b, (n} are the LS forward
and backward predictors, and result from the general fil-

¢, (my=argminfe , ~c . (n-1)|
M( ) g Car “ M M( )" (80)
subject to the constraint imposed by the equation Initialization :
e (D=0, w o (~1)=0,a ,{~1)=[10.. 0T b, (=1)=]0..0 1]
-~ w120, 5, (-1)=0.2 (D)1 ] =0..0 1]
D=l ol (=D=Mt (= by
Table 6 provides a summary of the discussed algorithms Uy -L=lag, (D=2, (= 1),05 (-1)=5>0 _
with respect to tht:. adopted expcctatign approximation, ef (m)=x()ral, (B-1)X , (n—1) (1)
the weighting matrix, and the search directions. . o
el (0)=ely (m)/ot (11 (2)
" " i [ — ! )
Fast-Adaptive Transversal Algorithms Ryl n) @
£ tmvane (el f '
The compurational complexity of all the Gauss-Newton Oy (1)=h003, (. UHM_ ea(n) : _ )
schemes considered so far, is O{M * ). On the other hand, B (=i e Del )y . (5
their fast convergence rate and immunity to the 0 1 o
eigenvalue spread of the input signal’s autocorrelaton w MH(%):{ . }.+L 1 ]k;jfﬂ(n -
matrix, make these schemes particularly attractive [8], AWam) ain=1) ' (6)
[107, [62]. A large research effort has been invested in R
overcoming their major drawback—the high compura- W +1(”):{51‘v“_1(n)] 7
tional complexity—and a number of OA) | . '
Gauss-Newton algorithmic schemes have been developed eh (my=hot, (m=1)3 5.1 (n) o ' (8)
101, [55]-[59]. - : T
[0, (551159 Bt mes(NomexL by () ©
K ()= i | (10
The Fast-RLS Algorithm (et () (10)
~h.i D] i :
The RLS algorithm provides a method for the time up- | & (%)= ()45 & (m), i=1,2,3 (11
dating of the injaer.se autlocor'relation matrbc,_bypassing W_M(%>=8M(ﬁ);bﬂ{CW—I)SLH(W’} (12)
the direct matrix inversion imposed by (65). It was -
shown [55]-[59] that the Kalman gain vectors required O g1 ()70 4 (=)= k3T, () fy (2), (13)
by (69 can bc': updated by the so-called “fast” schf:mes. Oy ()=, ()40, (005 () (14)
The key point in the development of fast-RLS algorithms o - :
is the proper utilization of the shift-invariance property of | G+ 1)=1+w ()%, () (15)
the data matrix. Let us consider tbc increased orderldata A ()=, (1 )=t (1) _ (16)
vector x ,_, (»). It is partitioned either in a lower or in an o L C
upper form, as G (W)=0 (2 )+ SN (1) . . (17)
X, () x(n) Efwf (”)_:Ef\’.}i(?)'/é/v:(”)» =23 . . (18}
—_— M — ’
X (”)“|:x(n—M)j|_|:xM (n~l)jl (81) by (1)=b, (n=T)=w y, (n)e":2(n) (19
ol ()= kot (D)2 () () (20)
These partitions of the dara vector are utilized to obtain L m ' '
appropriate partitions for the increased order 2u(1)=5(") XM(W)CM(.W b (21)
autocorrelation matrix R ,, | (z). Based on the above par- €, (m)=e,.(n)/0 (1) (22}
titions, the Kalman gain vector w,, {#), at time #, can be . VS 23
obtained from w,, (#—1), via the increased-order vector ()0t ()L -pOLy () (23)
w,, , (z). The overall updating mechanism is illuserated Cpplm)=c, (=) Hu{n )W, (n)e () - .
as follows: (24)
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tering scheme of (6), by setting y(m)=x(n+l) and
y{n)y=x(n—M), respectively.

The computational complexity of the fast RIS algo-
rithm is 7 A operarions per processed sample. Thus, while
the algorithm retains the nice properties of the RLS algo-
rithm, the cost is comparable to that of the LMS. Despite
the fact that the fast RLS is theoretically equivalent to the
RLS scheme, it exhibits poor numerical ertor perfor-

E: Ixnuallzatlon
‘tM( 1j=T,, 50, (— 1):0 wM( =0

:Each tifie instant update thc autocorrclation vector

t M(n) MM(n—l)+xM(n)x(n) )
: Ifmod(n Nyj== _ '

ayran the Tevinsons algorxthm
G=—neme),
'W'(j = ()% (),

G=t im0 2)
'_FOI‘i—l to M~1 I
Bt o a) (3)
B eem @
5 ‘(o ){WS e )]k;m) s
"B.H(m ot o) (6)

' ,um)——ﬁm( Yoy (7)

__':3. a(n) Ja,(n)
)[ 0 }r[ 1 ] +]Fﬂ) (8)
(=00, )P () ) )
ENDi.f ' '

'b) Updatc thc filter on the time interval [r—N+1,N]

: For m=0 to N-1 _
BMH(fn+m+l)—x(n+m+l)+xM(fa+m)aM(wz) {10)
R G ema )R (1) e () (11)

’-w?z;f.a(nﬁwﬁ-l_):[

| Eh e I A |
wM(m'm')']f[ Al )}kM”{ ey (12)

kmfl'<n+m+1>=w§f:i(n+m+'n -

a2 s ()

w n+m)
i 1

0 ]"WMAI(”'{-W”T"'I) |: ]kﬂin(”’"”mi"l()lg

mance, which becomes noticeable even when the algo-
rithm is carefully implemented in double precision arith-
metic [63]-[69]. Severe divergence problems are caused
by the intrinsic instability of the fast RLS algorithm. The
magnification of a single error cornmitted at a ime instant,
becomes so serious that the algorithm crashes. An early at-
tempt to cope with this problem was concentrated on the
periodic reinitialization of the algorithm, when certain
variables were taking critical values very close to the theo-
retical upper or lower bounds. After many years of exten-
sive study and experimentation on the instability problem,
a leap forward was achieved by the method of [68], which
suggested using a small amount of computational redun-
dancy combined with a suitable feedback mechanism, to
control the numerical errors. Two specific variables are
used for this purpose, [68]- [70], the a priori backward er-
rore’, (n)and the Kalman gain powera. ,, (). These are es-
timated in two different ways, from (8}, (13), and (14} of
Table 7, and also by their respective definitions:

o (n)y=x(N—M)+x’,, ()
and
O, (m)=1+x" (m)w,, ().

b, (#-1)

(82)
We form the differences

N, (7)=T, (02} ()

M

and

A ()=, (m)-ou, (). (83)
In infinite prccisnon these differences should be zero;
however, in practice, A", (n) grows exponentially WhllC
A, (1) grows linearly. These crvors are utilized as a feed-
back mechanism to control the error propagation and pro-

vide a new set of variables to be used by the algorithm as

BZJ (n):?:;lj’ (n)+c’ AbM (n)
and

0, ()=C, (nHo A" (n).

(84)

Tuning variables6® and G are carefully selected in or-
der that the overall algorithm remains stable [69]. The
complexity of the stabilized fast-RLS algorithm of Table
7 is O(M).

An additional constraint of the stabilized fast-RLS al-
gorithms is the nominal range within which the forget-
ting factor A should lie for the algorithm to remain stable,
ie., Ae(l-1/3p,1)[10]. This has an undesired effect in the
performance of the fast-R1.S schemes, since the conver-
gence rate and tracking ability of the algorithm are af-
fected. As aremedy to this problem, a modified algorithm

i 1 1)= I (14
- 8M { +m+ b= y(n+m+ XD (4 om) (14) has been proposed and successfully used in [ 70], where an
€ M_(n +m+l)mc M(n+m)+w M(n +m+1)e, (m+m+l) {15} extra trimming parameter was introduced as
ZEND e i
: ¢, (m)=c,, (m-Dum)w,, (n)en) (85)
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L{7)is optimized in such a way that the a posteri-
ori filtering error is minimized, i.c.,

W(z)=argmine” ()
n

M( X4 (1)

: Initialization

(--1)=0
;( 1)as" ap( 1M+ P)=A3
L)=2"8 0~ 1~M+ P)=50

(~1)=1

:argmuir{l il = } e* (). 6 ol (-

Minimization of the above cost leads to e{n)=0 1 o s
and Wim)=cr, (n)/(1—ct ,, (#)). In practice, Span)= ap(n)] Pom)el ), fep'ys ()
o, (1) Avallable at time n—M+ P from the stablhzed tast RLS algorithm
wor=— — A4
oL, () (87) U, {n-M+Pp=
b.(n-M+P)| ., "
where pis a trimming variable. The cost is that it [ 1 }kpi (n—M+Phel(n—M+P) k" (n-D+ P)

results in a higher mean-square-estimation error.

Availablc at tirne # from the stabilized fast RLS algorithm

Multichanne! extensions of the stabilized

fast-adaptive transversal filter are also derived in Main part '

[76], [77]. Multichannel QR decompositional- | w, | )t[ 0 st(n)}

gorithms are developed in [73]. o WD [ 0y p (2)
WMip(”) 0u»

The Fast-Quasi-Newton Algorithm [ 0 j|hWM e (M){U pei(B=20+ PJ (4)

The fast-quasi-Newton algorithm offers a fast, ' '

although suboptimal, implementation of the | @, ()=t (#-1)- ki (el (n)+ k) (n=M+P)epin—-M+P)  (5)

RIS method, [82]. The key point lies in the dif- :

ferent rates of zEdag)tation uZeEl for the fiiter coef- | (ﬂ)zy(n)_x‘” )ex(n-1) ' ©)

ficients and the direction matrix. Thus, although | /s eu(®)

¢, (1) is updated every single time instant, | "7 0, ()" _ (7)

T,, (#)in (74), is estimated periodically, and af-
terwards kept constant for a period of N sam- ()=
ples. The choice of N depends on the
stationarity characteristics of the input signal,
and in general, has to be greater than or equal to
M, 10 keep complexity comparable to that of L

M.\P(n)

L-pot,,p () o (8)

¢ elm)=c,, (n-1)+p(n

Y ) | (9)

FRLS. Thus, each time #eod (1, N =0, an efficient
Levinson algorithm is employed that solves for w, (#).
Suppose that the solution of the linear system
T, (m)w , (n)=x, () has been computed. This task can
be accomplished by the order-recursive Levinson algo-
rithm or its Schur-type counterpart, [10], at a cost of
O(M* ) MADS. Then, using the order partitions of the
data vector x ,, (m4m+1), m=0,1,.. . N-1, (81}, and the
corresponding partitions of the increased-order Toeplitz
matrix T, (#), a sequence of step-up/step-down
recursions can be established, leading to the successive
computation of the wvariables w, (#n+m) and
o w1y, m=0,1,.. N -1 This gives an eflicient mech-
anism for updaring the Kalman gain vecrors over the time
range [#n+N | The algorithm is tabulated in Table 8.
The computational complexity of the algorithm is thus,
3M+L52/ N operations per processed sample,

The numcrical behavior of the fast-quasi-Newton al-
gorithm is expected to be better than that of the fast-RLS
method. The main difference between the adaptation
procedure of these algorithms is the way that the compu-
tations for the Kalman gain are propagated through time.
In the fast-RLS case, the Kalman gain vector is adapted at
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every time instant by an infinite-memory time-varying
adaptive structure, therefore, numerical errors are al-
lowed to propagate. In the fast-quasi-Newton case, the
Kalman gain is updated through a fixed-memory adap-
tive scheme, thus numerical errors are not allowed to
propagate more than A time instants, Moreover,
Levinson’s algorithm, which is periodically used every M
samples for the initialization of the recursive updating
mechanism, is known to be (forward) stable [78], [79].

The Fasi-Newton Algorithm

The fast-Newton algorithin has beea derived optimally
on the assurnprion that the input signal x(#) can be suffi-
ciently represented by an AR(P) process of order PSAM.
This 1s an assumption which is valid, for example, when
speech signals are involved. If thig is not true, optimality is
no more valid, and the fast-Newton scheme provides a
tamily of algorithms, depending on the choice of P, vary-
ing from the normalized LMS, i.e. P=0, to the fast RLS,
i.e. P=2M. Based on this assumption, (76) can be utilized
[85].[86], [87]. This has as an implicadon that the
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Kalman gain of order A is related to the delaved back-
ward predictors and forward predictors of order P. These
are, in turn, updated via fast-RLS versions. The overall
updaring mechanism is illustrated as follows:

a,{n) b, (n— M+P)
\ \:
wM‘p(n) = W {n+1) ~> W (n+1).

In other words, the prediction part of the FRLS scheme,
which is the computationally thirsty part of the algo-
rithm, is performed with predictors of low-order P. The
algorithm is tabulated in Table 8,

For the update of the prediction part, any of the adap-
tive schemes described previously can be utilized, result-
ing in different complexity figures, varying from 2P? to
7 P when the RLS and the stabilized FRLS schemes are
utilized, respectively. The overall complexity reduces ta
2 M+9P operations when the stabilized FRLS algorithm
1s engaged.

The Fast-Affine Projection Algorithm

The first step toward the development of a fast-affine pro-
jection algorithm is the establishment of a shifting prop-
erty for the calculation of the a priori filtering error vector
e, (1), [93]-[98]. To this end, consider the partitioning of
the data matrix

X=Xy, ) x,, (e—L4D)]

=[x, (1) X 1y (2-1)] (88)

If we plug the above partitions into {45), which defines
the a priori filtering error over a dara block of length L, we

get
e, (m)
b (”)2[2(1@—L+1)}’

where

(89)

en—LAl=y(n-L+1)-x% (n—L+)c,, (n-1).
(90}
It can be shown [93]-[98] that the following shifting
property can be established, where equality holds when §

used in (2) of Table 5c, is set equal to zero

e | “)
eL(n)m':f?(%—Lﬁ"l)leI:(l_“)eL~1(n)}

Following a derivation similar to that of “The
Fast-RLS Algorithm,” a step-up/step-down recursion is
derived for the efficient adaptation of the involved vari-
able w , (#), by taking into account the shift-invariance
property that vectors X, (#) and e , () possess, This time
however, because R | (#) is a sliding-window covariance
mairix, a shiding-window fast-RLS algorithm is required
[60], [61]. Thus, (4) and (5) of Table 10, result. The

(91)
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lower-order forward and backward predictors a, (#) and
b, () that appear in these recursions can be obtained by a
sliding-window fast-RLS [60]. A set of auxiliary filters,
ie.,h, (m)and q, (») (see Table 10}, are utilized for the
development of the remaining recursions of the
fast-affine algorithm of Table 10. The complexity of the
fast APA is 2 M+20L. Notice, however, that the fast APA
estimates the filtering error, and not the unknown filter
coefficients.

. Table)
Inirialization
h,, (-1)=0
Available at time #, fromashd.mg wmdow fast—RLS '
algorithm R L
a, (n),b, (m),of ()07 () N
=y i1y o
5=t (n=1pkx,  (n-D)(my=x,_w(n-L-1) - (2)
=L me e ()
corf 0 T
(I-1)e, () e i (4)
BE On)=elm)+(1mel (n-Day (0 o 18)
( ) BL-;-l(”) -. .
1 0 1 R
WL”(n}_[(]—M)WL(”‘D}'-[%(".’l:_l)jlk“l(ﬁ). R (7)
B omen-Lelrel b,y (8)]
v o B0 SEE :
e L )
e s ] " et o
. s
qL(ﬁ)—WM,L(W)ﬂL(qL_I(%J (11)
| qz,fl(n)} i
q. (%) [‘h(ﬂ) (12)
Iy (mY=h (= 1) tpix o (=L + 13, () 03
Definitions: T ' .
h o, (z-1) CM"'”i”}fo wL Ie+j—1)
L j=lks

. :[ql(n)qz(ﬂ).. a7, g',.(n)':'z#j (%—i+1),_i=1,2:..;;[,'3 :
Rl : L

Cyim)=

oy (11 0
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Block-Adaptive Filtering

A large number of block-adaptive-filtering algorithms
have been developed during the past two decades. All this
work has sprung mainly from a pumber of seminal pa-
pers, which appeared in the late 1970s and early 1980s
[28],[29],]37].§38].[39], [132], [133]. Ever since, in-
tensive research has been donc in several direcdons. De-
pending on the domain of implementation, the
block-adaptive techniques can be classified as frequency
(or transform) domain and time domain, respectively.
The transform domain techniques have been summarized
in an excellent survey paper by Shynk [49] in 1992, A list
of relevant papers, that bave been reported since then, is
given in “Accelerating the Adaptive Gradient Methods,”
and also in the companion article in this issue of TEEE Sig-
nal Processing Magazine [36)].

In this scction, we are mainly concerned with efticient
block implementations in the time domain. Although
FFT may still be used as a tool for fast computation of the
involved convolutions, the filtering operations and the
filter updating is done in the time domain. In the first part
of this section, the so-calied block-exact techniques are
prescnted. This is a relatively new trend in block-adaptive
filtering, which deserves attention, since it offers sigmfi-
cant computational savings without any loss in perfor-
mance. In the second part, an effort is made to present
briefly, but systematically, the so-called approximate
block-adaptive techniques, where the term “approxi-
mate” has been used to emphasize the inherent difference
with the exact technigues.

Block-Exact Techniques

The distinctive trait of the block-cxact techniques is that
the resulting block-adaptive algorithms have an exact
equivalence with their step-by-step counterparts. In an
exact-block algorithm, the filtering errors are computed
at cvery time instant, while the fitter taps are updated ev-
ery N time steps, where N is the block length. However,
all thesc quantities are equal to the respective quantities
computed by the corresponding step-by-step adaptive al-
gorithm. Thus, the samc cstimates are obtained at a sub-
stantially reduced complexity. Morcover, such schemes
incorporate block sizes much smaller than the filter order,
therefore, the delay introduced 1s small, for most practical
applications. :

Fast-Exact-Least-Mean-Square Algorithm

The first block-cxact algorithm that appeared in the litera-
ture was the one in [106]. This schemc, called fast-exact
LMS (FELMS), is mathematically equivalent, in the
sense described above, to the classical LMS algorithm.
Given a data block length N, the goal is to compute
¢, (n),basedonc , (n—N),i.c., the estimate correspond-
ing to the beginning of the current data block, and the in-
put/output samples at all time instants #,n—-1,..n—-N,
within the current data block. In order to demonstrate the
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The distinctive frait of the block-
exact techniques is that the

resulting blodc-adaptive algo
have an exact eguivalence with
their step-by-step counterparts.

undertying philosophy of the method, let us consider the
filtering operation (33) for the LMS for all time steps.
Within the block #-N+1,....n, we get

e(n=-N+1)=y(n-N+1)-x (n-N+1jc ,, (n-N)
©2)

(93)

elm)=y{n)-x 1\4 (m)c , (n-1) (94)

In the sequel, all ¢ , (v—k) for k=1,..,n—N+1 arc ex-
pressed in terms of ¢, (n—N), using the LMS update
equation. For instance, error e(n—N+3) 1s casily checked
to be given by

en—N+3)=y(n-N+3)—x’, (n—N+3)c , (#—-N)
~pe(p—N+1)x% (n-N+3jx , (n-N+1)
—heln-N+2)x, (1-N+3)X ., (1-N+2) (g5,

Following a similar procedure to all filtering crrors and ex-
pressing the resulting relations in matrix form we obtain

€, )=V, ()X, (m)c , (n-N)-8 & W, 1)

(96)
where

€, (n)=[e(n-N+1)...e(m)]",
¥y @)= ym-N+L)...ym)]",
and

X =[x, (n-N+1)..x , ()],

Matrix S, , (#)1s
0 0
5, (n=-N+2) 0 ..
Sy (1= s, —N+3) 5, (n=N+3) ...

o o O
FEN e R ane S e

Sy (1) 5y (1) 5 (m) U

where

3, (my=px, ()%, (=) (98)
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'_Thcn

.Let [r=N+1 n] be the current data block and assume thar input-desired outpur data are available untll time instant #+F;

:Part 1 Sampie by-sample computanons

Part 3. Block computation of the Eﬁ'lfe'ring. part cfrdrs “ 1-:. :' i

’ l.I-Usmg the prcdlctjon part of the stabilized FAEST,
: computc

_Vze[n —N+P+l s+ P

:thc foliomng quantmes aésoctated with the forward and
backward prcdlctors

L) { o ) |
“ha {-Diia, (%1))
3— gP(t) ( (_1))

ach(i-1) N

l 2 Cornputc the gain error powcr o ,(f) Vie[n—N+1,n]us-
__mg recursion

~1)- Sm() (ﬂ)ﬂt?ﬁ(i s (i)

Spﬂ(z)*

& ‘{’{f’)fof' (i

: aﬁd x.is the m-th elementof vector x.

1. 3 Usmg recursion (27) compute the gain vector w ,,{)
_only for 1-%—N+]

—

3.1 Using fast-FIR filtering techmques -compute the follow— '
ing seed errors (initialization phasc)

gy (m—N+L1)e,,(n-N+2:2),.. .,.;M_('n;N)
ey (n—N+L1),e7, (n—N+22),. . e (mN)

3.2 Recursive scheme

Fori=n-N+2:n
For b=i-n+N:-1:2

e:“,fl(i+1;k):ej1}(i;k)+s,lul(z'—k+l)e;f(.i-k)—wf,’:}(z —k+1)eff,(i‘t;k)?':
e (B3h—1)=e,, (6 1)—€ ,, 2 Ez+1)e”’(z+1 ky. S
3.3

a;;(n-N+1)eM(n—_N+1j .
ex(N)= : .

0 5 ()2, ()

'_ Part 2 Block Lomputauon Of the prediction part Errors.

Part 4. Filter block updating. * 2500

2 l Usmg fast-FIR, ﬁltcrmg techmqucs compute the follow-
' mg secd ‘errors (1n1tlallzat10n phase)

.ef(n N+1 d,el(n —N+22) eh(n+P; N+P)
(n CNHL 1,6t (n—N+2; i35 ep(n+P,N+P)
: ep(n LN FY 1)ep (- N+22), Lp{n+ PyN+P)

2. Z'Rccurslve scheme
Forz—n N+2: W+P
For k—i"-%-I"N -1:2 -

] (Hl'k):é“’(i‘i)ﬂp+1(i—k+1)é£(i;k)—“§ﬂ(
'o’P(z k-Ly=el (i R)-ef(i~k+15el (5:k)
-6P(zk 1)41,(4 By, (z-k+1) HEEIN 3]

k1325 (5 2)

4.1 Formation of the involved matrices
For j=1: N-1 |

— e 0 '.5"_1;+1-(%—N+].+]‘)
3M(ﬂ-ﬂN"r]'f']-)—['-S:uM—1(n_N+j')]+(._ 0 )

- ) o - Ouer )

-N INE I Lo <l
it fﬁ-}(uﬁﬂ(wd—waDJ
End SO .

Form matrices

W) S o (1) :
and U, (s} using their rcspcmve dcﬁmtsons

M-F-1

Then, compute w,, (#) by addmg the last colutnns of thesc 8
three mattices. o

4.2 Computation of the block updatmg term.

4.2.1. Using fast-FIR filtering techmques to perform thf: %
multiplication R

W, v(n)ey (). _

4.2.2 Perform direcdy the multiplication
M w (e in).

4.2.3 Perform directly the muluphcatlon

UMXN (%)EN(n) :

4.3 Filter updating o

o) =C (32 '_N)in,N ey (n) : ._ :

S s (s (34U e (e (2.
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Solving (96) with respect to the filtering error vector,
the following relation js obtained
& (1)=Ge (O[T 1)K e, (=MD g9
where Gy, (2)=[S, ()11

Now, a block update recursion for the filter ¢ ,, can be
easily derived by starting from the step-by-step update of
(2) in Table la. Writing this equation for all time steps

within the current block and combining properly the re-
sulting equations we readily get

C o (M)ZC M (”""N)“H'LX MON (”)61\7 {n),

n=0N2N... {100)
(99} and {100) constitute the FELMS pair of equations.
The compurational savings result from the efficient com-
pucation of the above recursions. To this end, observe
that the matrix-by-vector product in (99) constitutes a
tixed-FIR filtering problem. By properly rearranging the
involved entries, this product can be written as

M N {n)c M (”_I\I)z

lrﬂNil Ay o Bans Bonos ‘HV c’ ]1
]ﬂN—z a’j\r_l N3 |I cl ]
e e |
{ , a, ... wN-g a, J\‘CJ\J_E J (101)

where
a=[%(n=f)x(n-N=j). 2(n—Ni-j).. o(n—M+N-j)] i
20,1, 2N=2 i=0,1.. (M/N)1,

and

b T
¢ *[Ck Lo v P v by N ]

£=01,..,N-1.

Due fo the above polyphase representation of the in-
volved quantities, the matrix-by-vector product can now
be efficiently computed. As it can be seen, the involved
matrix has a block-Toeplitz form, and the whole product
can be considered an ¥IR filtering problem with a block
filter of length N. The fast-FIR filtering technique of
[134] can now be applied in a straightforward manner.

The matrix-by-vector product in (100) can also be
treated in a similar way, since the same matrix X, (#)1s
involved. Matrix G N (m), duc to the triangular structure
of 8, , (), can be written in the form

Gy )=y, (3G, (76, ()

where G, {7} is an NxN triangular matrix defined as
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The involved matrix has a
blocl-Toeplitz form, and the
whole product can be considered
an FIR filtering problem with a
block filter of length N.

G, (n)=Z, (ny+1,
with Z  (») being an N'x N matrix having vecror
[=5, (n=N+itl)=s, (n—N+i+l).. —s, (#~N++1) 0. 0]

in its #+1 line, and zeros elsewhere. The scalar quantities
5 (k) can be compured via a sct of easily derived recursive
relations [ 106].

As it can be readily seen by inspecting (99) and (100,
the whole formulation of FELMS would be exactly the
same as that of conventional BLMS if matrix 8 ()
were equal to the identity matrix. Infact, as the authors in
[106} suggest, different approximations of this matrix
lead to a whole family of algorithms, with BLMS being
cne of its members. The computational complexity of the
basic formulation of FELMS, as given by (99) and (100),
1s significantly reduced with respect to that of LMS. The
number of operations per output, assuming N=2" and
M=0xN , is given by the following formulae

2(%]\"(2-}-(%?}'{;)‘ MUPL (102)

2[2@] ~1}Q+4(—§-]V+2(2 "3)  ADPI, 103

where MUPT and AUPI stand for multiplications per time
instant (step) and additions per time instant, respectively.

Block-Exact-Fast-Newton Algorithm

As was the case with the LMS, a block-exact version of the
fast-newton-transversal-filtering algorithm has also been
derived in [107] and [108]. The respective algorithm,
called block-exact ENTF (BEFNTEF) is summarized in
Table 11a. The derivation of BEENTF is quite lengthy,
and here we will focus on the main points that reveal the
basic philosophy behind the method. Recall from
“Fast-Adaptive Transversal Algorithms” the filter update
formula written in terms of the dual-Kalman gain and the
a posteriori error

¢, (m=c o (r-Dpw . (e, (7). (104)
Note that the autocorrelation matrix R, (#—1), involved
in the Kalman gain vector is computed in the FNTF
sense. Writing recursion {104) in N successive time steps
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The eﬁiﬁieaﬁ computation of the
block-updating term is the most
important task in the algorithm
because it refers to the most
computationally thirsty part

of the FNTF algorithm,

and combmmg the resulting equations we can express
¢, (m)in terms of ¢ ,; (n—N) as follows

C(m)=c (n—N)+GM,N {n), #n),
n=0,N2N.,.. (105)
where

G,y m)=[w upp (r—N+1)...,w Jom ()] {106)
€y (m)=le , (n—N+1),. e, (1] r (107)

The above equations set the framework within which the
derivation of the BEFNTF algorithm is evolved. The filter
taps vector is to he updated N steps ahead. To this end, the
block-updating term G, ; (m)e,, (n) must first be com-
puted. Note that the cfficient computation of the
block-updating term is the most important task in the algo-
rithm because it refers to the most computationally thirsty
part of the FNTF algorithm (i.¢., the filtering part). The ef-
ficient computation of the involved matrix-by-vector prod-
uct is based on a fast scheme for the computation of the
exact filtering error vector €, (#), and a proper transforma-
tion of matrix G ,, ; () (called henceforth gain matrix).
Letus denote again as {z—N +1,1] the current data block.
Having assumed filter ¢ ,, (r—N ) to be available, the goal is
to compute ¢, (#) via (105). The first step is to compute
the exact a posteriori filtering crrors €, (1) at time steps,
t=n—N+1,...,n. Tothis end the following matrix is formed

¢, (n—N+1;1)
£, n-N+231) e, (n—N+232)

eM(-%;l) BM(;'z;Z) :eM(w;N)

(108)
where

2 GR=y (%3, (e 4, (—F)
1s the a priori filtering error at time 7 based on the filter es-
timated at time i—k, i.e., ¢, (i-k).

All the diagonal elements of the above triangnlar ma-
trix are defined in rerms of the filters ¢ ,, (m—k). Thus,
these error variables can be directly computed by their
definition, Then, by properly combining the filter update
recursion as well as the step-up and step-down relarions

(109)
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of FNTF, an efficient-order-recursive {Schur type, [10])
scheme is derived. This scheme computes all the remain-
ing errors of the above matrix. That is, at each row, the re-
cursive scheme starts from the respective diagonal
element and runs backwards up to its leftmost element
{see 3.1 and 3.2 of the algorithm of Table 11a). The re-
quired one-step-ahead, a priori filtering errors are the cle-
ments of the first column of the matrix in (108). In fact, in
relarion (105), the a posteriori filtering errors are re-
quired. Thesc can easily be computed from their a priori
counterparts (see 3.3 of the algorithm of Table 11a).

Note that scveral quantities associared with the for-
ward and backward prediction problem of order P are
needed in the above scheme. Some of them are computed
in a similar way as above, i.e., via a Schur-type scheme
(see Part 2}, while some others arc computed in Part 1 of
the algorithm, using the prediction part of the stabilized
FAEST algorithm.

Notice that the initialization phase of the Schur-type
scheme of Part 2 requires the computation of the a priori
prediction errors based on the estimates of the predictors
at time #—N. These errors may be computed using either
fast-FIR filtering techniques, as the one suggested in
[1347], or FFT-based techniques. The initialization phase
of the Schur scheme of Part 3 must be treated in a differ-
ent manner because the involved convelution is of a par-
ticular type. This is due to the fact that the filter length A/
may be several times longer than the block length N,
hence, only a few outputs relative to the filter length are
required. An FFT-based efficient scheme is proposed in
[107] and [108] for computing efficiently this particular
type of convolutions.

Having computed the filtering error vector in Parts 2
and 3 of the algorithm, the next step is to compute the
block-updating term. The columns of the involved gain
matrix G,  (») are, by definition, the Kalman gain vec-
tors of order M for all time steps within the current block.
Properly combining the gain update relations of ENTF for
all the involved time steps, it can be shown that the gain
matrixG , , (n)can be written as a sum of three matrices

o BEW o 8, ()0

e () (110)

All three matrices are, once more, of a special form that
can be exploited from a computational point of view. The
columns of matrix W, . (#} are shifted versions of the
gain vector at time n—N+1, thus, it lends irself to efficient
matrix vector computations of the FIR filtering type. Ma-
trices §,, , () and U, (w) are associated with the for-
ward and backward predictors respectively, and their
columns are computed recursively (see Part 4.1 of the algo-
rithm). Since it 1s assumed that P<< M, each of these two
matrices contains only a small fraction of nonzero rerms.

Overall, a significant saving in complexity is offered as
compared to the step-by-step FNTF. The main savings
stem from
4 The efficient computation of the filtering errors using
the Schur-type schemes -
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A The efficient compuration of the involved ma-
trix-by-vector products using fast-FIR filtering techniques.

The total complexity of the algorithm of Table 11a, if
all the involved convolutions are computed using the
FFT-based techniques suggested in [107] and [108] for
tast-FIR filtering, is given by

2
M =12P3N+L7 p 5 A gy 1428
N N N
+4p+v  MUPI (111)
and
P M
A, FI4PHAN = Q1p- 3 2 (16v46)
2
+ +12p+3v  ADPI
(112)

where N=2" and P=2".

Block-Exact Stabilized FTF

Block-exact implementations of the fast-RLS scheme
have been developed in [136] and [1377]. Their algorithm
has been called fast-subsampled-updating stabilized FIF
(FSU-SFTF). The FSU-SFTF algorithm is based on the
stabilized version of the FTF algorithm [69].

The derivation of the FSU-SFTF algorithm is based
on the interpretation of the FTF {and SFTF) algorithm as
a successive application of rotation matrices to a specific
set of filters. Indeed, all the one-step-ahead, filter-update
relations of SFTF can be compactly written in the form

Wi 0 0 wim-D
Loay | o) L al{n-])
bLm) 1 bl -1y 1
¢y 0 Cun-l) 0 (113)

where ©(z)is a 4x4 step-by-step rotation matrix defined as
On)=0,(n)0, (O, (1), (n). (114)

The 4x4 rotation matrices @, (#),i=1,2,3,4 are in turn
given by

where # is the filtering error e, (#); & is the back-
ward-prediction a posteriori error €, (#) (computed in
terms of the a priori one); ¢ is the element —w ;"] (#) of
the Kalman gain vector; 4 is the a posteriori for-
ward-prediction error €/ (), and finally,
e=A""el, (mo,; (n—1), with o, (n—1) being the power of
the Kalman gain ourpur. All these quantities are com-
puted like the SFTF in terms of the filters at time #-1.
Whriting (113) for N consecutive time steps, within the
current block, and combining the resulting relations, the

following can be easily obrained

W;"'J {n) ”0 0 wi (n-N)
Tl Ay () QN . 1 a, (n-N)
b, (n) b, (n—N) 3
ch,m 0 ¢y m-Ny 0 (117)

where O(s2 ;N is 4x4 block-rotation matrix, which is de-
fined as the product of all intermediate step-by-step rota-
tion matrices, i.e.,

O(n; N =0(r)0#~1}.. O(n-N+1}. (118)
The computation of the above roration matrix requires
the one-step-ahead filtering and prediction error variables
for all tme steps within the block, Using the filrer esti-
mates at time #-N, the multi-step-ahead filter outputs
over the next N time instants can be computed. Then,

Let[#-N+1,n]be the current data block and assume

that all filter estimates are available until dme instant #—N.

Part 1. Computation of the' mula-step-ahead filter outpirs.
Using fast-FIR filtering techniques compute the quantities:

e mp-Ny] [0 whm-N)

el (npp-N) 1 al (n-N} |z

?‘r o il B P al ) X i ()
ey (np=N)| | bl in-N) 1 .

di (p-Ny| |-ci{n-N) 0

Part 2. Computation of the step-by-step rotation matices
using the SETF-Schur algorithm. .
Input: e (nlp- N3, e (nln—N), el (nln—N),d}, (nlp—N)
Output: O@), i=a—N+1,.5 '

[1000] 1000]
0100 0100 Part 3. Compuration of the block rotation matrix.
950010 " 5010 O N)=0(2)0(1-1).. O(n ~N+1)
[« 001] 0001 (115) | Part 4. Block updating of the involved filters.
whiny 0 | 0 wi{r-N)
r - ST | Lo AT
10¢ {ﬂ 10 OW Tl a4, () O N)| 1 ay{(n-N)
0100 4100 bi(#) 1 by(n-N) 1
©:™95010l 5010 Lm0 chin=N) 0
0001 0001] 116)
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based on these filter outputs, and using the so-called
SETE-Schur algorithm [136], the required
one-step-ahead error quantities can be computed for each
time instant within [z—-N 2]

The FSU-SFTF algorithm is summarized in Table
11b. From the form of the computations involved in Part
1 of the algorithm, it is casily seen that fast-FIR filtering
techniques can be directly applied. Efficient convolution
methods are also applied in Part 4 of the algorithm. Due
to the shifting properties of the Kalman gain in (117}, all
the quantities involved in this block-updating recursion
are transformed in the Z-domain, and the filters are asso-
ciated with polynomials. The resulting structure involves
12 convolutions of an N-order polynomial with an
M-order polynomial. If the orders of the polynomials are
relatively large, as it is often the case in many practical sit-
uations, the convolutions may be implemented efficiently
using FFT-based techniques.

The total computational complexity of the FSU-SFTF
algorithm equals

T2
M+1 JFF CN) M

[17+8T +10N  MUPI,

N N (119)

where the FFT is performed using the split-radix tech-
nique. Hence, FFI'2N)is equal to Nlog, (2N} real mul-
tiplications for real signals [140]. Only the number of
multiplications per sample is given above. The number of
additions is somehow higher [137].

Block-Exact RLS: A block-exact version of the classical
RLS algorithm, the so-called fast-subsampled-updating
RLS (FSU-RLS) algorithm, has been developed in
[138]. Its derivation evolves in a different path than
ESU-SFTE, and it is worth pointing out that the resulting
computational load is similar to that of FSU-SFTE.

To illustrate the complexity of the block-exact algo-
rithms considered so far, let us consider an FIR filter with
length AM=2048, which is not untypical for acoustic
echo-cancellation applicarions. For a block length
N=]28, FELMS requires 738 multiplications per sam-
ple; the BEENTEF requires 1140 multiplications per sam-
ple, for a prediction order P=14; and the FSU-SFTF
requires 3208 multiplications per sample.

Block-Exact Affine-Profection Algorithm

A block-exact version of the fast-affine-projection algo-
rithm has been developed recently [98]. The derivation of
the algorithm follows the same line as the one for
FELMS. Let the filter length A be an integer multiple of
the projection order L. The algorithm is based on the aux-
iliary filters b, (1), q , (n), deﬁncd in Table 11, and the
associated error variable e (#) for all time instants
n—N+1,..», within the current block, i.c.,

¢* (n—i)=y(n~i)-x" (n—-i}h ,, (n—1-1),

=N-1,N-2...0. (120)
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Combining the update equation for h , () given in Ta-
ble 11, with the above set of equations, the following
block recursion is obrained

=¥ (1)K, (b, (n-N)
=S,  (r=N+D)q , () (121)
where
€ (n)=le’ (n—N+Le" (n—N+2)-¢" (1m)]" (122)

and matrix 8, . (#-N+1) is a time- delavc:d version of
Sy ()38 definedin (97) for the FELMS, The filtering er-
rors e(n—¢) within the current block are then estimated via

eln—iy=e" (n—iy+e] (n—i)q , (n—i-1),

i=0,1,. . N-1 (123)
and the block update recursion for h ,, () is given by
b, (m)=h (n_N)+MX;M,N {m)q, (1) (124)

The compurational savings are obtained by performing
the involved convolutions in (123) and (124), in the
same efficient way as FELMS.

Approximate Block Implementations in the

Time Domain

The generic block version of an adaptive algorithm can be
cast as a generalization of (28), 1.e

¢ (m)=c (= N)-u(Wim)g ,, (),

n=0,N2N.... (125)

where N is again the block size and g ,, (#) is an estimate
of the gradient at time instant #, i.e.,
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8y M=V, o (Eal67 m)]) (126)
By different choices of matrix W (s} and gradient vector
& ,, (1), the block versions of the various algorithms con-
sidered in “Stochastic Approximation Methods” can be

obtained.

Block LMS

Assuming Wi(r)=1, and the expectation operator in
(126) to be the sliding-window approximation as in
(39), the block-LMS (BI.MS) algorithm results, i.e.,

C, (m=c,, (n—N)ﬂL(%)X ar
n=0,N2N,..

n (nln—N),

(127)

L(”'”_N YJ' (”) M L e, (W_N)'

(128)
In other words, the update direction for this case is given by

vin)=—g (n)z%X €l {(mjp—N). (129)
The product X arn Sy (=N can be compuied via fast
convolutional schemes [49].

Observe that two design variables are associated with
these algorithms, namely the update block length N and
the length of the data size memory, L. Most of the early al-
gorithms used L=N, and in particular, L=N=M. The
cmancipation from this constraint requires more sophis-
ticated ways to compute convolutions than a straightfor-
ward FFT.

As it was the case with the sample-by-sample versions,
L{#) can be chosen as either constant or time-varying. In
the latter case, line-search schemes have been adopted o
optimize convergence speed, and the resulting step size s
given by

! (np~NYHE, (n[n—N)

Mn):fcf(nlan)Hz"e’L(nm—N)’ (130)
where

H=X], 00X, ()

The recsulting scheme 1s known as opti-

mum-block-adaptive {OBA} algorithm [30]. Note that
the step size in the OBA algorithm is the same for all the
adaptive filter coefficients. Efforts to use different step
sizes for the various coefficients have also been made
[31], [32].

Another path to accelerate the convergence speed of
the BLMS family is to use suitably chosen unitary trans-
formations of the input signal, as it was the case with the
sample by sample versions (see “Accelerating the Adap-
tive Gradient Methods™). In such cases, the update direc-
tion should be
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v(ny=8X,, | €, (nn~N=U , , (0)€, (nn—-N)

(131)
which finally results in the counterparts of (57) and
(62), i.c.,
¢, (m=¢ , (n-N)u#z)R 7, (mU nln—N)

ML L(

€, (ln-N)=F, (n)-U%, , )¢, (n-N),

The distinct difference between the approm-
mate-block algorithms, and the block-exact versions, s
that in the former schemes, the involved errors are com-
puted in terms of the filter estimate, corresponding to the
beginning of each block. In contrast, the block-exact ver-
sions use the true errors, at the various time instants

withtn each block.

Block-Quasi-Newton Techniques

These schemes result from the generic form (125) for gra-
dient g ,, (%) as n (129, and for Wiz} having any of the
forms discussed in “Adaptive Quasi-Newton Algorithms ?
A well-known scheme is obtained by assuming Toeplitz
approximation of matrix W(»), as in {75}, and is known as
a self-orthogonalizing, block-adaptive filter {SOBAF)
[81]. The compurational complexiry of the SOBAF algo-
rithm is (M)} per time step. However, if instead of the
Levinson algorithm, the FFT-based technique of [141] is
applied to the solution of the involved Tocplitz system,
then the complexity reduces to O{log A1).

The preconditioning techniques thar recently ap-
peared in |90, [142] can also be set in the same context as
the SOBAF technique and, in fact, they can be regarded
as self-orthogonalization methods. The Toeplitz precon-
ditioned OBA (TOBA) algorithm in |90] has a similar
form as SOBAY, with the additional feature of a
time-varying step size, which is chosen to minimize the
block MSE. Furthermore, it 1s suggested that circulant
preconditioners can be emploved. The latter technique is

r

MSE (dB)
@ N
S o

!
35 ¢ \le | ‘\‘ i ]
|l i e B
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0 50

4 3. Learning curve for the SFRLS (blue), the FNTF (red), and the
APA (green) for the stationary input signal.
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slightly inferior to TOBA, but it fends itself to very effi-
cient implementations.

Another choice is to use in place of Win) a
pseudo-inverse matrix, similar in form to that given in
(79), resulting in

¢y (my=c , (n=NyuX,, | ()

X X, ] €, (nln—N). (134)
This algorithm is, in fact, a block version of the af-
fine-projection algorithm. The above block update (with
u=1) first appeared in [143]. The same block-adaptive al-
gorithm was rederived in [32], but using different
arguments. In fact, the authors in [32] derived a block
APA in an effort to develop a BLMS with rime-varying
step size and no constraints in the block length with re-
spect to the filter order. The resulting algorithm 1s equiva-
lent to the block APA of [143] for N<M. In their
algorithm, called the general-optimum-block-adaptive
(GOBA) algorithm, the correction term in the block up-

- 50 100 150 ‘200 250300 350 400 450 500
R NumberofSampJes {x100)

& 4 Companson of the total MSE (with external noise included)
curves, for two different algorithms.

50 100 150~ 2@0 250 300 7350 400 450 500
Numbe __fSamples (X100}

& 5. Compcmson of the residual echo curves, for two different al-
gorithms.
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date recursion of BLMS is chosen to minimize the
squared norm of the a posteriori error vector. This consti-
tutes an interesting alternative interpretation of the block
APA. In [99], the same block structure is reinvestigated,
and a step size is added to the correction term, resulting in
the form given in (134). Note that the block update in
{134) contains as extremal cases the normalized-block
LMS and the block RLLS. The step size . can be controlled
according to the squared norm of the estimation error
within the current block. As suggested in [99], the com-
putational complexity can be further reduced by applying
the generalized Levinson algorithm [144] for the solu-
tion of the system

[XM L (”)ﬁ ML ()] N €, (njp—N),

which is involved in the correction term of the above re-
cursion.

An alternative path was followed in [145]. In the
scheme derived there, matrix W) is replaced by an ap-
proximation of the inverse autocorrelaticn matrix in-
volved in the ENTF. By adopting the assumption that the
input autocoerrelation matrix does not practically change
within a time interval of ar least M steps, the banded
structure of the inverse autocerrelation matrix can be fur-
ther simplified. Note that the same reasonable assump-
tion was made in [82] for the derivation of the
step-by-step FQN algorirhm. The block recursion of the
resulting algorithm is given by

€ 4 ()= o (= N[’y (4P, ()], (135)
where
o (ﬂ)_[i”( P’L(n())EL (n]nN):|

Mop (136)
and
P2 0=C sy s (IC T, 4 K, (), (BN 137
The matrix C ;. {») is circulant and its columns are

shifted versions of the P-th order backward pred1ct10n fil-
ter, which, according to the above assumption, remains
constant for M steps. The two correction vectors p. (#)
and p?, (#) can be cfficiently computed using fast convo-
lution techniques. Note that the second correction vector
is formed as a succession of three convolutions. The
FFT-based implementation of the above block-adaptive
algorithm has a complexity comparable to that of BLMS,
offering, however, a considerably faster convergence.

Simulation Results

Simulation results from rypical system identification ex-
periments will be presented in this section, We have com-
pared the performance of the main algorithmic techniques
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discussed in the previous sections. From the several varia-
tions of these algorithms, we have chosen to experiment
with well-established sample-by-sample versions. Obvi-
ously the results from this performance comparison are
valid for their block-exact counterparts as well.

The input time series used in the first experiment was a
stationary AR process of order 14. The AR paramcters
used to generate this process were those estimated (using
standard techniques) from a segment of real speech corre-
sponding to the Greek phoneme “e”, This AR process was
used as input to an FIR svstem of order 256. The impulse
response was a typical impulse response of the acoustic
ccho path of a car enclosure. At the output of the FIR sys-
tem white Gaussian noise was added, resulting in an SNR
equal to about 30 dB. Thus, the noise contaminated out-
put of the system is given by

¥ =256h2 (n—i+1)+nin),
) ; X HN(z) a38)

wherc x(n) are the input samples of the AR{14) process,
k. are the unknown system impulse response cocfficients
and n(z) arc the additive noisc samples. The systems
changed at time instant #=25000 from h to —h. The un-
known FIR system was cstimated using:

# The modified stabilized-FRLS algorithm, Table 7,
with M=256, =999, and p=9999

& The modified FNTTF algorithm, Table 9, with M=256,
P=14, =999, and p=5999

4 The APA algorithm, Table 10, with M=256, 7.=14,
u=2, and 6=10"*

4 The NLMS algorithm, Table 1, with AM=256, a=05,
and =107

& The power-normalized transform-domain LMS, Ta-
ble 3d, with M=256

The filtering error power for each case was computed by
averaging the squared instantaneous filtering errors over
an exponentially decaying window, with cffective mem-
oty equal to 128 time instants. The simulation results are
shown in Figs. 2 and 3.

in the second series of experiments, the input dme se-
rics is a real nonstationary speech signal raken with a sam-
pling frequency of 8 kIz. The acoustic path is the same as
the one used before. At the output of the acoustic path a
white noise with SNR=20 dB was added.

Note that identifying the unknown system is equiva-
lent to reducing the acoustic echo, which disturbs normal
speaking. From the total squared filtering error curves we
have subtracted the ourput noise in order to focus on the
misadjustment itself, i.e., the residual echo. Before show-
ing the main results of this experiment and in order to em-
phasize the previous point, we have plotted, as an
example, the MSE and the residual echo curves for two of
the above algorithms. The MSE plots in Fig. 4 may lead
ta the erroneous conclusion that both algorithms con-
verge to the same steady stare error, and therefore, whar it
remains is to compare their initial convergence perfor-
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4 6. Learning curve for the NLMS (vellow), the SFRLS (blue), the
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and the time-invariant channel,

mance. However as shown in Fig. 5, the residual echo
curves are well separated by almost 5 dB. Thus, the pres-
ence of the external noise, which is usually the dominat-
ing component, may be a misleading factor for
performance comparisons.

The final results, concerning the convergence and
tracking performance of NLMS, stabilized fast RLS, the
FNTF, and APA, are plotted in Figs. 6 and 7. In the casc
of Fig. 6, the unknown system remains invariant, while,
in the case of Fig. 7, the systems changes at time instant
#=25000from h to —h. In each figure, the magenta curve
corresponds to the measured echo while the blue, yellow,
red, and green curves correspond to the residual echo sig-
nals of stabilized fast RLS, NLMS, ENTF, and APA, re-
spectively. The window size here was taken equal to 128
and the steady-state residual errors were always the same.
The filtering order in all cases was 256, while the predic-
tion order for FNTF as well as the projection order for
APA were both equal to 16. The forgetting factor for
both stabilized fast RLS and ENTF was cqual to 0.9984.
The step sizes for NLMS and APA were chosen equal to
(.4096 and 0.01.2, respectively. Soft-constrained initial-
ization was used in the case of stabilized fast RLS and
ENTF with initial values equal to 62 and 1062, respec-
tively, where 67 is an estimate of the input power.

From the above simulations one can conclude that:

& The use of preconditioning on the LMS greatly im-
proves its performance,
4 The fast RLS, the FTNF, and the APA exhibit compa-
rable performance, provided that the trimming parame-
ters are properly muned in each case, so that all methods
result in approximately the same steady-state error that
guarantees a fair comparison of the schemes.

Condlusion

In this article, a unified view of algorithms for adaptive
transversal FIR filtering and system identification has
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& 7. Learning curve for the NLMS (yeffow), the SFRLS (blue), the
FNTF (red), and the APA (green) for the speech input signal
and the time-varying channel.

been presented. Wiener filtering and the stochastic ap-
proximation are the origins from which all the algorithms
have been derived, via a suitable choice of iterative opti-
mization schemes and appropriate design parameters.
Following this philosophy, the LMS algorithm and its
offsprings have been presented and interpreted as sto-
chastic approximations of iterative deterministic steepest
descent optimization schemes. On the other hand, the
RLS and the quasi-RLS algorithms, like the
quasi-Newton, the FNTN, and the APA algorithm, have
been derived as stochastic approximations of iterative de-
terministic Newton and quasi-Newton methods. Fastim-
plementations of these methods have been discussed.
Block-adaptive, and block-exact adaptive filtering have
also been considered. The performance of the adaptive al-
gorithms has been demonstrated by computer simula-
tions, in the context of the acoustic echo cancellation and
system identification.
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