RANDOM SIGNALS

Random Variables

A random variable z(£) is a mapping that assigns a real number
x to every outcome £ from an abstract probability space. The
mapping should satisfy the following two conditions:

e the interval {x(£) < x} is an event in the abstract probabilty
space for every ;

e Priz({) < oo] =1 and Pr[z(§) = —o0] = 0.

Cumulative distribution function (cdf) of a random variable

z(§):
F.(x) = Pr{z(&) < z}.

Probability density function (pdf):

Then ,
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Since F.(00) = 1, we have normalization condition:

©.@)
/ fo(x)dr = 1.
Several important properties:

0< Fy(z)<1, F Fo(o0) = 1,

) x(_ ): O xX0) =
fz(x) >0, / fo(x) de = 1.
Simple interpretation:

folw) = lim Priz — A/2 < Z(S) <z+A/2)

Pl Ji) SURFACE = Probability {x; < x (&)< x,}

Xl JC2 ¥
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Expectation of an arbitrary function g(x(§)):

B{o@©) = [ " g fula) da.

Mean:
ne =E{2(©) = [ afilx)d.
Variance of a real random variable_?vo(ﬁ):
var{z} = oz =E{(z —E{z})"}
= E{2* - 22E{z} +E{z}*}
= E{a”} - (E{z})*
= E{z’} —u.

Complex random variables: A complex random variable

z(§) = zr(§) + jri(§).

Although the definition of the mean remains unchanged, the
definition of variance changes for complex x(&):

var{z} = o, =E{|z —E{z}|"}
— E{|z]> - 2E {2}* — 2*E{a} + |E {z}|*}
= E{jz]’} - [E{2}|?

z|*} — |pal®.

I
€3/
——
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Random Vectors

A real-valued vector containing N random variables

(&) =

is called a random N vector or a random vector when
dimensionality is unimportant. A real-valued random vector
= mapping from an abstract probability space to a vector-
valued real space R*.

A random vector is completely characterized by its joint
cumulative distribution function, which is defined by

Fo(z1, 22, 2x8) 2 PHai(6) <zi}0...0{zy(E) <2y}

and is often written as

A random vector can also be characterized by its joint
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probability density function (pdf), defined as follows:

fe(x) = lim
Azy — 0
Azyg — 0

AacN—>0

Pl{z1 < z1(§) < @1+ Az} N

N{zn <zn(§) <N+ Azy}]

N

The function

frle) = [ [l

(N—1)

is known as marginal pdf
variables.

-AJZN

)dazl ce dJZZ‘_l dCCfH_l ce dCBN

and describes individual random

The cdf of x can be computed from the joint pdf as:

F@=[ [ rw
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Complex random vectors:

ajR,l(g) 5131’1(5)
2(6) = ar(¢) + jar(e) = | A | 45| 2O
_ $R,N(§) | i xI,N(g) |

Complex random vector = mapping from an abstract probability
space to a vector-valued complex space CY. The cdf of a
complex-valued random vector (&) is defined as:

>

Fy(x) Plz(¢) < x|

Pl{zr(§) < xr} N{z1(§) < T1}]

>

and its joint pdf is defined as

fa(x) = lim
AwR,l — 0
Ale — 0
A:BR’]:V — 0
AxI,N — 0
Pl{xr < xr(§) < xr + Azxr} N{x; < 21(§) < 1 + Az}
Az Axy
0 0 9, 0

— F(x).
Oxgr,10x11  Orr N OTIN ()
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The cdf of x can be computed from the joint pdf as:

/ / d’UR 1d’UI 1 dUR7NdUI,N
/ fz(v) dv,

where the single integral in the last expression is used as a
compact notation for a multidimensional integral and should
not be confused with a complex contour integral.

/ ful(@ dw—/ fula

where & = [z&, z{ 1.

Fox)

>

Note that

For two random variables, = [z, y]!: f.(x) = f..,(z,y).

x and y are independent if

Expectation of a function g(x(§)):

E{g(@)} = [ " g(@)fo(@)da.
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For two random variables, = [z, y]’:

E{g(z,y)} = /_Oo 9(%,y) fey(z,y) dzdy.

Correlation:

Real correlation:
oy = E{zy} = / / zy fz.4(T,y) drdy.
— OO — OO
Real covariance:

Fey = BE{(x—p)(y—py)}

/_O:O /_(:(x — pa) (Y — ty) fuy(2,y) dody.

Complex correlation:

rey = E{zy*} = / / ry” foy(x,y) dzdy.
—00 J —00
Complex covariance:

Tey = E{(x_,ux)(y_:uy)*}

— [ ] @m0 )" fasley) dady
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Covariance Matrix:

Mean vector:
p, =E{x}.

Real covariance matrix:

R, = E{(z-E{z})(z-E{z})"}
— E{xz”} - E{zE{z}7,
R, = E{zz'} if E{z}=0.

Complex covariance matrix:

R, = E{(z-E{z})(z-E{z})"}
= E{zz"} - E{z}E {z}”,
R, = E{zz"} if E{z}=0.

Observe the following property of complex correlation:

rir =E{riey} = E{xpa]}" = r,’;z
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Then, for E{x} = 0:

1,1 T12 r'1,N
r2.1 122 2. N
Rx E{wwH} — K K !
| N,1 TN,2 'N,N
1,1 1,2 r'1,N
k
o 12 722 2, N
>k k
| i,y Ton TN,N |

The covariance matrix is Hermitian. It is positive semidefinite
because

b"R,b = b"E {(z —E{m}z(w —E{z})"}b

z
= b'E{zz"}b=E{|b"2|?} > 0.

Linear Transformation of Random Vectors
Linear Transformation:
y=yg(x) = Az.

Mean Vector:
p, =E{Az} = Ap,.

EE 524, Fall 2004, # 7 10



Covariance Matrix:

R, =
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E{yy"} — p,um,,
E{Axzx? A"} — Ap_pt? AH

A (E {zx"} — ppy! ) A
AR, A",
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Gaussian Random Vectors

Gaussian random variables:

1 (z — M)Q}
L(r) = expy — for real x,
fo(@) o\ 27 p{ 202
1 — 1|2
folz) = Texp{ — 2 5 | } for complex x.
o2 o2

Real Gaussian random vectors:

@) = e { — e - w) R @ - )

Complex Gaussian random vectors:

fol@) = e { = (@ - ) R o — )}

Symbolic notation for real and complex Gaussian random
vectors:

&L NM(“xaRJJ)a real,
x ~ Ne(p,, Ry), complex.
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A linear transformation of Gaussian vector is also Gaussian, i.e.
if

y = Ax
then
y ~ N.(Ap,,, AR, AT) real,
y ~ Ne(Ap,, AR, A™) complex.
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Complex Gaussian Distribution

Consider joint pdf of real and imaginary part of a complex
vector @

r=u-+ jv.
Assume z = [ul,v!1]T. The 2n-variate Gaussian pdf of the
(real!) vector z is

1 _
fz(Z) — \/(27T)2n|R ‘ exXp [—%(Z o “’z)TRz 1(2 o “’z)} ’
where
_ ,'L’U, . R’U/LL R’LLU
He = [u] RZ‘[RW Rm]'
That is

Plz € Q] = /zEQpZ(z)dz.
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Complex Gaussian Distribution (cont.)

Suppose R. happens to have a special structure:
Ruu — va and Ruv — _Rvu-

(Note that R,, = R., by construction.) Then, we can define
a complex Gaussian pdf

1

where
e
R, = E{(z—p,)(z- Ha:)H} = 2(Ruu + j Rou)
0 = E{(z—p,)(z—p,)"}
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Covariance of White Noise and Prewhitening
Operation

Covariance matrix for white uniform zero-mean noise:

R, = o°I,

2

where o“ 1s the noise variance.

Very important operation is prewhitening of a nonwhite process.
Assume that the process has the covariance matrix R, # o°1.
Then, prewhitening operation can be written as

y=WR, "z
where W is any unitary matrix (WH = W—1).

Ry — E{yyH}
= E{WR;Y2xa® R;H2WH)
= WRY?E {za"\E R 1/?WH
_ W(Rx_l/QRxRx_l/Q)WH
= WwWH =1
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We can define an arbitrary (noninteger) power of R, as

N
q _ Tu.u!
R = g A wu;
i=1

Prewhitening matrix is not unique!
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Discrete-time Stochastic Processes

Definition. [Wide-Sense Stationarity (WSS)] A random
process x(n) is WSS if

its mean iIs a constant:
K [az(n)] — Mz,

its autocorrelation r,(n1,n2) depends only on the difference
ny —No.

re(n,n—10)=E[z(n)x*(n—1)] =r.(l),
and its variance is finite:

cz(0) = E{|z(n) — pa|*} < 0.

Power Spectral Density (PSD): The PSD (or auto-PSD)
of a stationary stochastic process is a Fourier transform of its
autocorrelation sequence:

Po(e) = ) ra(l)e 7

l=—00
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Linear Systems with Stationary Random Inputs:

z(n) y(n)

————— Linear system 7] -

Output mean value:

4y = Em]=B[ 3 hEk)a(n - k)]

k=—o0

Z hk)E [z(n — k)| = pa Z h(k H(eY).

k=—o0 k=—o0

Output autocorrelation:

ryc(n+k,n) = Elyn+k)z"(n)]
= E[) hDz(n+k—1) -2%(n)]
l=—o0
= > hDE[(n+k—1)-2*(n)]
[=—o00 re(k—1)
— Z h(Dre(k —1).
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ryz(n+k,n) =1, (k) =rgy(k)*h(k).

ry(n+k,n) = Elyn+k)y (n)

= y(n + k) Zx *(n—1)]

l=—0o0

I
(]
%
S
|

Ely(n +k)z" ()]

l=—o0 Ty,w(;‘ri‘k—l)
m=Zn—t Z h*(m)ry .(m+ k)

=" Z h*(—p)ry (k — p)

So

ry(k) = rye(k) * h*(=k) = {re(k)} * {h(k)} x {7 (=FK)}.

The corresponding PSD:
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Wide-Sense Stationary Process

For wide-sense stationary zero-mean sequence {x;}:

the covariance matrix is Toeplitz:

R,=E {xax )=

ro
1
2
r3

N—-1

Example: Consider
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1 T5
T0 1
1 0
T2 T

'N—2 TN-3

:t@z——}J%—l)

ik = Ti—k,

N—2
'N-3
T'N—4
'N—5

N-1
T'N—2
'N—3
T'N—4
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In this case, the covariance matrix is

r = E{:L'a:H} =
B {]o(n)[?} B{e(m)a*(n—1) - E{e(m)a*(n—N+1)
B{e(n— )z*(n)} Bz -2} - Bz - Da*(n— N+ 1))
B {a(n— N+ Da*(n)} » B {|e(n — N + 1)}

and, therefore, the stationarity assumption means

E{z(k)x"(k —m)} = rz(m).
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