RANDOM SIGNALS

Random Variables

A random variable $x(\xi)$ is a mapping that assigns a real number x to every outcome ξ from an abstract probability space. The mapping should satisfy the following two conditions:

- the interval $\{x(\xi) \leq x\}$ is an event in the abstract probabilty space for every x;
- $\Pr[x(\xi) < \infty] = 1$ and $\Pr[x(\xi) = -\infty] = 0$.

Cumulative distribution function (cdf) of a random variable $x(\xi)$:

$$F_x(x) = \Pr\{x(\xi) \le x\}.$$

Probability density function (pdf):

$$f_x(x) = \frac{dF_x(x)}{dx}.$$

Then

$$F_x(x) = \int_{-\infty}^x f_x(x) \, dx.$$

Since $F_x(\infty) = 1$, we have normalization condition:

$$\int_{-\infty}^{\infty} f_x(x) dx = 1.$$

Several important properties:

$$0 \le F_x(x) \le 1, \quad F_x(-\infty) = 0, \quad F_x(\infty) = 1,$$
$$f_x(x) \ge 0, \quad \int_{-\infty}^{\infty} f_x(x) \, dx = 1.$$

Simple interpretation:

$$f_x(x) = \lim_{\Delta \to 0} \frac{\Pr\{x - \Delta/2 \le x(\xi) \le x + \Delta/2\}}{\Delta}.$$

Expectation of an arbitrary function $g(x(\xi))$:

$$E\{g(x(\xi))\} = \int_{-\infty}^{\infty} g(x) f_x(x) dx.$$

Mean:

$$\mu_x = \mathrm{E}\left\{x(\xi)\right\} = \int_{-\infty}^{\infty} x f_x(x) \, dx.$$

Variance of a real random variable $x(\xi)$:

$$var\{x\} = \sigma_x^2 = E\{(x - E\{x\})^2\}$$

$$= E\{x^2 - 2xE\{x\} + E\{x\}^2\}$$

$$= E\{x^2\} - (E\{x\})^2$$

$$= E\{x^2\} - \mu_x^2.$$

Complex random variables: A complex random variable

$$x(\xi) = x_{\mathbf{R}}(\xi) + jx_{\mathbf{I}}(\xi).$$

Although the definition of the mean remains unchanged, the definition of variance changes for complex $x(\xi)$:

$$var{x} = \sigma_x^2 = E\{|x - E\{x\}|^2\}
= E\{|x|^2 - xE\{x\}^* - x^*E\{x\} + |E\{x\}|^2\}
= E\{|x|^2\} - |E\{x\}|^2
= E\{|x|^2\} - |\mu_x|^2.$$

Random Vectors

A real-valued vector containing N random variables

$$m{x}(\xi) = \left[egin{array}{c} x_1(\xi) \\ x_2(\xi) \\ \vdots \\ x_N(\xi) \end{array} \right]$$

is called a random N vector or a random vector when dimensionality is unimportant. A real-valued random vector \equiv mapping from an abstract probability space to a vector-valued real space \mathcal{R}^N .

A random vector is completely characterized by its *joint* cumulative distribution function, which is defined by

$$F_{\mathbf{x}}(x_1, x_2, \dots, x_N) \stackrel{\triangle}{=} P[\{x_1(\xi) \le x_1\} \cap \dots \cap \{x_N(\xi) \le x_N\}]$$

and is often written as

$$F_{\boldsymbol{x}}(\boldsymbol{x}) = P[\boldsymbol{x}(\xi) \leq \boldsymbol{x}].$$

A random vector can also be characterized by its joint

probability density function (pdf), defined as follows:

$$f_{\boldsymbol{x}}(\boldsymbol{x}) = \lim_{\substack{\Delta x_1 \to 0 \\ \Delta x_2 \to 0}} \\ \vdots \\ \Delta x_N \to 0}$$

$$P[\{x_1 < x_1(\xi) \le x_1 + \Delta x_1\} \cap \dots \cap \{x_N < x_N(\xi) \le x_N + \Delta x_N\}]$$

$$\Delta x_1 \cdots \Delta x_N$$

$$= \frac{\partial}{\partial x_1} \cdots \frac{\partial}{\partial x_N} F_{\boldsymbol{x}}(\boldsymbol{x}).$$

The function

$$f_{x_i}(x_i) = \int \cdots \int f_{\boldsymbol{x}}(\boldsymbol{x}) dx_1 \cdots dx_{i-1} dx_{i+1} \cdots dx_N$$
(N-1)

is known as marginal pdf and describes individual random variables.

The cdf of x can be computed from the joint pdf as:

$$F_{\boldsymbol{x}}(\boldsymbol{x}) = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_N} f_{\boldsymbol{x}}(\boldsymbol{v}) \, dv_1 dv_2 \cdots dv_N \stackrel{\triangle}{=} \int_{-\infty}^{\boldsymbol{x}} f_{\boldsymbol{x}}(\boldsymbol{v}) \, d\boldsymbol{v}.$$

Complex random vectors:

$$m{x}(\xi) = m{x}_{\mathrm{R}}(\xi) + j m{x}_{\mathrm{I}}(\xi) = \left[egin{array}{c} x_{\mathrm{R},1}(\xi) \\ x_{\mathrm{R},2}(\xi) \\ \vdots \\ x_{\mathrm{R},N}(\xi) \end{array}
ight] + j \left[egin{array}{c} x_{\mathrm{I},1}(\xi) \\ x_{\mathrm{I},2}(\xi) \\ \vdots \\ x_{\mathrm{I},N}(\xi) \end{array}
ight].$$

Complex random vector \equiv mapping from an abstract probability space to a vector-valued complex space \mathcal{C}^N . The cdf of a complex-valued random vector $\boldsymbol{x}(\xi)$ is defined as:

$$F_{x}(x) \stackrel{\triangle}{=} P[x(\xi) \leq x]$$

$$\stackrel{\triangle}{=} P[\{x_{R}(\xi) \leq x_{R}\} \cap \{x_{I}(\xi) \leq x_{I}\}]$$

and its joint pdf is defined as

The cdf of x can be computed from the joint pdf as:

$$F_{\boldsymbol{x}}(\boldsymbol{x}) = \int_{-\infty}^{x_{\mathrm{R},1}} \cdots \int_{-\infty}^{x_{\mathrm{I},N}} f_{\boldsymbol{x}}(\boldsymbol{v}) \, dv_{\mathrm{R},1} dv_{\mathrm{I},1} \cdots dv_{\mathrm{R},N} dv_{\mathrm{I},N}$$

$$\stackrel{\triangle}{=} \int_{-\infty}^{x_{N}} f_{\boldsymbol{x}}(\boldsymbol{v}) \, d\boldsymbol{v},$$

where the single integral in the last expression is used as a compact notation for a multidimensional integral and should not be confused with a complex contour integral.

Note that

$$F_x(\boldsymbol{x}) = \int_{-\infty}^{\widetilde{\boldsymbol{x}}} f_x(\widetilde{\boldsymbol{x}}) d\widetilde{\boldsymbol{x}} = \int_{-\infty}^{\boldsymbol{x}} f_x(\boldsymbol{x}) d\boldsymbol{x}.$$

where $\widetilde{m{x}} = [m{x}_{\mathrm{R}}^T, m{x}_{\mathrm{I}}^T]^T$.

For two random variables, $\boldsymbol{x} = [x, y]^T$: $f_{\boldsymbol{x}}(\boldsymbol{x}) = f_{x,y}(x, y)$.

x and y are independent if

$$f_{x,y}(x,y) = f_x(x) \cdot f_y(y) \implies \operatorname{E} \{xy\} = \operatorname{E} \{x\}\operatorname{E} \{y\}.$$

Expectation of a function $g(x(\xi))$:

$$E\{g(\boldsymbol{x})\} = \int_{-\infty}^{\infty} g(\boldsymbol{x}) f_x(\boldsymbol{x}) d\boldsymbol{x}.$$

For two random variables, $\boldsymbol{x} = [x, y]^T$:

$$E\{g(x,y)\} = \int_{-\infty}^{\infty} g(x,y) f_{x,y}(x,y) dxdy.$$

Correlation:

Real correlation:

$$r_{x,y} = \mathrm{E} \left\{ xy \right\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{x,y}(x,y) \, dx dy.$$

Real covariance:

$$r_{x,y} = \mathrm{E}\{(x - \mu_x)(y - \mu_y)\}\$$

= $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_x)(y - \mu_y) f_{x,y}(x,y) dxdy.$

Complex correlation:

$$r_{x,y} = \mathrm{E} \{xy^*\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy^* f_{x,y}(x,y) \, dx dy.$$

Complex covariance:

$$r_{x,y} = \mathrm{E}\{(x - \mu_x)(y - \mu_y)^*\}$$

= $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_x)(y - \mu_y)^* f_{x,y}(x,y) dxdy.$

Covariance Matrix:

Mean vector:

$$\boldsymbol{\mu}_x = \mathrm{E}\left\{ \boldsymbol{x} \right\}.$$

Real covariance matrix:

$$R_x = \operatorname{E} \{ (\boldsymbol{x} - \operatorname{E} \{x\}) (\boldsymbol{x} - \operatorname{E} \{x\})^T \}$$

 $= \operatorname{E} \{ \boldsymbol{x} \boldsymbol{x}^T \} - \operatorname{E} \{ \boldsymbol{x} \} \operatorname{E} \{ \boldsymbol{x} \}^T,$
 $R_x = \operatorname{E} \{ \boldsymbol{x} \boldsymbol{x}^T \}$ if $\operatorname{E} \{ \boldsymbol{x} \} = \mathbf{0}.$

Complex covariance matrix:

$$egin{array}{lll} R_x &=& \mathrm{E}\left\{(oldsymbol{x} - \mathrm{E}\left\{x
ight\})(oldsymbol{x} - \mathrm{E}\left\{x
ight\})^H
ight\} \ &=& \mathrm{E}\left\{oldsymbol{x} oldsymbol{x}^H
ight\} - \mathrm{E}\left\{oldsymbol{x}\right\}\mathrm{E}\left\{oldsymbol{x}\right\}^H, \ R_x &=& \mathrm{E}\left\{oldsymbol{x} oldsymbol{x}^H
ight\} & ext{if} & \mathrm{E}\left\{oldsymbol{x}\right\} = oldsymbol{0}. \end{array}$$

Observe the following property of complex correlation:

$$r_{i,k} = \mathrm{E} \{x_i x_k^*\} = \mathrm{E} \{x_k x_i^*\}^* = r_{k,i}^*.$$

Then, for $E\{x\} = 0$:

$$R_{x} = \mathbf{E} \left\{ \boldsymbol{x} \boldsymbol{x}^{H} \right\} = \begin{bmatrix} r_{1,1} & r_{1,2} & \cdots & \cdots & r_{1,N} \\ r_{2,1} & r_{2,2} & \cdots & \cdots & r_{2,N} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ r_{N,1} & r_{N,2} & \cdots & \cdots & r_{N,N} \end{bmatrix}$$

$$= \begin{bmatrix} r_{1,1} & r_{1,2} & \cdots & \cdots & r_{1,N} \\ r_{1,2}^{*} & r_{2,2} & \cdots & \cdots & r_{2,N} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ r_{1,N}^{*} & r_{2,N}^{*} & \cdots & \cdots & r_{N,N} \end{bmatrix}.$$

The covariance matrix is *Hermitian*. It is *positive semidefinite* because

$$\mathbf{b}^{H} R_{x} \mathbf{b} = \mathbf{b}^{H} \mathbf{E} \left\{ \underbrace{(\mathbf{x} - \mathbf{E} \{\mathbf{x}\})}_{\mathbf{z}} (\mathbf{x} - \mathbf{E} \{\mathbf{x}\})^{H} \right\} \mathbf{b}$$
$$= \mathbf{b}^{H} \mathbf{E} \left\{ \mathbf{z} \mathbf{z}^{H} \right\} \mathbf{b} = \mathbf{E} \left\{ |\mathbf{b}^{H} \mathbf{z}|^{2} \right\} > 0.$$

Linear Transformation of Random Vectors

Linear Transformation:

$$\mathbf{y} = g(\mathbf{x}) = A\mathbf{x}.$$

Mean Vector:

$$\mu_y = \mathrm{E}\left\{Ax\right\} = A\mu_x.$$

Covariance Matrix:

$$R_{y} = \mathbb{E} \{ \boldsymbol{y} \boldsymbol{y}^{H} \} - \boldsymbol{\mu}_{y} \boldsymbol{\mu}_{y}^{H}$$

$$= \mathbb{E} \{ A \boldsymbol{x} \boldsymbol{x}^{H} A^{H} \} - A \boldsymbol{\mu}_{x} \boldsymbol{\mu}_{x}^{H} A^{H}$$

$$= A \Big(\mathbb{E} \{ \boldsymbol{x} \boldsymbol{x}^{H} \} - \boldsymbol{\mu}_{x} \boldsymbol{\mu}_{x}^{H} \Big) A^{H}$$

$$= A R_{xx} A^{H}.$$

Gaussian Random Vectors

Gaussian random variables:

$$f_x(x) = \frac{1}{\sigma_x \sqrt{2\pi}} \exp\left\{-\frac{(x-\mu_x)^2}{2\sigma_x^2}\right\} \text{ for real } x,$$

$$f_x(x) = \frac{1}{\sigma_x^2 \pi} \exp\left\{-\frac{|x-\mu_x|^2}{\sigma_x^2}\right\} \text{ for complex } x.$$

Real Gaussian random vectors:

$$f_x(\mathbf{x}) = \frac{1}{(2\pi)^{N/2} |R_x|^{1/2}} \exp\Big\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_x)^T R_x^{-1}(\mathbf{x} - \boldsymbol{\mu}_x)\Big\}.$$

Complex Gaussian random vectors:

$$f_x(\boldsymbol{x}) = \frac{1}{\pi^N |R_x|} \exp\Big\{ - (\boldsymbol{x} - \boldsymbol{\mu}_x)^H R_x^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_x) \Big\}.$$

Symbolic notation for *real* and *complex* Gaussian random vectors:

$$m{x} \sim \mathcal{N}_{
m r}(m{\mu}_x, R_x),$$
 real, $m{x} \sim \mathcal{N}_{
m c}(m{\mu}_x, R_x),$ complex.

A *linear transformation* of Gaussian vector is also Gaussian, i.e. if

$$y = Ax$$

then

$$m{y} \sim \mathcal{N}_{\mathrm{r}}(Am{\mu}_x, AR_xA^T)$$
 real, $m{y} \sim \mathcal{N}_{\mathrm{c}}(Am{\mu}_x, AR_xA^H)$ complex.

Complex Gaussian Distribution

Consider joint pdf of real and imaginary part of a complex vector $oldsymbol{x}$

$$x = u + jv$$
.

Assume $\mathbf{z} = [\mathbf{u}^T, \mathbf{v}^T]^T$. The 2n-variate Gaussian pdf of the (real!) vector \mathbf{z} is

$$f_z(\boldsymbol{z}) = \frac{1}{\sqrt{(2\pi)^{2n}|R_z|}} \exp\left[-\frac{1}{2}(\boldsymbol{z} - \boldsymbol{\mu}_z)^T R_z^{-1} (\boldsymbol{z} - \boldsymbol{\mu}_z)\right],$$

where

$$\mu_z = \begin{bmatrix} \mu_u \\ \mu_v \end{bmatrix}, \quad R_z = \begin{bmatrix} R_{uu} & R_{uv} \\ R_{vu} & R_{vv} \end{bmatrix}.$$

That is

$$P[\boldsymbol{z} \in \Omega] = \int_{\boldsymbol{z} \in \Omega} p_Z(\boldsymbol{z}) d\boldsymbol{z}.$$

Complex Gaussian Distribution (cont.)

Suppose R_z happens to have a special structure:

$$R_{uu} = R_{vv}$$
 and $R_{uv} = -R_{vu}$.

(Note that $R_{uv}=R_{vu}^T$ by construction.) Then, we can define a complex Gaussian pdf

$$f_x(\boldsymbol{x}) = \frac{1}{\pi^n |R_x|} \exp\left[-(\boldsymbol{x} - \boldsymbol{\mu}_x)^H R_x^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_x)\right],$$

where

$$\begin{aligned}
\boldsymbol{\mu}_x &= \boldsymbol{\mu}_u + j\boldsymbol{\mu}_v \\
R_x &= \mathrm{E}\left\{(\boldsymbol{x} - \boldsymbol{\mu}_x)(\boldsymbol{x} - \boldsymbol{\mu}_x)^H\right\} = 2(R_{uu} + jR_{vu}) \\
\boldsymbol{0} &= \mathrm{E}\left\{(\boldsymbol{x} - \boldsymbol{\mu}_x)(\boldsymbol{x} - \boldsymbol{\mu}_x)^T\right\}.\end{aligned}$$

Covariance of White Noise and Prewhitening Operation

Covariance matrix for white uniform zero-mean noise:

$$R_x = \sigma^2 I$$

where σ^2 is the noise variance.

Very important operation is *prewhitening* of a nonwhite process. Assume that the process has the covariance matrix $R_x \neq \sigma^2 I$. Then, prewhitening operation can be written as

$$\boldsymbol{y} = W R_r^{-1/2} \boldsymbol{x}$$

where W is any unitary matrix $(W^H = W^{-1})$.

$$R_{y} = E\{yy^{H}\}\$$

$$= E\{WR_{x}^{-1/2}xx^{H}R_{x}^{-H/2}W^{H}\}\$$

$$= WR_{x}^{-1/2}E\{xx^{H}\}ER_{x}^{-H/2}W^{H}\$$

$$= W\left(R_{x}^{-1/2}R_{x}R_{x}^{-1/2}\right)W^{H}\$$

$$= WW^{H} = I.$$

We can define an arbitrary (noninteger) power of ${\it R}_x$ as

$$R_x^q = \sum_{i=1}^N \lambda_i^q \boldsymbol{u}_i \boldsymbol{u}_i^H.$$

Prewhitening matrix is not unique!

Discrete-time Stochastic Processes

Definition. [Wide-Sense Stationarity (WSS)] A random process x(n) is WSS if

its mean is a constant:

$$\mathrm{E}\left[x(n)\right] = \mu_x,$$

its autocorrelation $r_x(n_1, n_2)$ depends only on the difference $n_1 - n_2$:

$$r_x(n, n - l) = E[x(n)x^*(n - l)] = r_x(l),$$

and its variance is finite:

$$c_x(0) = \mathrm{E}\{|x(n) - \mu_x|^2\} < \infty.$$

Power Spectral Density (PSD): The PSD (or auto-PSD) of a stationary stochastic process is a Fourier transform of its autocorrelation sequence:

$$P_x(e^{j\omega}) = \sum_{l=-\infty}^{\infty} r_x(l)e^{-j\omega l}.$$

Linear Systems with Stationary Random Inputs:

Output mean value:

$$\mu_y = \operatorname{E}[y(n)] = \operatorname{E}\left[\sum_{k=-\infty}^{\infty} h(k)x(n-k)\right]$$
$$= \sum_{k=-\infty}^{\infty} h(k)\operatorname{E}\left[x(n-k)\right] = \mu_x \sum_{k=-\infty}^{\infty} h(k) = \mu_x H(e^{j0}).$$

Output autocorrelation:

$$r_{y,x}(n+k,n) = \operatorname{E}\left[y(n+k)x^*(n)\right]$$

$$= \operatorname{E}\left[\sum_{l=-\infty}^{\infty} h(l)x(n+k-l) \cdot x^*(n)\right]$$

$$= \sum_{l=-\infty}^{\infty} h(l) \operatorname{E}\left[x(n+k-l) \cdot x^*(n)\right]$$

$$= \sum_{l=-\infty}^{\infty} h(l)r_x(k-l).$$

$$r_{y,x}(n+k,n) = r_{y,x}(k) = r_x(k) \star h(k).$$

$$r_{y}(n+k,n) = \operatorname{E}\left[y(n+k)y^{*}(n)\right]$$

$$= \operatorname{E}\left[y(n+k)\sum_{l=-\infty}^{\infty}x^{*}(l)h^{*}(n-l)\right]$$

$$= \sum_{l=-\infty}^{\infty}h^{*}(n-l)\underbrace{\operatorname{E}\left[y(n+k)x^{*}(l)\right]}_{r_{y,x}(n+k-l)}$$

$$\stackrel{m=n-l}{=}\sum_{m=-\infty}^{\infty}h^{*}(m)r_{y,x}(m+k)$$

$$\stackrel{p=-m}{=}\sum_{p=-\infty}^{\infty}h^{*}(-p)r_{y,x}(k-p)$$

$$= r_{y,x}(k)\star h^{*}(-k) = r_{y}(k).$$

So

$$r_y(k) = r_{y,x}(k) \star h^*(-k) = \{r_x(k)\} \star \{h(k)\} \star \{h^*(-k)\}.$$

The corresponding PSD:

$$P_y(z) = P_x(z)H(z)H^*\left(\frac{1}{z^*}\right).$$

Wide-Sense Stationary Process

For wide-sense stationary zero-mean sequence $\{x_i\}$:

$$E\{x_i\} = 0, \quad r_{i,k} = r_{i-k},$$

the covariance matrix is Toeplitz:

$$R_{x} = \mathbb{E} \left\{ \boldsymbol{x} \boldsymbol{x}^{H} \right\} = \begin{bmatrix} r_{0} & r_{1}^{*} & r_{2}^{*} & \cdots & r_{N-2}^{*} & r_{N-1}^{*} \\ r_{1} & r_{0} & r_{1}^{*} & \cdots & r_{N-3}^{*} & r_{N-2}^{*} \\ r_{2} & r_{1} & r_{0} & \cdots & r_{N-4}^{*} & r_{N-3}^{*} \\ r_{3} & r_{2} & r_{1} & \cdots & r_{N-5}^{*} & r_{N-4}^{*} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ r_{N-1} & r_{N-2} & r_{N-3} & \cdots & r_{1} & r_{0} \end{bmatrix}.$$

Example: Consider

$$oldsymbol{x} = \left[egin{array}{c} x(n) \ x(n-1) \ dots \ x(n-N+1) \end{array}
ight].$$

In this case, the covariance matrix is

$$R_{x} = E\{xx^{H}\} =$$

$$\begin{bmatrix} E\{|x(n)|^{2}\} & E\{x(n)x^{*}(n-1) & \cdots & E\{x(n)x^{*}(n-N+1) \\ E\{x(n-1)x^{*}(n)\} & E\{|x(n-1)|^{2}\} & \cdots & E\{x(n-1)x^{*}(n-N+1)\} \\ \vdots & \vdots & \vdots & \vdots \\ E\{x(n-N+1)x^{*}(n)\} & \cdots & E\{|x(n-N+1)|^{2}\} \end{bmatrix}$$

and, therefore, the stationarity assumption means

$$E\{x(k)x^{*}(k-m)\} = r_{x}(m).$$