Adaptive Filtering

Recall optimal filtering: Given

z(n) = d(n) +v(n),

estimate and extract d(n) from the current and past values of x(n).

x(n;
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Let the filter coefficients be

Filter output:

where
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Wiener-Hopf equation:

where
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Adaptive Filtering (cont.)

Example 1: Unknown system identification.

x(n)
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Adaptive Filtering (cont.)

Example 2: Unknown system equalization.

s(n)
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Adaptive Filtering (cont.)

Example 3: Noise cancellation.

s(n) | _
Signal|_~7 s(n)+z(n)

Source i Primary input
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Adaptive Filtering (cont.)

Example 4: Signal linear prediction.

x(n)

Z
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Adaptive Filtering (cont.)

Example 5: Interference cancellation without reference input.

d(n
A (n)
x(rn) - x(n-+£) PRI d(n,)_ e(n)
FILTER

!
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Adaptive Filtering (cont.)
|dea of the Least-Mean-Square (LMS) algorithm:

wiy1 = wi — p(VwE {|ex]*})", (*)
where the indices are given as subscripts [e.g. d(k) = di], and

E{lexl’} = E{lde —wy @i’}
= E{|di|*} — wilr — rPw;, + wi Rwy,
(VwE {lex]*})* = Rw —r.

Use single-sample estimates of R and r:
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and insert them into (x):

k
Wgy1 = Wi + Uk,
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Adaptive Filtering: Convergence Analysis

Convergence analysis: Subtract w,p from both sides of the previous
equation:

Wi+1 — Wopt = Wk — Wopt, +pxy(dy, — wkHwk) (%)

Vi1 V.
and note that
* H * H
rp(d, —x wg) = mpd; — TR W

* H H H
= Tpd;, — TT), Wi + TRTE Wopt — TETL Wopt

* H H
= (xxd;, — TLT) Wopt) — THTL Vi
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Observe that

E {mk(d}z — :IzkHwk)} =1 — Rwop, —RE{vr} = —RE {vg}.

0
Let ¢, = E{vi}. Then
Cry1 = I — pRley,
Sufficient condition for convergence:

lers1]] < [lex]]
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Adaptive Filtering: Convergence Analysis

Let us premultiply both parts of the equation (* * %) by the matrix U of
the eigenvectors of R, where

R=UANU".

Then, we have
Uljckz—l-l = UMI - MR]Q(I[ECM
Ci+1
and, hence
Ccra1 = [I — pA]ecg.
Since
lenl? = eff er = eff UUE er =€/ = |[&|”,

N~
I
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the sufficient condition for convergence can be rewritten as
[€xall? < llenl® k.

Let us then require that the absolute value of each component of the vector
Cr41 is less than that of ¢;:

1—p\| <1, i=1,2,...,N.

The condition
11— pX| <1, 1=1,2,...,N,

Is equivalent to

y
0<p<—0

A1’Ila,X
where Anax IS the maximum eigenvalue of R. In practice, even a stronger
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condition is (often) used:

where tr{ R} > Apax.
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Normalized LMS
A promising variant of LMS is the so-called Normalized LMS (NLMS)

algorithm:

Wp41 =Wg + wkez, er = dp — ’wé{mk —NLMS alg.

|l
The sufficient condition for convergence:
0<p<?2.

In practice, at some time points ||x| can be very small. To make the
NLMS algorithm more robust, we can modify it as follows:

Wg41 = WE +

so that the gain constant cannot go to infinity.
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Recursive Least Squares

Idea of the Recursive Least Squares (RLS) algorithm: use sample estimate

Ry (instead of true covariance matrix R) in the equation for the weight
vector and find wy. 1 as an update to wyg. Let

AN AN H
Rry1 = ARp+xpp1xy
The1 = TR+ Tppady g,

where A < 1 is the (so-called) forgetting factor. Using the matrix inversion
lemma, we obtain

k+1 — (ARk -+ $k+133k+1)
1 p-1_ Ry x4 Ry,
— . =
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Therefore,

w = R, rry1= R, — T
k+1 k+1" k+ k _

1 p-1_ R, $k+1$k+1sz q*

*
= Wi — gk+1$k+1wk + gk+1dk—|—17

where

p—1
g B Rk; L1
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Hence, the updating equation for the weight vector is

_ H *
W1 = Wi —Gp 1L Wk + ka+1dk+1

* H
Wy + gk+1\(dk-|-1 — wk:-|-1wk)/

~~

*
€k ki1

*
= Wk +9Gp11€k kt1-

EE 524, # 11
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RLS algorithm:

e Initialization: wo=0,FPy =011

e Foreach k=1,2,..., compute:
hy = Pr1xg,
ap = 1/(A+th:ck),
g, = hyog,
Pe = AP —gihi],
er—1k = di— Wy 1T,
Wy = Wkg_1+ g€ 1k
e, = dp— fwfmk.
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Example

LMS linear predictor of the signal
z(n) = 107%™ 4+ e(n)
where f = 0.1 and

e N =38,

e ¢(n) is circular unit-variance white noise,

o 1 =1/[10t(R)], 2 = 1/[Btr(R)], s = 1/[tx(R)].

EE 524, # 11

21



100 T

a0

80|

70

MSE

60

50

40

30

1

|

0 200

EE 524, # 11

400

600

800

1000
ITERATION

1200

!
1400

1600

1800

2000

22



Adaptive Beamforming

A\V4
\ NV

The above scheme describes narrowband beamforming, i.e.

e conventional beamforming if wy,...,wy do not depend on the

EE 524, # 11 23



input/output array signals,

e adaptive beamforming if wq,...,wy are determined and optimized based
on the input/output array signals.

Input array signal vector:

z(i) = | 220

Complex beamformer output:

y(i) = wx(i).
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Adaptive Beamforming (cont.)

Input array signal vector:

z1(k)
o(k) = | "2
| nh)
Complex beamformer output:
y(k) = wx(k),
x(k) = &@+@@+ ﬂ@

signal noise interference

The goal is to filter out x; and xn as much as possible and, therefore,
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to obtain an approximation s of xs. Most popular criteria of adaptive

beamforming:

e MSE minimum

min MSE, MSE = E {|d(i) — w" z(:)|?}.

w

e Signal-to-Interference-plus-Noise-Ratio (SINR)

H, |2
max SINR, SINR = E{|w™x|"}

w E{|lw" (zr + xx)[*}

EE 524, # 11
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Adaptive Beamforming (cont.)
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Adaptive Beamforming (cont.)

In the sequel, we consider the max SINR criterion. Rewrite the snapshot

model as
x(k) = s(k)as + x1(k) + xx(k),

where ag is the known steering vector of the desired signal. Then

o2|lwtagl? _ o2|lwtagl?
wHE {(x; + zN) (21 + n) P Jw w Rw

SINR =

where
R=E {(CIZI —+ a:N)(wI + CL‘N)H}

is the interference-plus-noise covariance matrix.

Obviously, SINR does not depend on rescaling of w, i.e. if wyp is an
optimal weight, then aw,p is such a vector too. Therefore, max SINR is
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equivalent to

H

muijn w? Rw subject to w'ag = const.
Let const = 1. Then
H(w) = wRw+ A1 -wa,)+ (1 - allw)
VwH(w) = (Rw—JXag)" =0 =
Rw = Mlas= w.p = \R 'a,.

This is a spatial version of the Wiener-Hopf equation!

From the constraint equation, we obtain

1
\ =
afR~1a,

EE 524, # 11
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and therefore

1
af R~ 1a,

R 'a, +<— MVDR beamformer.

Wopt —

Substituting w,pt into the SINR expression, we obtain

o2(a! R las)?

alR~1TRR1as

max SINR = SINRp; = = oc2a R 'a..

If there are no interference sources (only white noise with variance o2):

EE 524, # 11
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Adaptive Beamforming (cont.)

Let us study what happens with the optimal SINR if the covariance matrix
includes the signal component:

R, = E{zz"} = R+ c2asa’.

S

Using the matrix inversion lemma, we have

~1 2 Hy—1
R ‘as = (R4 o0fasag) "ag

— <R1 R asa R )as

1/02 +alf R~1la,

= 1 — a; [i”"a, R 'a,
1/o2 + alf R~1lay

— aR la..
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Optimal SINR is not affected!

However, the above result holds only if

e there is an infinite number of snapshots and

e ag is known exactly.

EE 524, # 11
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Adaptive Beamforming (cont.)

Gradient algorithm maximizing SNR (very similar to LMS):
W11 = Wi + p(as — inkaH’wk:),

where, again, we use the simple notation w; = w(k) and xp = x(k). The
vector wy, converges to wypy ~ R ag if

2
— O<u<

0 |
SHSN tr{R}

The disadvantage of the gradient algorithms is that the convergence may
be very slow, i.e. it depends on the eigenvalue spread of R.
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Example

e single signal from 65 = 0° and SNR = 0 dB,

e single interference from 6; = 30° and INR= 40 dB,

o 1 = 1/[50tx(R)], po = 1/[15tx(R)], s = 1/[5tr(R)].

EE 524, # 11
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Adaptive Beamforming (cont.)
Sample Matrix Inversion (SMI) Algorithm:

S5-1
wgsyt = R ag,

where R is the sample covariance matrix

K
E wkwk
k:

Reed-Mallet-Brennan (RMB) rule: under mild conditions, the mean losses
(relative to the optimal SINR) due to the SMI approximation of wgp; do
not exceed 3 dB if

K > 2N.

Hence, the SMI provides very fast convergence rate, in general.
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Adaptive Beamforming (cont.)

Loaded SMI: R R R
wrsmr = Rpras, Rpr = R+91,
where the optimal weight v ~ 202. LSMI allows convergence faster than

N snapshots!

LSMI convergence rule: under mild conditions, the mean losses (relative to
the optimal SINR) due to the LSMI approximation of w,,; do not exceed
few dB’s if

K >1L

where L is the number of interfering sources. Hence, the LSMI provides
faster convergence rate than SMI (usually, 2N > L)!
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Example

o N =10,

e single signal from 65 = 0° and SNR = 0 dB,

e single interference from 61 = 30° and INR= 40 dB,

e SMI vs. LSMI.

EE 524, # 11
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SMI directional pattern (signal free case), K = 20
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L SMI directional pattern (signal free case), K
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Convergence rates with signal absent and present:

12

10
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Adaptive Beamforming (cont.)

Hung-Turner (Projection) Algorithm:
wyur = (I — X(XPX)"1XH)ag,

I.e. data-orthogonal projection is used instead of inverse covariance matrix.
For Hung-Turner method, a satisfactory performance is achieved with

K > L.

Optimal value of K

Kopt = /(N + 1)L — 1.

Drawback: number of sources should be known a priori.
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Look direction mismatch (pointing error) problem:

signal direction interference
assumed ¢ J/rcal

EE 524, # 11 S 43
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This effect is sometimes referred to as the signal cancellation phenomenon.
Additional constraints are required to stabilize the mean beam response

n%lijanRw subject to C%w = f.

1. Point constraints: Matrix of constrained directions:
C =lasi,as2 - as ul,

where ag ; are all taken in the neighborhood of ag and include ag as well.
Vector of constraints:
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2. Derivative constraints: Matrix of constrained directions:

] Y
0=0

where ag ; are all taken in the neighborhood of ag and include ag as well.
Vector of constraints:

Oa(0)
00

oM=1a(0)

Tl
0=0

C =

as,

1
0
f=1
- O —
Note that
8’“a(9) k
80k =D as,
6=0g

where D is the matrix depending on 65 and on array geometry.
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Adaptive Beamforming (cont.)

Wopy = RIC(CHRIC)™f

and its SMI version:

AN

wepe = RIC(CTR™IC)71F.

e Additional constraints “protect” the directions in the neighborhood of
the assumed signal direction.

e Additional constraints require enough degrees of freedom (DOF's) —
number of sensors must be large enough.

e Gradient algorithms exist for the constraint adaptation.
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Effect of point constraints:

VYV
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Adaptive Beamforming (cont.)

Generalized Sidelobe Canceller (GSC): Let us decompose
Wopy = RTIC(CHRIC)™f

into two components, one in the constrained subspace, and one orthogonal
to It:

Wopt = gPC + P(Jj_)/wopt
b
= cctc)y"tc”"rR'C(C'RTTO) T f
Y

+PERIC(CERIC)1f.
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Generalizing this approach, we obtain the following decomposition for wqp:

wopt — wq - Bwa7
where

wy = C(CHC) ' f

is the so-called quiescent weight vector,
BY"C =0,

B is the blocking matrix, and w, is the new adaptive weight vector.

EE 524, # 11
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Generalized Sidelobe Canceller (GSC):

X

| N W V\TD}
:{>B£{>wa

e Choice of B is not unique. We can take B = Pé. However, in this case
B is not of full rank. More common choice is to assume N x (N — M)
full-rank matrix B. Then, the vectors z = B”x and w, both have
shorter length (N — M) x 1 relative to the N x 1 vectors  and wy,.

e Since the constrained directions are blocked by the matrix B, the signal
cannot be suppressed and, therefore, the weight vector w, can adapt
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freely to suppress interference by minimizing the output GSC power

Qasc = (wq— Bw,)"R(w, — Bw,)
— fwé{qu — ngRBfwa — wB" Rw,
+w! BY RBw,.

The solution is w, opy = (B RB)~!BY Rw,.

EE 524, # 11
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Adaptive Beamforming (cont.)

Generalized Sidelobe Canceller (GSC): Noting that
y(k) = wla(k), =(k) = Ba(k)
we obtain

R. = E{z(k)z(k)"}
= BYE{z(k)x(k)"}B
— BYRB,

rye = E{z(k)y (k)
= BYE{z(k)x(k)"}w,
= BHqu.
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Hence,

EE 524, # 11

_ p—1
wa,opt — Rz ryz

«—— Wiener-Hopf equation!
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How to Choose B?

Choose N — M linearly independent vectors b;:
B =[biby - by_u]

so that

b, Ley, i=12... N—M, k=12,...

where ¢ is the kth column of C.

There are many possible choices of B!

EE 524, # 11
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Example: GSC in the Particular Case of Normal
Direction (Single) Constraint and for a Particular Choice
of Blocking Matrix:

VY Y
c .. ! 920200
Navda
2 2
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In this particular example

Bh
O — 1
1
1 -1 0 0 0 |
pr_ |0 1 -1 0 0
0 0 0 1 -1
and _ 3 _ _
ZEl(k') xl(k) —LIZ‘Q(IC)
az(k) _ 372(k) 7 z(k) _ 552(]‘7) — 5173(/{)
i CCN(]C) i i CUN_l(k) —.Z‘N(k) i
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Partially Adaptive Beamforming

In many applications, number of interfering sources is much less than the
number of adaptive weights [adaptive degrees of freedom (DOF's)]. In such
cases, partially adaptive arrays can be used.

Idea: use nonadaptive preprocessor reducing the number of adaptive
channels:

y(i) = T"a(i),

where

e y has a reduced dimension M x 1 (M < N) compared with N x 1 vector
','lzl

e T'isan N x M full-rank matrix.
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Partially adaptive beamformer

1 2 3 N

ITTTTTTTTT---T
a0

b s
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Partially Adaptive Beamforming

There are two types of nonadaptive preprocessors:
e subarray preprocessot,

e beamspace preprocessor.

For arbitrary preprocessor:
R, =E{y(i)y(i)"} = T"E {(i))z(i)"}T = T" RT.
Recall the previously-used representation:

R=ASA" + 52T,

EE 524, # 11
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After the preprocessing, we have

R, = THASA"T +o°THT
= ASAT +Q

A = THA

Q = oTHT

e Preprocessing changes array manifold.

e Preprocessing may lead to colored noise.

Choosing T" with orthonormal columns, we have
THT =1,
and, therefore, the effect of colored noise may be removed.

EE 524, # 11
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Partially Adaptive Beamforming

Partially adaptive beamformer based on subarray preprocessing

TTTTTT I ITT

> > >
@p @ @
/

>
!
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Preprocessing matrix in this particular case:

, [t 11000000
TH=—10001 1100 0],
\/§_000000111_

(note that THT = I here!)
In the general case

as; O 0 |

r=| 0 %8 i
i 0 0 a’S,M_

where L = N/M is the size of each subarray, and TH#T = I holds true if
aé{ka&k — 1, k= 1,2,...,M.
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Wideband Space-Time Processing

In the wideband case, we must consider joint space-time processing:
T T
§ ©
0% D
| @ E Bam—

R

A

N

N
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Wideband Space-Time Processing (cont.)
Wideband case:

e Higher dimension of the problem (N P instead of N),

e Steering vector depends on frequency.

EE 524, # 11
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Constant Modulus Algorithm (CMA)

Application: separation of constant-modulus sources.

e Narrowband signals: the received signal is an instantaneous linear
mixture:
L — ASk.
e Objective: find inverse W, so that
H
Challenge: both A and sj are unknown!
e However, we have side knowledge: sources are phase modulated, i.e.

si(t) = exp(jgi(t)).
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Constant Modulus Algorithm (cont.)

Simple example: 2 sources, 2 antennas.

g —— Yik=S1k7
H o Y Xk ><
) ' A Yok =S2k7?
/ "

X'|=k :aﬂS1=k -\—83232=k X1,k S1=k
X2k =@2181 k +82282 k X2 k 52,k
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Let

be a beamformer. Output of beamforming:

H * % L1k
Yp = WX = W] ws) :
L2 k

Constant modulus property: |s; ;| = |s2 x| = 1 for all k.

Possible optimization problem:

min J(w) where J(w)=E][(|ys]* —1)7].

EE 524, # 11
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CMA cost function

2 -1.5 -1 -0.5 0 0.5 1 1.5

(IyVkl?—1)2 ) v

The CMA cost function as a function of y (for simplicity, y is taken to be

real here).
No unique minimum! Indeed, if yr = w”x; is CM, then another

beamformer is aw, for any scalar « that satisfies |a| = 1.
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2 (real-valued) sources, 2 antennas
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Iterative Optimization

Cost function:
Jw) =E[(Jys|* = 1%, yr = w"zs.

Stochastic gradient method: w1 = wi — p[VJ(wg)]*, where p is step
size, > 0.

Derivative: Use |yx|? = yry; = wl zaxf w.

VJ = 2E{(lyx]* = 1) - V(w" zzw)}
= 2E{(lyx]> = 1) - (zpmy w)*}
= 2E{(lyx]* — Dxiyn}
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Algorithm CMA(2,2):

Yk

WE+1

EE 524, # 11

Wy Lk

wy, — pxy(lyel* — Dy;.
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Advantages:

e The algorithm is extremely simple to implement
e Adaptive tracking of sources

e Converges to minima close to the Wiener beamformers (for each source)

Disadvantages:

e Noisy and slow
e Step size u should be small, else unstable
e Only one source is recovered (which one?)

e Possible convergence to local minimum (with finite data)
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before beamforming

after beamforming
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Other CMAs

beamformer

ol Yk ¥y §

Ny
=

= O

Xy

Alternative cost function: CMA(1,2)
J(w) = E[(Jys| — 1)*] = E[(|w" @] — 1)7].
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Corresponding CMA iteration:

Ye =

€k

Wr+1 =

Similar to LMS, with update error

Yk
by Ty,T-

EE 524, # 11

Wi +,u:1:k;67;.

Yk

Yk |

— Y. The desired signal is estimated
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Other CMAs (cont.)

e Normalized CMA (NCMA; 1 becomes scaling independent)

*
Wgy1 = Wg + L€ .

k|2

e Orthogonal CMA (OCMA): whiten using data covariance R

—1 *
Wg41 = W + ,uRk L€y .

EE 524, # 11
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e Least squares CMA (LSCMA): block update, trying to optimize

iteratively
min |37 — w? X ||?
w
where X =[x x5 --x7] and 5" is the best blind estimate at step k of
the complete source vector (at all time pointst =1,2,...,T)
~H [ Y1 Y2 yr }
s = : e, |,
Y1l |yl yr|
where
Yt = Wy, Ly, t:1,2,...,K.
and
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