Grid Operation and Coordination with Wind - 5
1.0 The UC problem (in words)

The unit commitment (UC) problem is solved over a particular time period T; it is often 24 hours. If network security constraints are included in the UC, it is generally referred to as a security-constrained unit commitment (SCUC). SCUC is used by every electricity market operator in the US to operate the day-ahead market (DAM). It is also used by generation owners to schedule their units over the next 24 hours. A simplified version of what is articulated in [
], is, in words:

1. Min Objective=UnitEnergyCost+StartupCost+DemandBidCost
Subject to:

2. Area Constraints:

a. Demand + Net Interchange

b. Spinning and Operating Reserves

3. Zonal Constraints:

a. Spinning and Operating Reserves

4. Security Constraints

5. Unit Constraints:

a. Hot, intermediate, & cold startup costs

b. Minimum and maximum generation limits
c. Reserve limits

d. Minimum up/down times

e. Hours up/down at start of study

f. Must run schedules

g. Pre-scheduled generation schedules

h. Ramp Rates

i. Maximum starts per day and per week

j. Maximum Energy per day and per study length

The essence of the UC problem is to decide, for each hour, whether each unit should be connected (up) or not (down), and if connected, at what generation level. Thus, the problem is a mixed integer program (MIP); it is integer because of the need to decide, for each hour, whether each unit is up (1) or down (0); it is mixed (it also has continuous variables) because of the need to identify the generation level PG for all units that are up. 
The UC problem is also inter-temporal, that is, each hour’s solution depends on the previous hour’s solution, and it is not possible to simply solve each hour independently. This problem attribute is caused primarily by the transition costs and times, i.e., constraint 5a - hot, Intermediate, & cold startup costs, and constraint 5d - minimum up/down times (constraints 5h - ramp rates, 5i -  maximum starts per day and per week, and 5j - maximum energy per day and per study period, also play a role). 
The fact that there is a time to transition (down to up or up to down), means that the decision on a unit’s status for this hour depends on its status in previous hours. For example, a unit is available this hour only if it was started a sufficient number of hours previous. 

The fact that there is a transition cost means that it may be better (cheaper) to utilize a more expensive unit to supply power during a given hour if its use means avoiding the start-up of another unit. Such situations can occur, for example, during short-duration load valley’s when a large, expensive unit is needed on either side of the valley because of the need to meet demand, and a smaller, cheaper unit is not used during the valley because of the transition cost.

The UC problem is the standard tool used to perform the scheduling function.

It is useful to observe that dispatching is a sub-problem to UC.

We describe in what follows UC objective function and the various constraints.
1.1 Objective function
a. UnitEnergyCost: This is the total costs of supply over T, based on the unit costs (or supply offers made), in $/MWhr.

b. StartupCost: The total cost of starting units over T, based on the startup costs.
e. DemandBidCost: The total “cost” of demand over T, based on demand bids made, in $/MWhr. Present only for markets. Revenue from demand bids are added as negative costs so that minimizing the objective maximizes the profit.
1.2 Area constraints

a. Demand + Net Interchange: The area demand plus the exports from the area (which could be negative, or imports). 
b. Spinning and Operating Reserves: Spinning reserve is the amount of generation capacity Σ(Pgmax,k-Pgen,k) in MW that is on-line and available to produce energy within 10 minutes. Operating reserve is a broader term: the amounts of generating capacity scheduled to be available for specified periods of an operating day to ensure control area security. Generally, operating reserve includes primary (which includes spinning) and secondary reserve, as shown in Fig. 1. 
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Fig. 1 [
]

1.3 Zonal constraints

Some regions within the control area, called zones, may also have spinning and operating reserve constraints, particularly if transmission interconnecting that region with the rest of the system is constrained.

1.4 Security constraints

These include constraints on branch flows under the no-contingency condition and also constraints on branch flows under a specified set of contingency conditions. The set is normally a subset of all N-1 contingencies. 

1.5 Unit constraints

a. Minimum and Maximum Generation limits: Self explanatory.
b. Reserve limits: The total spinning, primary, and/or secondary reserves must exceed some value, or some percentage of the load.
c. Minimum Up/Down times: Units that are committed must remain committed for a minimum amount of time. Likewise, units that are de-committed must remain down for a minimum amount of time. These constraints are due to the fact that thermal units can undergo only gradual temperature changes.
d. Hours up/down at start of study: The problem must begin at some initial time period, and it will necessarily be the case that all of the units will have been either up or down for some number of hours at that initial time period. These hours need to be accounted for to ensure no unit is switched in violation of its minimum up/down times constraint.
e. Must run schedules: There are some units that are required to run at certain times of the day. Such requirements are most often driven by network security issues, e.g., a unit may be required in order to supply the reactive needs of the network to avoid voltage instability in case of a contingency, but other factors can be involved, e.g., steam supply requirements of co-generation plants.
f. Pre-scheduled generation schedules: There are some units that are required to generate certain amounts at certain times of the day. The simplest example of this is nuclear plants which are usually required to generate at full load all day. Import, export, and wheeled transactions may also be modeled this way.
g. Ramp Rates: The rate at which a unit may increase or decrease generation is limited, therefore the generation level in one period is constrained to the generation level of the previous period plus the generation change achievable by the ramp rate over the amount of time in the period.
h. Hot, Intermediate, & Cold startup costs: A certain amount of energy must be used to bring a thermal plant on-line, and that amount of energy depends on the existing state of the unit. Possible states are: hot, intermediate, and cold. Although it costs less to start a hot unit, it is more expensive to maintain a unit in the hot state. Likewise, although it costs more to start a cold unit, it is less expensive to maintain a unit in the cold state. Whether a de-committed unit should be maintained in the hot, intermediate, or cold state, depends on the amount of time it will be off-line.
i. Maximum starts per day and per week: Starting a unit requires people. Depending on the number of people and the number of units at a plant, the number of times a particular unit may be started in a day, and/or in a week, is usually limited.
j. Maximum Energy per day and per study length: The amount of energy produced by a thermal plant over a day, or over a certain study time T, may be less than Pmax×T, due to limitations of other facilities in the plant besides the electric generator, e.g., the coal processing facilities. The amount of energy produced by a reservoir hydro plant over a time period may be similarly constrained due to the availability of water.
2.0 The UC problem (analytic statement)

The unit commitment problem is a mathematical program characterized by the following basic features.

· Dynamic: It obtains decisions for a sequence of time periods.

· Inter-temporal constraints: What happens in one time period affects what happens in another time period. So we may not solve each time period independent of solutions in other time periods.

· Mixed Integer: Decision variables are of two kinds:

· Integer variables: For example, we must decide whether a unit will be up (1) or down (0). This is actually a special type of integer variable in that it is binary.

· Continuous variables: For example, given a unit is up, we must decide what its generation level should be. This variable may be any number between the minimum and maximum generation levels for the unit.

There are many papers that have articulated an analytical statement of the unit commitment problem, more recent ones include [
, 
, 
, 
], but there are also more dated efforts that pose the problem well, although the solution method is not as effective as what we have today, an example is [
]. 
We provide a mathematical model of the security-constrained unit commitment problem in what follows. This model was adapted from the one given in [
, ch 1]. This model is a mixed integer linear program. 
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	min generation
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	max generation
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	max spinning reserve
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	ramp rate pos limit
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	ramp rate neg limit
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	start if off-then-on
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	shut if on-then-off
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	normal line flow limit
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	security line flow limits
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where the decision variables are:

· git is the MW produced by generator i in period t,

· rit is the MW of spinning reserves from generator i in period t,

· zit is 1 if generator i is dispatched during t, 0 otherwise, 

· yit is 1 if generator i starts at beginning of period t, 0 otherwise,

· xit is 1 if generator i shuts at beginning of period t, 0 otherwise,

Other parameters are

· Dt is the total demand in period t, 

· SDt is the spinning reserve required in period t,

· Fit is fixed cost ($/period) of operating generator i in period t, 

· Cit is prod. cost ($/MW/period) of operating gen i in period t;

· Sit is startup cost ($) of starting gen i in period t.

· MxInci is max ramprate (MW/period) for increasing gen i output

· MxDeci is max ramprate (MW/period) for decreasing gen i output

· aij is linearized coefficient relating bus i injection to line k flow

· MxFlowk is the maximum MW flow on line k
· 
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 is the maximum MW flow on line k under contingency j
The above problem statement is identical to the one given in [8] with the exception that here, we have added eqs. (11) and (12). 

(The addition of eq. (11) alone provides that this problem is a transmission-constrained unit commitment problem.

( The addition of eqs. (11) and (12) together provides that this problem is a security-constrained unit commitment problem.

One should note that our problem is entirely linear in the decision variables. Therefore this problem is a linear mixed integer program, and it can be compactly written as
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3.0 Solution method and example problem
A very good tool for solving mixed integer programs like the UC is called CPLEX. It is a commercial-grade solver for optimization problems. If you are interested in using CPLEX, I have written an introduction to it which can be accessed at the following URL:

http://home.eng.iastate.edu/~jdm/ee458/Intro_CPLEX.pdf. 

Here, I will just provide a brief example, using a 4 bus network with 3 generators and 2 loads, Fig. 2. Each generator has 3 cost levels (or ability to submit 3 offers).
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Fig. 2: One line diagram for example system

The offers, in terms of fixed costs, production costs, and corresponding min and max generation limits are as follows:
	Unit, k
	Fixed costs ($/hr)
	Startup Costs ($)
	Shutdown Costs ($)
	Production Costs ($/pu-hr)

	
	
	
	
	gk1t
	gk2t
	gk4t

	1
	50
	100
	20
	1246
	1307
	1358

	2
	50
	100
	20
	1129
	1211
	1282

	4
	50
	100
	20
	1183
	1254
	1320
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The UC problem is for a 24 hour period, with loading data given as below. Figure 2, the load curve, illustrates variation of load with time over the 24 hour period.
	Hour, t
	Load, Dt (pu)

	1
	1.50

	2
	1.40

	3
	1.30

	4
	1.40

	5
	1.70

	6
	2.00

	7
	2.40

	8
	2.80

	9
	3.20

	10
	3.30

	11
	3.30

	12
	3.20

	13
	3.20

	14
	3.30

	15
	3.35

	16
	3.40

	17
	3.30

	18
	3.30

	19
	3.20

	20
	2.80

	21
	2.30

	22
	2.00

	23
	1.70

	24
	1.60
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Fig. 3: Load curve

4.0 Example problem - solution
For this solution, we will only include startup and shutdown constraints. In order to illustrate all data entered, we will analyze only the first four hours. The CPLEX code to do this is given below.
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Result: CPLEX gives an objective function value of 7020.7 $.

CPLEX> display solution variables -

Variable Name           Solution Value

z21                           1.000000

z22                           1.000000

z23                           1.000000

z24                           1.000000

z41                           1.000000

z42                           1.000000

z43                           1.000000

z44                           1.000000

g211                          0.350000

g221                          0.600000

g411                          0.450000

g421                          0.100000

g212                          0.350000

g222                          0.600000

g412                          0.450000

g213                          0.350000

g223                          0.500000

g413                          0.450000

g214                          0.350000

g224                          0.600000

g414                          0.450000

All other variables in the range 1-66 are 0.

Note that all y- and x-variables are zero, therefore there is no starting up or shutting down.

One should check that the generation in each hour equals the demand in that hour:

g211+g221+g411+g421=0.35+0.6+0.45+0.1=1.5

g212+g222+g412=0.35+0.6+0.45=1.4

g213+g223+g413=0.35+0.5+0.45=1.3

g214+g224+g414=0.35+0.6+0.45=1.4

This very simple solution was obtained as a result of the fact that the initial solution of 

 initialu1: z11=0

 initialu2: z21=1

 initialu4: z41=1

was in fact the best one for the initial loading condition, and since the loading condition hardly changed during the first four hours, there was no reason to change any of the units.

Let’s try a different initial condition:

 initialu1: z11=1

 initialu2: z21=0

 initialu4: z41=1

Result: CPLEX gives an objective function value of 7208.9 $.

CPLEX> display solution variables -

Variable Name           Solution Value

z11                           1.000000

z22                           1.000000

z23                           1.000000

z24                           1.000000

z41                           1.000000

z42                           1.000000

z43                           1.000000

z44                           1.000000

g111                          0.500000

g121                          0.050000

g411                          0.450000

g421                          0.500000

g212                          0.350000

g222                          0.600000

g412                          0.450000

g213                          0.350000

g223                          0.500000

g413                          0.450000

g214                          0.350000

g224                          0.600000

g414                          0.450000

y22                           1.000000

x12                           1.000000

All other variables in the range 1-66 are 0.

Why was this solution more expensive? 

( Because we initialized the solution with more expensive units, to get back to the less expensive solution, notice that the program forces unit 2 to start up (y22=1) and unit 1 to shut down (x12=1) at the beginning of period 2.  Apparently, the additional cost of starting unit 2 ($100) and shutting down unit 1 ($20) was not enough to offset the savings associated with running the more efficient unit over the remaining three hours of the simulation.

Let’s test our theory by increasing the startup costs of unit 2 from $100 to $10,000. The objective function value in this case is $7281.25 (higher than the last solution). The decision variables are:

Variable Name           Solution Value

z11                           1.000000

z12                           1.000000

z13                           1.000000

z14                           1.000000

z41                           1.000000

z42                           1.000000

z43                           1.000000

z44                           1.000000

g111                          0.500000

g121                          0.050000

g411                          0.450000

g421                          0.500000

g112                          0.500000

g412                          0.450000

g422                          0.450000

g113                          0.500000

g413                          0.450000

g423                          0.350000

g114                          0.500000

g414                          0.450000

g424                          0.450000

All other variables in the range 1-66 are 0.

We observe that unit 1 was on-line the entire four hours, i.e, there was no switching, something we expected since the start-up cost of unit 2 was so very high.
5.0 Unit commitment – traditional uncertainty
We assume in this section that UC is being performed under the wind forecasting mode of operations [
], where the day-ahead decision is made regarding unit commitment accounting for wind generation as predicted by a wind forecast. 

Unit commitment has always been a problem with inherent uncertainty. There have traditionally been two forms of uncertainty.

· Generator availability: We know with certainty the generation fleet that is available right now, and we know the maintenance schedules, and so it seems that we should know the fleet that is available for the next 24 hours. However, unforeseen events can occur over the next day to cause some units to become unavailable. 

· Demand: Since the UC problem is typically solved for 24 hours in advance, the load must be forecasted, and as in any forecast, there is inherent uncertainty in that forecast. 
The first form of uncertainty, generator availability, has always been handled by incorporating reserve into the UC problem, as we have already seen. 
The second form of uncertainty, demand, is fairly predictable. We can know tomorrow’s load shape with high certainty, what is uncertain are the peaks and valleys of that load shape, as illustrated in Fig. 4. 

[image: image35]
Fig. 4
The peaks can be predicted fairly well for two reasons.

· Experience: Most control centers have been performing load forecasting for their control area for many years now, and they are very familiar with variability in how the load changes.
· Temperature: Load forecasts are heavily temperature-dependent in most systems, and forecasting temperature is something that the meteorologists have become very good at doing.
Some of the very best load forecasting tools today utilize neural networks.
Although there has been considerable effort invested in developing UC formulations that handle uncertainty, most control center applications today use a deterministic program.
5.0 Unit commitment – uncertainty from the wind

It may be that in 20 years, control center operators will gain experience in operating their systems with large wind penetrations, and meteorologists will become very good at predicting wind speeds. But maybe not. In any case, it is clear that today, most control center operators have little experience operating their systems with large wind penetrations, and meteorologists are not nearly so good at predicting the wind as they are at predicting the temperature. It is clear that high wind penetrations increase the uncertainty that UC programs must handle, the only real question is by how much. 

Therefore one very fruitful area of research is how to handle the uncertainty within a UC. The following two approaches are reasonable.

1. Decrease the uncertainty via

a. Shorter UC scheduling horizon
b. Better forecasts

2. Enhance UC to provide results that explicitly handle the uncertainty, i.e., that operate to provide best decision now, regarding future actions, given a distribution on the possibilities of the futures.
Perhaps the easiest approach is 1-a, shorter UC scheduling horizon. Reference [
] explicitly addresses this approach. The fundamental idea behind shorter UC scheduling is that the error associated with wind speed forecasting decreases with forecast horizon. That is, forecasting 6 hours ahead can be done more accurately than forecasting 24 hours ahead. 
5.0 A rolling unit commitment

We do need a 24 hour unit commitment schedule so as to have time to prepare the units for their schedules. Therefore, reference [10] proposes a rolling forecast whereby 4 successive 24-hour UC solutions are obtained within a 24 hour period, each solution for 24 hours ahead. Figure 5 [10] illustrates the difference between the standard 24 hour UC approach and the rolling UC approach with 6 hour scheduling. It should be mentioned that this part of this work was done using Plexos, a software system that we have also been using at Iowa State.
[image: image36.emf]
Fig. 5 [10]
One clear benefit of shorter UC scheduling horizon depends on the fact that the amount of reserves necessary directly depends on the net-load uncertainty. Therefore, as we decrease the forecast horizon, we decrease the net-load uncertainty, reducing some of the need for reserves. This directly saves money.

Figure 6 [10] shows the increase in reserves due to 800 MW of wind capacity as a function of forecast horizon.
[image: image37.emf]
Fig. 6 [10]

As stated in [10], 
“Reserve for each hour is calculated by multiplying the amount of wind forecasted for that hour by a number based on the standard deviation of forecast error for the relevant number of hours ahead.” 

Because the forecast error increases with time, reference [10] continues, 
“This means that the amount of reserve needed over the course of the day, if the amount of wind energy being produced is the same, will be greater for a system committing every 24 hours than one committing its units every 2 hours.”
Figure 7 [10] illustrates the effect of different using different scheduling horizons under different forecasting modes. A 75 MW load forecast error was assumed at all times, implying constant reserve for load is carried for all modes at all times.
The different forecasting modes are [10]:
1) Perfect forecasting (a): Forecasting is known to be perfect - i.e., no extra reserve is needed to maintain system reliability.

2) Perfect forecasting (b): Reserve is allocated based on the wind forecasting error. The standard deviation of error is multiplied by the amount of wind forecast to find reserve. This would correspond to a situation where the forecast is assumed to be imperfect, but turns out to be 100% accurate.

3) Imperfect forecasting (‘real case’): The forecast was generated using a random number based on the standard deviation in a particular hour of the forecast. This was then multiplied by the actual wind power to give a forecasted wind power. This ensured that the standard deviation of forecast error was lower at times closer to the forecast than at a time hours later than the forecast was made.
4) Persistence forecasting: Here, the wind power being produced for the entire forecasting period stays the same as in the hour of the forecast. This means that, for commitment every 24 hours, the wind power is forecasted as being at the same level in hour 12 or hour 20 as it is in hour 1. This approach may be used if hr 1 forecast capability is OK but later forecast capability is very bad otherwise.
5) Fuel Saver: As described in the previous notes (see GridOpsCoordWind4), the day-ahead decision is made regarding unit commitment assuming wind generation will be zero. Then, in real-time, conventional generation reduces output to compensate for the wind generation, and so fuel is saved. However, no units are de-committed. So this approach assumes that no wind forecasting is performed.

[image: image38]
Fig. 7 [10]
We identify different modes in terms of decreasing cost, as numbered in Fig. 7.
1. The most expensive approach is the case of no wind, since the system is supplying all energy needs with energy from the more costly conventional generation.

2. The second most expensive approach is when the fuel-saver approach is used, so that the system only benefits from the energy from the wind, i.e., no units are de-committed. 

3. The third most expensive approach is when using persistence forecasting, i.e. assuming the wind forecast remains the same throughout the forecasting period as in the hour of the forecast. This approach tends to be good when the time between commitments is short, i.e., 1 or 2 hours, but degrades significantly when time between commitments is long.
4. The fourth most expensive approach is when the forecast is imperfect (the “real” case) and operators know it is imperfect and therefore must carry additional reserve to provide for the possibility that the forecast has error.

5. The fifth most expensive approach is when the forecast is perfect but operators do not know it is perfect and therefore must carry additional reserve to provide for the possibility that the forecast has error.

6. The sixth most expensive approach is the Plexos model with perfect forecasting. 

7. The least expensive approach is the dispatch model with perfect forecasting. The dispatch model is the same as the Plexos model, with the exception that the dispatch model does not account for temporal constraints whereas the Plexos model does.

The main conclusion that can be drawn from the above described work is that cost decrease with forecasting accuracy and willingness to depend on that forecasting accuracy to reduce reserves. Forecasting accuracy can be increased by developing (or buying) a better forecasting tool, or by decreasing unit commitment horizon and making use of more recent information.

It is also interesting to inspect cost savings of the different approaches. These savings are given in Table 1 below, relative to the fuel-saver approach, in both Euros and in percent of cost for the fuel-saver approach. All values are given for a unit commitment horizon of 6 hours.

Table 1

	Method
	Cost,         Million Euros for 3 week period
	Savings,             Million Euros for 3 week period
	Savings, Million Euros for year

	Fuel-saver
	55.9
	0
	0

	Persistence
	55.5
	0.4
	6.9

	Imperfect, w/rsrvs
	55.3
	0.6
	10.4

	Perfect, w/rsrvs
	55.05
	0.85
	14.7

	Perfect, w/o rsrvs
	54.9
	1
	17.3


The peak load of the Irish grid is 7500 MW, and the above results are based on 20% wind installed capacity level (1500 MW). If these results scale (and there may be reason to question whether they do), then one could expect that, in the US, at approximately 1200 GW of installed capacity, with 20% (240 GW) being wind, the value of forecasting could range from $1.4 billion/year (persistence vs. fuel-saver) to  $3.6 billion/year (perfect, w/o reserves vs. fuel-saver). This assumes $1.31/euro.
6.0 Unit commitment by stochastic programming

We are aware that the UC problem is an optimization problem. In addition, as we have seen, it is an optimization problem under uncertainty, and wind has certainly increased that uncertainty. One approach developed over the last few years to solving optimization problems under uncertainty is called stochastic programming. For good, but brief overviews of Stochastic Programming, see [
] and [
]. 

What is, exactly, a stochastic program [12]? 

· A stochastic program is an optimization approach to solving decision problems under uncertainty where we make some choices for “now” (the current period) represented by w, in order to minimize our present costs.

· After making these choices, event i happens, so that we take recourse
, i.e., some action represented by x, in order to minimize our costs under occurrence of that event i, and we do this for all possible events that could occur in the next period.

· Our decision must be made a-priori, however, and so we do not know which event will take place, but we do know that each event i will have probability pi.

· Our goal, then, is to minimize the cost of the decision for “now” (the current period) plus the expected cost of the later recourse decisions (made in the next period). 
· Note that the first-period decision, w, does not depend on which second-period scenario actually occurs (but does depend on a probabilistic weighting of the various possible futures). This is called the nonanticipativity property. The future is uncertain and so today's decision cannot take advantage of knowledge of the future.
Recourse models can be extended to handle multistage problems, where a decision is made “now” (in the current period), we wait for some uncertainty to be resolved, and then we make another decision based on what happened. The objective is to minimize the expected costs of all decisions taken. This problem can be appropriately thought of as the coverage of a decision tree, as shown in Fig. 8, where each “level” of the tree corresponds to another stochastic program.

[image: image39.emf]
Fig. 8
Multistage stochastic programs have been applied to handle uncertainty in planning problems before. This is a reasonable approach; however, one should be aware that computational requirements increase with number of time periods and number of scenarios (contingencies) per time period. Reference [
] by J. Beasley provides a good, but brief overview of multistage stochastic programming. Reference [
], notes for an entire course, provides a comprehensive treatment of stochastic programming including material on multistage stochastic programming.

Reference [
] proposed application of stochastic optimization to a UC formulation for the purpose of evaluating impacts of high wind penetration levels on different types of electricity markets. The types of markets they study include day-ahead and intra-day energy markets and day-ahead and intra-day reserve markets. This paper articulates how they formulate their UC problem, using Fig. 9 as a basis for the description. 
[image: image40.emf]
Fig. 9

Reference [15] describes their method according to the following:
“The model steps forward in time using rolling planning with a 3 hour step holding the individual hours. This decision structure is illustrated in Fig. 2 showing the scenario trees for four planning periods covering half a day. For each planning period a three-stage, stochastic optimisation problem is solved having a deterministic first stage covering 3 hours, a stochastic second stage with five scenarios covering 3 hours, and a stochastic third stage with 10 scenarios covering a variable number of hours according to the rolling planning period in question. In the planning period 1 the amount of power sold or bought from the day-ahead market is determined. In the subsequent replanning periods the variables standing for the amounts of power sold or bought on the day-ahead market are fixed to the values found in planning period 1, such that the obligations on the day-ahead market are taking into account when the optimisation of the intra-day market takes place.”
Reference [
] extends this description according to the below:

"Rolling planning is shown in Fig. 1, in the case of rolling every 3 h. Starting at noon, the system is scheduled over 36 h until the end of the next day. Subsequent planning periods take into account this day-ahead schedule, which is described in (A2). Schedules are updated to take into account changes in wind, load and available units from one planning period to the next. This happens in the intra-day balancing as described in (A3), whereby units are up and down regulated in relation to the day-ahead schedule. The commitment of the units, on or off, can also be changed intra-day. When rolling forward, the state of the units at the end of the first stage of the previous optimization period are used as the starting state of the next optimization period, i.e., if rolling is done every 3 h, the state of a unit (on or off and how long it has been on or off for) at the end of hour three is used as the starting state for the next optimization. After rolling forward, the system is then planned until midnight of the following day, so that the system is optimized eight times over a 24-h period. The planning period therefore gets shorter in each planning loop until noon of the following day when the period becomes 36 h again. The forecasts in the first stage, which is 3-h long in Fig. 1, are assumed to be perfect, representing “here-and-now” decisions, as can be seen by the fact that only one scenario is forecasted. This is due to the fact that a decision needs to be made about the exact operation of units in the first stage, as it represents realized values of wind and load—i.e., the actual operation of the system. The other two stages can be optimized using a “wait-and-see” approach, where there is a chance to change the schedule for this period in later optimizations.”

Keys to this description are the following:
· The model has 3 stages: a 3-hour-ahead deterministic stage, followed by an additional 3-hour stochastic stage having five scenarios, followed by a variable-time stochastic stage having two paths for each one of the five scenarios in the second stage (creating a total of 10 scenarios). 
· Stage 1 is assumed known with perfect certainty because it is “here and now.”

· Each stochastic stage, assigned a certain probability, represents in [16], either a wind forecast or a load forecast. Thus, each end-node in the tree represents a condition characterized by a certain wind forecast and a certain load forecast.
· The initial schedule begins at noon and covers the next 36 hours until midnight of the following day.
· The optimization is rolled forward every three hours and so is repeated 8 times between current day at noon and next day at noon. Each scheduling period goes until midnight of next day and so becomes shorter each time (36, 33, 30, 27, 24, 21, 18, 15 hours). 

· The state of a unit (on or off and how long it has been on or off for) at the end of hour three is used as the starting state for the next optimization.
The results of [15] compare operating costs, on-line capacity for types of fuel, and market prices for a scenario with low wind penetration (2010) to scenarios with high wind penetration. Although such results provide insight into the impact of wind, they could also be obtained using deterministic programming. What is of more interest is an evaluation of wind in terms of what is added by the tool, stochastic programming. In other words, we want to identify the impact on the decision-making (the unit commitment) of explicit representation of uncertainty.
The authors of [16] utilize the proposed stochastic programming formulation of [15] to illuminate the differences between UC solutions with and without explicit modeling of uncertainty, and so provide opportunity to evaluate stochastic programming versus deterministic programming and consequently the impact on the decision-making of explicit representation of uncertainty. This is of much more interest to us.
In [15], three different modes of operation were analyzed: stochastic, perfect, and deterministic. The stochastic mode is as described above, with additional comment that reserves are carried to cover all scenarios.

In the perfect mode, load and wind forecasts are assumed to be known perfectly, there is only one scenario for each stage, and this is the scenario that occurs. No additional reserves are carried for load or wind uncertainty in the perfect mode. 

The deterministic mode also utilizes a single scenario for each stage, but this scenario is obtained by computing the expected value of each uncertain variable (as the sum of the products of scenario probability with scenario value). The scenario that actually occurs will be different from this expected scenario, and this difference is addressed by carrying reserves as in the stochastic mode. The deterministic mode differs from the stochastic mode in that the deterministic mode takes the decision which will optimize costs for a single path – the expected path, whereas the stochastic mode takes the decision which will optimize costs accounting for the uncertainty represented as the spread among all possible paths. This difference can perhaps be observed in a simple example. Consider the possible load forecasts for tomorrow for a certain control area:

Forecast 1: load can be 1100, 1200, or 1300 MW, with 0.33 probabilities
Forecast 2: load can be 1000, 1200, 1400, with 0.33 probabilities.

Both cases have expected loads of 1200 MW. But consider if I plan for 1200 MW, but something else happens, the additional costs compared to planning to the given value (a sort of “penalty” for being wrong) will be increase with the difference between my planning value of 1200 MW and other values, with additional costs for specific values given below.
Forecast 1: $500 if 1100 MW occurs and $500 if 1300 MW case occurs

Forecast 2: $600 if 1000 MW occurs and $2000 if 1400 MW occurs.

If I believed forecast 1, I would be satisfied to plan for the expected value of 1200 MW, since the penalty for being wrong does not weight more on one side of the expected value than another. If I believed forecast 2, I would want to plan somewhat above the expected value of 1200 MW so as to hedge against the very high penalty of planning too low.
Although two kinds of results are provided in reference [16] (comparisons between modes for frequency of rolling = 1 hour and comparisons between modes as a function of rolling frequency), we will mainly focus on the first type (second type always shows improvement for any mode with decreased rolling frequency, and we have seen that in reviewing another paper above).
Each comparison is given in terms of % increase relative to perfect mode.

Regarding Fig. 10, reference [16] states, 

“Optimizing deterministically results in increase in use of the more expensive mid-merit gas and peaking units compared to optimizing stochastically. This is expected due to the fact that deterministic optimization would produce less robust schedules, and have to call on these units more.”
[image: image41.emf]
Fig. 10:  Percentage change in production compared to perfect forecasting case for stochastic and deterministic cases (hourly rolling)
Regarding Fig. 11, reference [16] states, 
“It can be seen that including the forecast uncertainty causes all units to startup more frequently, as shown for both deterministic and stochastic cases when compared to the perfect case. It can also be seen that deterministic optimization results in increased starts compared to stochastic. This is due to the fact that less robust schedules mean more units will need to start to cater for forecast errors.”
[image: image42.emf]
Fig. 11: Percentage change in startups compared to perfect forecasting case for stochastic and deterministic cases (hourly rolling).
Regarding Fig. 12, reference [16] states:

“However, it can be seen that the perfect forecasting case performs best in meeting spinning and replacement reserve targets, followed by the stochastic solutions, with the deterministic solution performing worst, as expected.”

[image: image43.emf]
Fig. 12: Number of hrs demand & reserve requirements not met over simulated year for different optimization modes, 1-h rolling. Note replacement reserve divided by 10.
Regarding Fig. 13, it is clear that the stochastic mode outperforms the deterministic mode. This figure makes a very strong case for using stochastic optimization in unit commitment.

The decrease in performance of the stochastic mode between 1 and 3 hour rolling frequency is due to the fact that the first stage of the optimization is assumed known with perfect certainty. This stage was 3 hours for all values of rolling frequency, except when rolling frequency is below 3 hours. In this case, the time for which the first stage is know with perfect certainty, and therefore more of the total uncertainty can be accounted for. 
[image: image44.emf]
Fig. 13: Percentage change in costs compared to perfect forecasting case with hourly rolling.[image: image45.emf]
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� Recourse is the act of turning or applying to a person or thing for aid.
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