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Treatment of Uncertainty in Long-Term Planning 

1 Introduction 

The problem that the long-term planner is faced with solving is an 

inherently uncertain one because it addresses the future. In making 

use of software which implements generation expansion planning 

(GEP), transmission expansion planning (TEP), or co-optimized 

expansion planning (CEP), it is necessary to make many 

assumptions on what that future will be. Examples of attributes 

characterizing the future about which the planner must make 

assumptions include: 

• Cost of money (discount rate); 

• The rate at which technology investment cost will change 

(maturation rate), including 

o Cost of bulk storage facilities; 

o Cost of transmission; 

• Fuel costs forecast; 

• Demand forecast (including effect of electrification); 

• Plant retirement dates and salvage values; 

• Policy changes (e.g., changes in federal production tax 

credit/investment tax credit, renewable portfolio standards, CO2 

reduction requirement) 

• Capabilities of renewable (wind and solar) resources; 

• Availability of certain technologies (e.g., small modular reactors) 

 

In these notes, we describe different ways to represent uncertainty 

and different ways to model it within optimization models such as 

GEP, TEP, and CEP. 

2 Parameters vs. decision variables 

Before addressing the topic of representing uncertainty, it is useful 

to clarify, for an optimization model, the difference between a 

parameter and a decision variable, as indicated in Figure 1.
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Figure 1: Parameters and Decision Variables 
Some features of an optimization model may be represented as either a parameter or as a decision variable, and the analyst needs to 

decide which way such features should be modeled. Distributed energy resources (DER) are like this. DER includes energy efficiency, 

demand response, rooftop solar (residential, commercial, industrial), and microturbines. Each of these types of DER may be modeled 

as a parameter, with or without uncertainty, or they may be modeled as a decision variable. DER is often modeled as a parameter 

when it is considered to be outside the realm of decision and a decision variable when it can be decided. 
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3 Representing uncertainty 

One can represent uncertainty by identifying the range within which 

one may reasonably expect each attribute to lie. For example, we 

could specify the price of natural gas in one of the following ways: 

 

Time-independent:  

• Point value: For each year, it will be $4.5/MBTU; 

• Range: For each year, it lies between $3/MBTU and $6/MBTU; 

• Distribution: For each year, it is normally distributed with an 

expected value of $4.5/MBTU and a standard deviation of 

$0.5/MBTU; as shown in Figure 2 below, this means it will fall 

within the μ±3σ=4.5±1.5=(3,6) with probability 0.997, i.e., there 

is only a 0.003 probability of finding it outside the range of (3,6).  

 
Figure 2: Confidence intervals for a normally distributed variable 

 

Time-dependent:  

• Point value: The year 1 value will be $4.5/MBTU and will grow 

at 2% per year. 

• Range: The year 1 value will fall within a range of $3/MBTU to 

$6/MBTU, with the central value of $4.5/MBTU growing at 2% 

per year; the lower bound growing at 1% per year and the upper 

bound growing at 3% per year. 

• Distribution: The year 1 expected value will be $4.5/MBTU with 

a $0.5 standard deviation, the expected value will grow 2% per 

year and the standard deviation will grow 5% per year. A plot of 
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this uncertainty would appear as in Figure 3. One observes in this 

figure how (a) the expected price will increase with time, and (b) 

the uncertainty will also increase with time. 

 

 

Figure 3: Specification of uncertainty in natural gas price 
 

 

Aside: We may also apply advanced forecasting techniques to 

provide future estimates of expected value and uncertainty. Some 

forecasting methods that are commonly used for this purpose 

include regression, time series forecasting (ARIMA models and 

exponential smoothing models), or neural networks and other 

machine learning methods. These are worthy topics of study for 

uncertainty representation, but we do not have time to address them. 

4 Two classes of uncertainty 

We may group uncertainty into two different classes. 

 

• Global uncertainties are those for which different values 

produce significantly different expansion planning results. 

Examples of global uncertainties are those related to the 

implementation of emissions policies, very large changes in 

demand growth, public rejection of a certain type of resource 

(nuclear) and its consequential unavailability, or an innovation 



 5 

that results in dramatic change in a technology’s investment 

costs. A set of realizations on global uncertainties are 

appropriately thought of as a future (some literature will use the 

term scenario instead of future). In Figure 1 above, we defined a 

future as a specification of all uncertain parameters; here, we 

focus that definition to address global uncertainties only. It can be 

difficult to forecast some types of global uncertainties because (i) 

they may have occurred rarely or never, so that there is no 

historical information to be used in making statistical inferences 

about their future occurrence; or (ii) there is strong reason to 

believe that the historical information does not characterize the 

future (weather, due to climate change, may be like this). 

• Local uncertainties can be parameterized by probability 

distributions or uncertainty sets based on historical data. 

Examples of local uncertainties include small variations in near-

term load growth, investment costs, and fuel prices. 

 

Figure 4 illustrates conceptualization of a single uncertainty in terms 

of being represented globally and locally. 

 
Figure 4: Conceptualization of a single uncertainty 

characterized globally and locally 

 

Figure 5 illustrates conceptualization of multiple uncertainties in 

terms of being represented globally and locally, for a GEP. Each 
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large red arrow represents a different set of realizations on several 

global uncertainties, i.e., they are different futures. The grey cones 

represent local uncertainty within each future. The pie charts 

terminating each red arrow are generation portfolios corresponding 

to the GEP solution resulting from consideration of the given 

uncertainties. 

 

Figure 5: Conceptualization of multiple uncertainties 

characterized globally and locally 

5 Methods of handling uncertainty within optimization 

There are at least five ways of handling uncertainty within 

expansion planning optimization. 

• Scenario (or “future”) analysis 

• Monte Carlo simulation 

• Stochastic programming 

• Adaptation: core approach 

• Robust optimization 
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We will describe each of these in the following sections. 

6 Scenario (or “future”) analysis 

In the simplest of scenario analyses, each uncertain attribute may 

take on two or more point values. As we have seen previously, a 

scenario, or future, is defined as a set of realizations on each 

uncertain attribute (where we limit uncertain parameters to only the 

global ones). An example from a 2008 study done by MISO is 

illustrative1. This example was taken from [1]. Table 1 shows an 

uncertainty matrix which provides six point values (low, med/low, 

reference, med/high, and high) for each of several uncertainties. The 

uncertainties are classified into capital costs, load, fuel prices, 

environmental allowance cost, economic variables, and siting 

limitations. 

 

Table 1: Uncertainty matrix 

 

 
1 This was a part of the so-called Joint-Coordinated System Plan (JCSP) studies. Many other analyses were done for the 

JCSP studies than what are shown here, and certainly, since then, MISO has evolved this procedure in many other studies. 
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Five different scenarios were created by selecting specific values for 

the various uncertainties.  The five different scenarios were named 

Reference, DOE 20% Wind Mandate, DOE 30% Wind Mandate, 

Environmental, and Regulatory Limitation. The specific choices of 

each uncertain variable for each scenario are listed in the Futures 

matrix of Table 2 where the entries are L (low), R (reference), M 

(not sure), and H (high). 

 

Table 2: Futures (Scenario) Matrix 

 
A generation expansion plan was created, for each Eastern 

Interconnection region (see Figure 6), and for each scenario, using a 

15% planning reserve margin. 
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Figure 6: Eastern Interconnection Regions used in Study 

 

Two transmission designs were developed, one under the reference 

scenario and one under the DOE 20% wind mandate scenario. They 

are illustrated below in Figure 7 and Figure 8. 
 

 
Figure 7: Transmission design created for Reference Scenario 

 

Midwest ISO - using Ventyx, 
Velocity Suite © 2008 
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Figure 8: Transmission design created for 20% DOE scenario 

A robustness testing was performed by evaluating each of the two 

transmission designs under various scenarios. They were looking for 

the transmission plan that performs best under the various scenarios. 

 

Four scenarios were used for the robustness testing: Reference, 

Scenario 2 (20% Wind), Scenario 3 (30% wind), and Scenario 4 

(Environmental). The scenario for which the design was developed 

was not used in the robustness testing.  

 

To evaluate a design under a particular scenario, a set of 

performance measures were identified, as follows: 

• Long-term cost 

• Short-term cost 

• Benefit/Cost ratio 

• Reliability 

• Environmental Impacts (carbon emissions) 

• Land use criteria 
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• Local economic impacts 

• National security criteria 

• Others 

Each performance measure was scored on a basis of 1-10 (with the 

higher score being better) and then a total score was computed as 

the sum of individual scores. Figure 9 shows the result for the 

transmission design performed under the reference scenario. Figure 

10 shows the result for the transmission design performed under 

scenario 2. The results indicate that the scenario designed under the 

reference scenario is more robust to the different futures. 

 

MISO has certainly evolved the approach used in this 2008 study, 

but the basic approach of identifying futures, each as a particular 

selection of global uncertain parameters, is still a foundational part 

of their MTEP (and LRTP) procedure. We return to this approach in 

Section 9 where we will compare a more recent MISO-MTEP 

scenario analysis approach to a developed optimization method. 

 
Figure 9: Scoring for Transmission Design Performed Under 

Reference Scenario 
 

The underlying 

objective is to find 

a plan that 

performs robustly 

in the various 

possible futures 

that we think are 

credible.  

The method of 

doing so here is to 

(i) design a plan in 

one future; (ii) test 

its performance 

under the other 

futures; (iii) choose 

the one that tests 

the best. 
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Figure 10: Scoring for Transmission Design Performed Under 

Scenario 2 

7 Monte Carlo Simulation  

One method of modeling parameter uncertainty is to represent each 

uncertain parameter x1, x2,… with its numerical distribution. Then 

repeatedly draw values from each distribution, and for each draw, 

make the desired computation using those values. If the parameter 

values are drawn as a function of their probabilities, as indicated by 

the distribution, then the computed reliability indices will also form 

a distribution, from which we may compute their statistics, e.g., 

mean and variance. The process is illustrated in Figure 11, where the 

loop must be implemented many times before the output converges 

to a steady-state distribution. 

 
Figure 11: Monte Carlo Simulation 
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The draws (left-hand box in Figure 11) can be made by discretizing 

the probability density function (PDF) of each uncertain parameter, 

with each interval of each PDF assigned to an interval on [0,1] in 

proportion to its probability (area under the PDF curve for the 

discrete interval). Then a random draw on [0,1], which is then 

converted to the uncertain parameter value through the assignment, 

reflects the desired PDF of the uncertain parameter. Figure 12 

illustrates the process, where the uncertain parameter is load, 

assumed to be normally distributed about an expected value. 

 
0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 

x1→ 

fX1(x1) 

 

Figure 12: Drawing Parameter Values According to a PDF 

This process is called Monte Carlo simulation (MCS) and is almost 

always an available option for making complex computations 

involving uncertain parameters. An advantage to MCS is that it is 

conceptually simple to implement.  

A disadvantage is that it can be computationally intensive if  

• the function (second box in Figure 11) is computationally 

intensive, because the function must be executed a large number 

of times to establish enough data to converge to a statistically 

valid output sample.  

• the number of uncertain parameters is large;  

It can be especially computationally intensive if both are true, i.e., if 

the function is computationally intensive and there are a large 

number of uncertain parameters. 
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A particularly useful approach is called “Guided MCS.” There is a 

rich literature associated with application of Guided MCS to the 

development of operating rules, i.e., the rules associated with 

security-economy decision-making in real-time operations; a 

representative sample of this literature is [2, 3, 4, 5, 6]. This 

application is illustrated in Figure 13. 

 
Figure 13: Guided Monte Carlo Simulation 

This particular application of Guided MCS for developing operating 

rules is not an expansion planning application. It is presented here 

because it is a method of treating uncertainty that could be applied 

to expansion planning if there is information about the investment 

solution that could be used to weight the uncertainty space. 

 

As observed in Figure 13, there are two main steps to Guided MCS: 

(A) Database Generation and (B) Statistical analysis. These steps 

are further broken down into sub-steps as indicated below. 

1. Database Generation 

1. Guided MCS 

2. Optimal power flow 

3. Contingency analysis 

2. Statistical analysis 

4. Compute reliability indices (LOLE, LOLP, risk, …) 
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5. Perform statistical analysis on output data to develop the 

operating rules. 

Our interest is the use of step 1 to “guide” the MCS; the implication 

here is that we will use insight to focus simulations on the part of 

the decision space of most interest. In the case of generating 

operating rules, this part of the decision space is the boundary 

(based on reliability criteria) between acceptable and unacceptable 

operating conditions. This is illustrated in Figure 14. 

 

Figure 14: Illustration of boundary between acceptable and 

unacceptable conditions 
 

The “guiding” part of the MCS is also referred to in the literature as 

importance sampling. The idea in importance sampling is that the 

selection of operating points is done based on a revised distribution, 

where the revision is made so as to bias the selection towards the 

desired conditions. This idea is illustrated in Figure 15 below. 
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Figure 15: Guided MCS (importance sampling) 

This could be applied to expansion planning by biasing the selection 

of uncertainty realizations (more general term than “conditions”) to 

focus more heavily on those realizations that motivate investments. 

8 Stochastic Programming -  

These notes are adapted from notes developed by J. Beasley of 

Brunel University, West London [7].  

 

Stochastic programming can be separated into two distinct classes of 

problems: those with probabilistic constraints and problems with 

recourse.  

8.1 Chance-constrained programming 

Problems with probabilistic constraints are those that are posed with 

constraints that must be met with a certain probability. An example 

is provided below. 

 

Original distribution fX(x) and 

region S of desired bias 
Revised distribution fnewX(x) 

showing bias in region S 

1 1

2 2

( ) for 
( )

( ) for 

X

X

X

p f x x S
fnew x

p f x x S


= 



where p1+p2=1. 

For example, if p1=0.75, then 75% of the points are from S. 
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 

1 2

2

1 1 2 2

max  ( ) 3

s.t.   16

Pr 4 

= +

+ =

+  

1

f x x x

x x

a x a x
 

where a1 and a2 are uncertain and described by distributions; 

a1x1+a2x2 is some condition of interest; and γ is a probability level 

chosen by the decision-maker to be acceptable to the particular 

situation to which the problem applies.  

 

This problem containing probabilistic constraints has been described 

as a chance-constrained optimization (CCO) problem, and its 

solution is referred to as chance-constrained programming; there is a 

rich literature related to it. Interestingly, up until 2012 there were 

only a few CCO applications to expansion planning in the literature, 

including a 2012 paper [8], but one of the best was a 2009 paper by 

Kit Po Wong’s group [9] (Dr. Wong passed away in 2018). One can 

enter titles of these papers into scholar.google.com to identify 

related papers published since then. 

 

One solves this problem by choosing values of x1 and x2 such that 

the objective function is maximized, the deterministic constraint is 

satisfied, and the probability that the inequality is satisfied is greater 

than γ. A conceptual approach for solving this problem is as 

follows: 

1. Identify the {x1, x2} space that satisfies the equality constraint; 

call this space S1. 

2. Identify the {x1, x2} space that satisfies the probability constraint; 

call this space S2. 

3. The solution is {x1,x2}* contained in S1∩S2 that maximizes f(x). 

 

Most solution approaches involve transforming the chance 

constraints into deterministic ones and then applying an appropriate 

solver accounting for structure and convexity of the problem. 
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8.2 Recourse problems 

Recourse problems are so-called because they enable recourse 

following a decision. What is recourse? 

 

An internet definition indicates it is  

“the act of resorting to a person, course of action, etc., in 

difficulty or danger.”  

 

A less formal equivalent of this is that recourse is an  

“act” that you take, once you have made some decision that 

gets you in trouble. 

 

There are two “steps” here: a decision and then a recourse action. 

This very well characterizes recourse-oriented stochastic programs, 

or recourse problems. Over the past few years, reference to a 

“stochastic program” without further specification usually implies a 

recourse problem. 

 

We adapt two examples from Beasley [7].  

8.2.1 Example 1: Single stage SP recourse problem 

We desire to make a decision now (period t=1) about the amount of 

capacity we need in year 5 (period t=2). 

 

We assume that this capacity is going to cost $2000/kW.  

 

We assume that the growth in peak load (including needed 

reserves), which drives the need for this capacity, is stochastic. We 

adopt a simple representation of the demand uncertainty by 

assuming the increase in peak load will be either  

• Low: 500 MW with probability 0.6 or  

• High: 700 MW with probability 0.4.  

We have to make a decision now (in per t=1) on how much capacity 

to build because it will take us 5 yrs to build the new capacity. Thus, 

we must decide before the demand is actually known. 
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We may represent this situation as a tree-like structure as indicated 

in Figure 16. 

 
Figure 16: Illustration of decision problem 

 

It is clear we will build no less than 500MW; no more than 700MW. 

 

But do we build 500MW? 550MW? 600MW? 650MW? 700MW? 

 

Let’s consider that we build 500MW at t=1. This decision will be a 

good one if the t=2 demand for capacity is indeed 500MW.  

However, if we build 500MW at t=1 but the t=2 demand for 

capacity is 700MW, then we will have to take recourse and add 

200MW at time 2 in order to meet that demand. For example, we 

can purchase (at a cost of $3000/kw) 200MW of capacity from our 

capacity-rich neighbor, or we can pay some large loads to shut down 

during peak conditions.  
 

We will assume in this simple model that we can buy capacity at t=2 

but we cannot sell capacity at t=2. This assumption is to keep things 

simple; we could easily relieve this assumption. 
 

We observe that, in this model: 

• We decide to build at t=1 

• We observe the realization of the uncertainties at t=2 

• We employ recourse, a further decision, depending upon the 

realization observed. 

Future s=1 

500MW, 

prob=0.6 

Future s=2, 

700MW, 

prob=0.4 

t=1 

t=2 
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Let’s set up an analytic model to reflect this situation. To do so, we 

will refer to the two different realizations of the future demand for 

capacity (i.e., 500 or 700 MW) as “futures” or “scenarios.” 

 

Define  

• t,s as denoting the time period and the future; 

• x1 is the amount of capacity we decide to build at period t=1. 

We might call these the “build” variables. 

• Cs is the required capacity corresponding to future s (assume 

the number of futures is S, i.e., s=1,2,…,S). 

• y2,s is the amount of capacity we will need to purchase at t=2 

when the value of the demand is realized. We might call these 

the “recourse” variables. 

We can write a constraint to ensure that the capacity requirement is 

always met: 

1 2      1,2,...s sx y C s S+  =  

Observe that the amount of capacity we have in period t=2 may 

exceed the requirement. That is, we are not requiring 

1 2      1,2,...s sx y C s S+ = =  

because the equality sign would require either that we allow 

capacity sales (enabling y2s<0), or our solution would always be 

x1=500MW since otherwise, it would be impossible to satisfy the 

equality if we overbuild (i.e., choosing to build x1 and then learning 

in period t=2 that the required capacity is less than x1). 

 

We desire our objective to minimize total expected cost, given by 

6 6

1 2

1

2 10 Pr 3 10
S

s s

s

x y
=

 +    

We have already argued that y2,s<0 is not allowed. We will also 

impose the same for x1, i.e., x1<0 is not allowed, meaning we cannot 

elect to retire capacity in period t=1 (again, this is for simplicity and 

could be lifted if desired).  
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We can now write down an optimization problem which achieves 

our objective, as follows: 

6 6

1 2

1

1 2

1

2

min   2 10 Pr 3 10

subject to

1,...,

0

0    1,...,

S

s s

s

s s

s

x y

x y C s S

x

y s S

=

 +  

+  =



 =



 

What will solving this optimization problem give us? 

• A value for x1, which is the amount of capacity we should 

decide to build now. 

• Values for y2s, s=1,…,S; this provides us with the optimal 

recourse decisions for all possible futures given that we choose 

to build x1 now. Only one of these values will be relevant once 

the actual capacity requirement is known; the other values will 

be irrelevant.  

It is important to observe here that the uncertainty is characterized 

using a discrete distribution (i.e., a probability mass function) 

instead of a continuous distribution (i.e., a probability density 

function). This is typical; if one desires to make use of continuous 

distributions, the computations become more intensive. 

 

Five comments about terminology: 

• Both sets of variables x1 and y2s are decision variables in the sense 

used within the optimization literature. 

• The variable x1, previously referred to as “build” variables, is also 

referred to as a “here and now” decision variable. 

• The variables y2s, previously referred to as “recourse variables, are 

also referred to as “wait and see” decision variables. 

• We refer to the problem presented here as a single-stage problem 

because there is only one set of variables x1 corresponding to a 

decision under uncertainty (the variables y2s correspond to decisions 
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made only after the uncertainties of the problem are revealed and so 

do not correspond to decisions made under uncertainty). 

• The SP recourse problem may also occur in a multistage form, which 

we address next. 

8.2.2 Example 2: Two-stage SP recourse problem 

Let’s now consider that we have a third period t=3, in addition to 

our first two periods t=1,2. Here, period t=1 is “now,” period t=2 is 

“year 5,” and period t=3 is “year 10.” We will retain all information 

used in Example 1 above, and to it we add information for period 

t=3. The problem is illustrated in Figure 17. Observe that t=2 

probabilities are non-conditional, whereas the t=3 probabilities are 

conditional (they are conditional on being in the previous node).  

 

 
Figure 17: Illustration of decision problem 

 

Here, we initially make a decision in period t=1 of how much 

capacity to build in period t=2, where we know the capacity 

requirement will either be 500MW (prob=0.6) or 700MW 

(prob=0.2). Once the uncertainty in period t=2 is revealed, we may 

make a recourse decision to purchase additional capacity in order to 

Future s=1 

600MW, 

Cdtprob=0.3 

700MW, 

prob=0.4 

t=1 

t=2 

500MW, 

prob=0.6 

Future s=2, 

700MW, 

Cdtprob=0.7 

Future s=4, 

800MW, 

Cdtprob=0.8 

Future s=3, 

900MW, 

Cdtprob=0.2 

t=3 
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meet the capacity requirement in period t=2. All of this seems 

similar to the situation we had in Example 1.  

 

But now, at period t=2, we have another decision to make, which is 

how much capacity to build in period t=3. This is a decision under 

uncertainty; once made, uncertainty in period t=3 is revealed, and 

we may make a recourse decision to purchase additional capacity. 

 

To summarize then, as we move left to right across the tree of Fig. 

11, we encounter the following decision problems: 

• In the t=1 period, we decide how much capacity to build for the 

t=2 period. This is x1, as in Example 1. 

• In the t=2 period, the t=2 uncertainty is revealed. 

• In the t=2 period, we make the recourse decision of how much 

capacity to purchase in order to satisfy capacity requirements of 

period t=2. These are the y2,s variables, as in Example 1. However, 

these variables may change, depending on the ultimate future we 

encounter, and there are four such futures. Therefore, we have y2,1, 

y2,2, y2,3, y2,4. Note carefully! By defining these variables across all 

four futures, we are recognizing that the best recourse decision at 

the t=2 period may differ depending on what happens during the 

t=3 period. But can we use t=3 information in our decisions at t=2? 

Can we anticipate the future and use that future information? 

• In the t=2 period, we decide how much capacity to build for the 

t=3 period. This would be x2, but there are four possible futures for 

t=2, s=1, 2, 3, 4. Therefore we have x2,1, x2,2, x2,3, x2,4. Note 

carefully! By defining these variables across all 4 futures, we are 

recognizing that the best decision at the t=2 period may differ 

depending on what happens during the t=3 period. But can we use 

t=3 information in our decisions at t=2? Can we anticipate the 

future and use that future information? 

• In the t=3 period, the t=3 uncertainty is revealed. 

• In the t=3 period, we make recourse decision of how much capacity 

to purchase to satisfy capacity requirements of period t=3. These 

are the y3,s variables; we will have 4 of them, i.e., y3,1, y3,2, y3,3, y3,4. 
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We assume the cost to build in period t=1 is the same as the cost to 

build in period t=2. We also assume the cost to buy capacity in 

period t=2 is the same as the cost to buy capacity in period t=3. 

 

We first consider period t=2, requiring that what we build in period 

t=1 plus capacity we buy via recourse during period t=2 must equal 

or exceed the required capacity in period t=2, i.e.,  

1 2      1,2,...s sx y C s S+  =  

These constraints will be: 

1 2

1 2

500     1,2

700     3,4

s

s

x y s

x y s

+  =

+  =  

At the t=2 period, we may have excess capacity given by 

1 2

1 2

500     1,2

700     3,4

s

s

x y s

x y s

+ − =

+ − =  

And then at the t=2 period, we will make a decision to build 

additional capacity, and then at the t=3 period, we will learn the 

capacity requirement and subsequently take a recourse decision to 

purchase additional capacity. Thus, we will require that: 
Excess Capacity+Capacity built+Capacity Purchased>=CapRequired 

Writing in terms of our defined nomenclature, we have 

1 2 2 3

1 2 2 3

1 2 2 3

1 2 2 3

500 +y 600     1

500 +y 700     2

700 +y 900     3

700 +y 800     4

s s s

s s s

s s s

s s s

x y x s

x y x s

x y x s

x y x s

+ − +  =

+ − +  =

+ − +  =

+ − +  =

 

We might think we are done with constraints; however, we need to 

reconsider our build/recourse variables at the t=2 period; these are: 

build variables:   x2,1, x2,2, x2,3, x2,4 

recourse variables:  y2,1, y2,2, y2,3, y2,4 

Here, the first subscript is the time; the second subscript is the 

future. There are 3 ways to think about these variables, as follows: 

These equations (and original 

Beasley reference) imply the 

t=3 capacity values represent a 

growth from t=2 capacity 

values. To interpret all capacity 

values as peak values, then we 

should remove the left-hand-

side constants (500, 700) from 

these equations. 
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1. When you can know: When we are at period t=2, how will we 

know what is going to happen at period t=3? Answer: we will not 

know! Therefore, since we cannot know the future: 
• we can only distinguish between variables if their past is different;  

• we cannot distinguish between variables that have a different future 

but a common past!  

2. Implication of same information-histories: Futures that share the 

same info-history until a particular time should also make the 

same decisions up to that particular time; 

3. How many decisions you can make: A decision maker at t=2 can 

only make a single decision, s\he cannot make two separate 

decisions at t=2 depending on which t=3 future occurs.  

 

This means that period t=2 variables originating from the 500MW 

node must be equal, i.e.,  

x2,1=x2,2 

y2,1=y2,2 

and t=2 variables originating from the 700MW node must be equal, i.e., 

x2,3=x2,4 

y2,3=y2,4 

These are called the non-anticipativity constraints (NACs), 

implying we cannot anticipate the future. This further implies that 

futures with a common history must have the same set of decisions. 

These constraints result from the fact that the decision maker does 

not know, when s/he is in the initial time period, which scenario will 

occur, and so in that time period, investments are constrained to be 

the same across all s. This means the decision-maker cannot 

optimize pre-scenario decisions based on information about 

scenarios that have not yet occurred. Reference [10], a tutorial, 

provides the following additional perspective concerning NACs: 
“Depending on the manner in which the problem is formulated, it may 

be necessary to include specific conditions to ensure that the decision 

sequence honors the information structure associated with the scenario 

tree. These conditions are known as the nonanticipativity constraints, 

and impose the condition that scenarios that share the same history (of 

information) until a particular decision epoch should also make the 

Why not define a 

single variable 

for each pair to 

start with? One 

answer is to 

clearly retain the 

expression of the 

nonanticipativity 

concept in the 

problem 

formulation, to 

remind us all of 

its necessity. 

Another answer 

is that stochastic 

programming 

problems are 

very “L-shaped,” 

and as a result 

amendable to 

solution by 

decomposition 

methods where 

the nonanticipa-

tivity constraints 

are relaxed in the 

subproblem. 

Epoch – “the 

beginning of a 

distinctive 

period in the 

history of 

someone or 

something.” (def: 

Oxford Languages). 

In this case, it 

means “node” in 

the decision tree. 

Note in the tutorial 

quote, the 

qualifying 
statement “to 

ensure the decision 

sequence honors 
the information 

structure 

associated with the 
scenario tree” 

(italics added). It 

seems this author 
sees the motivation 

for NACs as a 

need to remain true 
to an “info-

structure.” What is 

this info- 
structure? It 

appears to be that 

info comes at a 

certain time. And 

to satisfy “the 

decision sequence 
honors” this info -

structure, then 
decisions cannot 

use info that comes 

after the time at 
which the decision 

is taken.  

As far as the optimization problem is concerned, NACs are simply additional mathematical constraints. The problem is solvable 

without them, i.e., if you solve the problem without them, you will get a solution in terms of what & when to build (build 

variables) and what & when to buy (recourse variables). However, such a solution will give, for each particular time, build & 

buy instructions for each future emanating from that particular time. In reality, only one such set of instructions may be 

followed. Thus, such a solution is not implementable. Thus, per the quote, implementability & nonanticipativity are equivalent.  

https://www.google.com/search?q=epoch+definition&sca_esv=10624941311519dc&sca_upv=1&source=hp&ei=b6QuZpC3M4m_0PEP-_6I8Ac&iflsig=ANes7DEAAAAAZi6yf28niWkimqRbstXdOu3fr4o0IdRl&ved=0ahUKEwjQqu6k0-WFAxWJHzQIHXs_An4Q4dUDCA8&uact=5&oq=epoch+definition&gs_lp=Egdnd3Mtd2l6IhBlcG9jaCBkZWZpbml0aW9uMg0QABiABBixAxhGGPkBMgUQABiABDIFEAAYgAQyBRAAGIAEMgUQABiABDIFEAAYgAQyBRAAGIAEMgUQABiABDIFEAAYgAQyBRAAGIAESM8cUOsHWKsbcAB4AJABAJgBvQGgAZYKqgEEMTUuMrgBA8gBAPgBAZgCEaAC9AqoAgrCAhAQABgDGOUCGOoCGIwDGI8BwgIQEC4YAxjlAhjqAhiMAxiPAcICEhAAGAMY5QIY6gIYChiMAxiPAcICERAuGIAEGLEDGNEDGIMBGMcBwgILEAAYgAQYsQMYgwHCAg4QLhiABBixAxiDARiKBcICDhAuGIAEGLEDGNEDGMcBwgILEC4YgAQY0QMYxwHCAgsQLhiABBixAxiDAcICCBAAGIAEGLEDwgIIEC4YgAQYsQPCAg4QABiABBixAxiDARiKBZgDyAGSBwYxNS4xLjGgB83AAQ&sclient=gws-wiz
https://www.google.com/search?q=epoch+definition&sca_esv=10624941311519dc&sca_upv=1&source=hp&ei=b6QuZpC3M4m_0PEP-_6I8Ac&iflsig=ANes7DEAAAAAZi6yf28niWkimqRbstXdOu3fr4o0IdRl&ved=0ahUKEwjQqu6k0-WFAxWJHzQIHXs_An4Q4dUDCA8&uact=5&oq=epoch+definition&gs_lp=Egdnd3Mtd2l6IhBlcG9jaCBkZWZpbml0aW9uMg0QABiABBixAxhGGPkBMgUQABiABDIFEAAYgAQyBRAAGIAEMgUQABiABDIFEAAYgAQyBRAAGIAEMgUQABiABDIFEAAYgAQyBRAAGIAESM8cUOsHWKsbcAB4AJABAJgBvQGgAZYKqgEEMTUuMrgBA8gBAPgBAZgCEaAC9AqoAgrCAhAQABgDGOUCGOoCGIwDGI8BwgIQEC4YAxjlAhjqAhiMAxiPAcICEhAAGAMY5QIY6gIYChiMAxiPAcICERAuGIAEGLEDGNEDGIMBGMcBwgILEAAYgAQYsQMYgwHCAg4QLhiABBixAxiDARiKBcICDhAuGIAEGLEDGNEDGMcBwgILEC4YgAQY0QMYxwHCAgsQLhiABBixAxiDAcICCBAAGIAEGLEDwgIIEC4YgAQYsQPCAg4QABiABBixAxiDARiKBZgDyAGSBwYxNS4xLjGgB83AAQ&sclient=gws-wiz
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same decisions. In reality, the nonanticipativity constraints ensure that 

the solutions obtained are implementable, i.e., that actions that must be 

taken at a specific point in time depend only on information that is 

available at that time. For that reason, the terms nonanticipativity and 

implementability are sometimes used interchangeably. These 

nonanticipativity constraints, which are derived from the scenario tree, 

are a distinguishing characteristic of stochastic programs—solution 

methods are typically designed to exploit their structure.” 

 

We now formulate our objective function. We have just one cost 

incurred with certainty, namely that associated with x1. All other 

costs are probabilistic. Let’s identify the probability of each future 

and the cost of each future, using total probabilities for each future. 

We also repeat our tree of Figure 17 below, for convenience. 
Future Total prob of each 

future 

Cost 

1 0.6×0.3=0.18 6 6 6

21 21 312 10 3 10 3 10x y y +  +   

2 0.6×0.7=0.42 6 6 6

22 22 322 10 3 10 3 10x y y +  +   

3 0.4×0.2=0.08 6 6 6

23 23 332 10 3 10 3 10x y y +  +   

4 0.4×0.8=0.32 6 6 6

24 24 342 10 3 10 3 10x y y +  +   

 
Figure 17: Illustration of decision problem 

 

Future s=1 

600MW, 

Cdtprob=0.3 

700MW, 

prob=0.4 

t=1 

t=2 

500MW, 

prob=0.6 
Future s=2, 

700MW, 

Cdtprob=0.7 

Future s=4, 

800MW, 

Cdtprob=0.8 

Future s=3, 

900MW, 

Cdtprob=0.2 

t=3 
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We can now write down our optimization problem. The objective is 

the cost of each future weighted by its probability, and we want to 

minimize it. The constraints are the need to satisfy the capacity 

requirements at the t=2 and t=3 periods, together with the non-

anticipativity constraints. Thus, 
6

1

6 6 6

21 21 31

6 6 6

22 22 32

6 6 6

23 23 33

6 6 6

24 24 34

min    2 10

0.18 2 10 3 10 3 10

0.42 2 10 3 10 3 10

0.08 2 10 3 10 3 10

0.32 2 10 3 10 3 10

x

x y y

x y y

x y y

x y y



 +  +  +  

 +  +  +  

 +  +  +  

 +  +  +  

 

Subject to 

1 2

1 2

500     1,2

700     3,4

s

s

x y s

x y s

+  =

+  =  

1 2 2 3

1 2 2 3

1 2 2 3

1 2 2 3

500 +y 600     1

500 +y 700     2

700 +y 900     3

700 +y 800     4

s s s

s s s

s s s

s s s

x y x s

x y x s

x y x s

x y x s

+ − +  =

+ − +  =

+ − +  =

+ − +  =

 

x2,1=x2,2 

y2,1=y2,2 

x2,3=x2,4 

y2,3=y2,4 

and all variables ≥0 

One good question is this: why not also define separate variables for 

the t=1 node? Indeed, we could do so if we applied NACs for those 

variables as well. Below is the (equivalent) formulation that results. 

Whether we want to do this depends on whether doing so offers 

computational benefits. 

These equations (and original 

Beasley reference) imply the 

t=3 capacity values represent a 

growth from t=2 capacity 

values. To interpret all capacity 

values as peak values, then we 

should remove the left-hand-

side constants (500, 700) from 

these equations. 
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6 6 6 6

11 21 21 31

6 6 6 6

12 22 22 32

6 6 6 6

13 23 23 33

6 6 6 6

14 24 24 34

min    

0.18 2 10 2 10 3 10 3 10

0.42 2 10 2 10 3 10 3 10

0.08 2 10 2 10 3 10 3 10

0.32 2 10 2 10 3 10 3 10

  +  +  +  

 +  +  +  +  

 +  +  +  +  

 +  +  +  +  

x x y y

x x y y

x x y y

x x y y

 

Subject to 

1 2

1 2

500     1,2

700     3,4

+  =

+  =

s s

s s

x y s

x y s  

1 2 2 3

1 2 2 3

1 2 2 3

1 2 2 3

500 +y 600     1

500 +y 700     2

700 +y 900     3

700 +y 800     4

+ − +  =

+ − +  =

+ − +  =

+ − +  =

s s s s

s s s s

s s s s

s s s s

x y x s

x y x s

x y x s

x y x s

 

x11= x12= x13= x14 

x2,1=x2,2 

y2,1=y2,2 

x2,3=x2,4 

y2,3=y2,4 

and all variables ≥0 

 

 

 

Stochastic programming of this sort has been applied to electric 

power system investment planning. There are many papers on this 

topic; some good work was done by the group led by Ben Hobbs of 

Johns Hopkins University [11, 12, 13, 14]. We introduce one such 

formulation in the next section. 

These equations (and original 

Beasley reference) imply the 

t=3 capacity values represent a 

growth from t=2 capacity 

values. To interpret all 

capacity values as peak 

values, then we should remove 

the left-hand-side constants 

(500, 700) from these 

equations. 
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9 Traditional stochastic programming formulation 

This formulation is adapted from [15]2. We define time period 

t=1,...T and s is a scenario or future in a set of scenarios S.  

The following are decision vectors: 

1

1

,

:   Incremental cost investments in period 1 (MW) for "core"

   :   Operational costs in period 1 ($ present worth)

:    Incremental scenario-specific capacity investment in period , scenario 



 t s

C

O

A t s

,

,

 (MW)

   :   Cumulative capacity investment in period , scenario s (MW)

   :   Operational costs in period , scenario  ($ present worth)

t s

t s

A t

O t s

The following are parameters: 

,

    :   Investment cost in period  ($/MW) for "core"

   :   Investment cost in period  ($/MW) for scenario 

     :   Probability of scenario 

t

t s

s

I t

I t s

P s

 

Then we write the traditional stochastic programming problem as: 
( )1 1 1 , , ,

2

2, 2, 1

3, 2, 1

4, 2, 1

min

subject to:

1) Non-anticipativity constraints (build decisions same for all futures s): 

  2

                      2

  2



−

−

−

 + +  +

 =   

 =    

 =   

 s t s t s t s

t s

s s

s s

s s

I C O P I A O

A A s

A A s

A A s

1, 1 1

At each time 2,3,4, build decisions are 
 

same for all futures .                                 

2) Accumulation (memory) constraint:

                                     Enables C  







 =    s

t =  

s

A C s

, 1, ,

)

t

 

o appear in me

3) Operational constraint

 

s for each future  (not sh

mory constraint

                     ,

own

−= +  t s t s t s

s

A A A t s

(TSP) 

Problem (TSP) was simplified by eliminating technology and 

locational indices from the nomenclature and representing both 

transmission and generation within the same capacity vector. This 

problem is illustrated in Figure 18, where the three solid axes 

represent time (horizontal), accumulated generation capacity 

(vertical), and accumulated transmission investment. 

 
2 In the reference, a delay d between decision and operation was included; here, to avoid unnecessary 

complications to an already complicated topic, we have dropped the modeling of delay. 
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Figure 18: Illustrating traditional stochastic program (TSP) 

 

In Figure 18, one observes the first dark red line, which represents 

the core investment ΔC1 in the first time period from which extend 

four additional smaller arrows each of which represent the recourse 

investments ΔA2,1, ΔA2,2,  ΔA2,3,  ΔA2,4,  and  ΔA3,1, ΔA3,2,  ΔA3,3,  

ΔA3,4,  made  in times t=2 and t=3, respectively, for the four 

scenarios. Although this formulation has four time periods, it has 

only two decision stages, one at t=1 and another at t=2. The capacity 

additions corresponding to the time t=3 period, ΔA3,1, ΔA3,2, ΔA3,3, 

ΔA3,4, do not represent an additional decision stage, because the 

decision on those t=3 period additions are made at the t=2 period.  

 

We will keep this illustration of TSP in mind, as we refer back to it 

when describing the adaptation approach Section 11. 

 

10 Adaptive Coordinated Expansion Planning (ACEP) 

In this section, we explain ACEP, starting from the concept 

illustrated in Figure 19. 
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Figure 19: Illustration of adaptation for a single future k 

 

There are five things in Figure 19 that need explanation: 
• Plan A: This is any particular plan for the system and time frame of 

interest; it may have been designed under a certain, specific future; it may 

have been designed using TSP or some other design paradigm. Exactly 

how Plan A was designed is not important to us, with one caveat… Plan A 

was not designed under future k.  

• Future k: Future k represents to Plan A an alternative future, one for which 

Plan A was not explicitly designed.  

• Core investments x: This is the vector of investments (capacities of each 

generation and transmission investment) identified for Plan A. 

• Adaptation investments Δx: This is a vector of changes to Plan A in-

vestments necessary to make the system under Plan A feasible in future k. 

• Future k investments x+Δx:  This is the vector of investments necessary to 

make the system under Plan A feasible in future k. 

 

The adaptation cost of Plan A to future k is the minimum cost to 

move Plan A to a feasible design in future k. It measures the 

additional cost to our Plan A cost if scenario k happens.  

 

Now assume that we have several futures k. Figure 20(a) shows the 

situation where we have a Plan A (and investments x) and four 

possible futures and four adaptations Δx1, Δx2, Δx3, and Δx4.  
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(a)                                                    (b) 

Figure 20: Illustration of 2 adaptation strategies for four futures 

k=1,2,3,4 

It has been implicit in our discussion so far that Plan A is known, 

and so, in Figure 20(a), the Plan A investments x are known, and 

thus, if each future’s feasible regions are known, the Δxk are the 

decision vectors we use to place the four points in the respective 

feasible regions of each future k. In such an approach, the objective 

would be to place the four points in their respective feasible regions 

so as to minimize the cost of doing so. Since the futures are 

uncertain, if we can associate a probability Pk with each one, then a 

better approach would be to minimize the expected cost of doing so. 

That is, our problem becomes: 

 

FORMULATION A1: 

Minimize:  

  Σk Pk×AdaptationCost(Δxk) 

                               +[Σk Pk×OperationalCost(x+Δxk)] 

     Subject to: 

          Operational constraints for future k=1,…N: gk(x+Δxk)≤bk 
 

Some observations on Formulation A1: 

• The objective consists of two terms, an investment term and an 

operational term, and both are expectations. 
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o Investment term: For each k, only the cost of adaptation is 

included (the Plan A is fixed, and so x cannot be varied and 

therefore the cost of x should not influence the solution).  

o Operational term: For each k, the operational cost is a function 

of x+Δxk (not the cost of x+Δxk) because the infrastructure that 

will be in place for each future k is the Plan A infrastructure 

(x) plus the future k adaptation (Δxk). 

o Expectation: The presence of the probabilities Pk on adaptation 

cost and on operational cost imposes that we are computing 

the expected value of these costs. 

• The constraints will include operational constraints. 

o Operational constraints: These include total generation must 

equal total load, power balance at each bus, unit dispatch 

within the unit’s Pmin and Pmax, branch flow dependence on 

angles at terminal buses, branch flows within branch flow 

limits, reserve requirements must be satisfied, and carbon 

reduction must reach a certain level. These constraints, for 

each future k, will depend on the infrastructure in place for that 

future k. Therefore, these constraints are a function of x+Δxk 

(not the cost of x+Δxk). 

o Nonoperational constraints: There may also be some non-

operational constraints; these would be constraints on 

investments, e.g., limits on generation investments per year, 

and planning reserve margin. Although non-operational, they 

are a function of x+Δxk and so the above gk expression is OK. 

Let’s now extend this thinking by assuming that we may vary our 

Plan A, i.e., that x is also a decision vector. This makes some sense 

because x represents what we actually build, i.e., it is “the plan.” 

Since we certainly want to be able to decide what we actually build, 

it is satisfying to represent x as a decision vector (in contrast, the 

adaptations Δxk represent what we need to build only if future k 

happens).  

 

Then we observe an important question raised by Figure 20(a): 

where to place x? Figure 20(b) shows an alternative placement of x, 
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i.e., we have modified Plan A (and therefore moved x). In moving x, 

observe that this modification also causes change to the four 

adaptations Δx1, Δx2, Δx3, and Δx4. 

 

These observations raise a question: what should be our objective in 

placing x? In thinking about that question for a bit, we conclude that 

there should be two components. One component should be the 

expected value of the adaptation costs and operational costs, exactly 

as expressed in Formulation A1 above. The other component should 

be the cost of what we indeed build. To distinguish between 

adaptations and what we indeed build, we identify what we indeed 

build as the “core,” as represented by the vector x. And the cost of 

that core is the “core costs.” Thus, we want to minimize the core 

costs plus the expected adaptation cost plus the expected operational 

cost. This leads to Formulation A2. 

 

FORMULATION A2: 

Minimize:  

 CoreCosts(x) + [Σk Pk×AdaptationCost(Δxk)] 

                               +[Σk Pk×OperationalCost(x+Δxk)] 

     Subject to: 

          Operational constraints for future k=1,…N: gk(x+Δxk)≤bk 

 

 

In considering Formulation A2, we observe that there will be 

tradeoffs between the core costs and the adaptation costs. That is, 

the more we actually build, the less we will need to adapt. For 

example, we could spend a very large amount of money to build 

G&T infrastructure that would be feasible in every future k.  Then 

the adaptation cost would be zero. Or, we could spend no money at 

all and build nothing; in this case, the adaptation cost would be 

extremely large. And there are obviously graduations between these 

two extremes that we could implement.  
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Indeed, Formulation A2 is a type of multiobjective optimization 

problem - the first two terms of our objective are conflicting, i.e., 

they are functions of the same variables3, and when one increases 

the other decreases. One way to handle a multiobjective 

optimization problem is to institute a multiplier that allows the 

modeler-analyst to control the tradeoffs between the conflicting 

objectives, in this case, between the core and the adaptations. We do 

this using a multiplier β on the adaptation cost, as in Formulation 

A3. We call β the robustness parameter. 

 

FORMULATION A3: 

Minimize:  

 CoreCosts(x) + β×[Σk Pk×AdaptationCost(Δxk)] 

                               +[Σk Pk×OperationalCost(x+Δxk)] 

     Subject to: 

          Operational constraints for future k=1,…N: gk(x+Δxk)≤bk 

 

Observe the influence of β: it acts as a “dial” on adaptation cost, i.e., 

we can use β to make adaptation  

• very cheap (β small), in which case ACEP makes very little core 

investment and very large adaptation – in the extreme (β=0), it 

makes no core investment because adaptation is free; 

• very expensive (β large), in which case ACEP makes very large 

core investment and very little adaptation – in the extreme (β=∞), 

it makes no adaptation because it is infinitely expensive to do so, 

and all investment goes into the core. 

10.1 An early example 

This approach was applied to a GEP problem at the national level 

[16]. Figure 21 shows the geographical scale of the problem. 

 
3 At first glance, it may not appear that the first two terms are functions of the same variables; however, Δx is 

implicitly a function of x in that, as x increases, the adaptations Δx decrease. 
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Figure 21: Geography of the problem addressed 

 

 

Sixty-four futures were developed in terms of 6 uncertain 

parameters, each of which could take on one of two values (26=64): 

• Natural gas price 

• Natural gas production limits 

• Demand growth 

• Existence of a national renewable portfolio standard 

• Existence of a CO2 cap 

• Wind plant investment cost 

An aggregation approach was used to identify 10 futures that best 

represented the 64. These 10 futures are listed in Figure 22. 
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Figure 22: Selected future (scenarios) 

 

The optimization problem was then solved for different values of β, 

and the results are plotted in Figure 23. 

 
Figure 23: Adaptation solutions for different values of β 

 

A single value of β was selected, and a complete solution was 

produced over a 40-year horizon. The total installed capacity of the 

solution is shown in Figure 24. 
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Figure 24: Total installed capacity over 40 years 

 

The solution shown is considered to be adaptable, or “flexible,” to 

the futures used to develop it. We observe that, with respect to the 

scenarios studied, adaptability means: 

• Increase Advanced CTs 

• Increase WIND 

• Increase NUCLEAR 

• Maintain NGCC 

• Retire COAL 

10.2 A more recent example 

More recent work comes from [17], where the ACEP approach was 

characterized in terms of its benefits to the MISO transmission 

expansion planning (MTEP) process used by MISO in 2020 (this 

discussion extends from that given in Section 6 of these notes, 

which presented the “scenario analysis” performed by MISO in their 

2008 MTEP process).  

 

This work compared the future (scenario) evaluation process, using 

the deterministic expansion planning tool CEP, to the ACEP 

optimization method, as indicated in Figure 25. 
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Figure 25: Comparison of future (scenario) evaluation using CEP (left) 

to the ACEP optimization method (right) 

 

The problem solved is the same as the problem provided as (ACEP) 

and also on p. 35, expressed here as Figure 26. 

 

 
 

Figure 26: Optimization problem 
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Uncertainties were modeled as shown in Figure 27. 

 

 
Figure 27: Uncertainty modeling [17] 

 

There are nine uncertainties each with three possible values; this 

gives a number of possible scenarios of 39=19,683, far too many to 

model within the ACEP optimization formulation. Therefore the 

scenario space was reduced to a set of 7 scenarios, expressed by  

 
Figure 28: Scenarios [17] 
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A 74,000 bus model of the Eastern Interconnection was reduced 

using a combined Kron/heuristics method, shown in Figure 29. 

 

Figure 29: Reduced model of the Eastern Interconnection 
 

Study assumptions included the following: 

• 20-year planning horizon; with investment years 2020, 2026, 

2032, 2038; 

• 30-year end effects to calculate future operational costs of later 

investments; 

• Investments only in an expanded MISO footprint, but operational 

costs in the entire EI. 

 

Figure 30 shows the core investments, as bars, in terms of capacity 

of generation (for each technology) and capacity of transmission, for 

increasing robustness parameter β. Figure 30 also shows the cost of 

the core investments, as the blue curve. 
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Figure 30: ACEP results 

The following observations are made: 

• As β increases, the core becomes more robust (and expensive), 

and adaptations are diminished; 

• Significant increase in core transmission investments → ACEP 

model favors transmission in comparison to the CEP.  

• Transmission provides robustness to the future 

uncertainties!! 

Figure 31 shows on the left the “least-regrets” solution, which is the 

set of investments (transmission, in this case) that appear in all CEP 

scenarios. Figure 31 also shows in the middle the ACEP core for a 

value of β=1.0.  Finally, Figure 31 shows, on the right, the 

transmission investments appearing in the ACEP core that do not 

appear in the least regrets solution. These investments may be due to 

the relative high value of β (=1.0) that was chosen for the ACEP 

solution. However, there is also some possibility that ACEP selects 

investments that are not in the least regrets solution because, in the 

words of [18],  
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“For example, a particular transmission investment might perform 

well in many scenarios because it gives the system some flexibility, 

e.g., to develop any of several renewable energy zones. But that 

investment might never be the very best choice in any single 

scenario of renewable development. However, when considered 

stochastically, that line would provide a hedge against uncertainty 

and could be optimal overall. For this reason, scenario planning and 

heuristics are unable to quantify the full value of alternatives that 

increase the adaptability of transmission plans.” 
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Figure 31: Comparison of “least regrets” solution (left) to  ACEP core (middle) and 

investments in ACEP core that do not appear in the least regrets solution
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11 Comparison between TSP and ACEP  

Adaptation, like TSP, is an approach to design an investment 

strategy under uncertainty. The formulation (TSP) above may be 

converted to the adaptive cooptimized expansion planning (ACEP) 

formulation. This process simply identifies changes necessary to 

TSP in order to express ACEP; it by no means indicates equivalence 

between the two formulations (they are not equivalent). There are 

three steps necessary for this conversion; these three steps are 

summarized in [15] but are not given here. 

 

There are three main differences between TSP and ACEP:  

1. Difference in core:  

• In TSP, the core investment (that which is common to all 

investments, also known as “here and now”) is in period t=1.  

• In ACEP, the core “here and now” investment is a trajectory 

through time.  

2. Scenario representation; memory:  

• In TSP, the scenarios and associated recourse investments begin 

at period t=2 and extend through the remaining time periods; in 

each scenario, there is inter-temporal memory from one time 

period to another, i.e., what gets built in time period t is in 

addition to what was built in time period t-1.  

• In ACEP, the futures (scenarios) and associated recourse 

investments extend from the core trajectory at each time period; 

there is no inter-temporal memory to the investments made for 

each future (scenario), i.e., at each time period, a new set of 

recourse investments are identified for each future (scenario) 

which are independent of any recourse investments identified 

for that future (scenario) in earlier time periods. 

ASIDE: It is important to consider at this point the difference 

between memory and non-anticipative behavior. Whereas memory 

is intertemporal and specific to a single future (scenario), non-

anticipative behavior is intertemporal but concerned with several 

futures (scenarios). 



 46 

A system can have memory but be either anticipative or non-

anticipative, i.e., each time step in each scenario can accumulate 

from the previous time step, but  
- the system may be anticipative across scenarios if scenarios with 

common histories are not constrained to have the same decisions; 

- the system can be non-anticipative across scenarios if those scenarios 

having common histories are constrained to have the same decisions. 

However, a system without memory cannot be anticipative since 

there is no mechanism (i.e., there is no accumulation equation) for 

the investment decisions at time t’ to be influenced by investment 

decisions at time t > t’. 

3. Non-anticipativity constraints:  

• In TSP, as we have seen (p. 25), NACs are imposed to ensure that 

the decision maker does not know, when s/he is in the initial time 

period, which scenario will occur, and so in that time period, 

investments are constrained to be the same across all s. 

• In ACEP, we drop the NACs for the scenarios. However, we do not 

need them in order to impose non-anticipatory behavior, because we 

also drop the memory in scenarios from one time period to the other, 

i.e., there is no accumulation equation for the scenarios; this implies 

that all scenario investments (called the adaptations) are computed 

anew for each time step. 

4. Purpose: Because of the differences in the core, where the TSP 

core is at the t=1 time period and the ACEP core is a trajectory 

through time, TSP is sometimes said to be good for identifying 

what to build “today,” whereas ACEP is sometimes said to be 

good for identifying what to build through time, that is, whereas 

TSP is good for decision-making, ACEP is good for planning. 
In attempt to illustrate these ideas, we compare in Figure 32 the 

illustration of TSP from Figure 18 (on the left) with an 

illustration of ACEP (on the right). 

I am  

unsure  

of  

this 

reasoning.  

 

 

 

 

 

 

 

 

 

It  

needs 

additional 

thinking. 
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Figure 32: Comparison of TSP (on left) with ACEP (on right) [15] 
 

The problem is expressed in [15] as 
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12 Robust optimization 

The basic concept underlying robust optimization is that  

• some parameters in our optimization problem are uncertain 

• and though we don’t know distributions on those uncertain 

parameters, 

• we do know ranges outside of which those parameters will not 

take on values. 

In other words, for each time period, t=1, 2, …, we know a region 

within the parameter space where the values of those parameters 

may be found. Figure 33 below illustrates for two parameters U1 

and U2, and for two time periods t=1, 2. 
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Figure 33: Robust optimization 

The weakness (conservatism) and strength (computational 

tractability) of robust optimization is expressed in the figure above. 

An extension of robust optimization that addresses the conservatism 

issue, called adjustable robust optimization, expresses decision-

variables as affine functions of the uncertain parameters [19]. 

13 Folding horizon simulation (FHS) 

One major problem with long-term planning optimization is that it is 

very difficult to proof-test the investment solution obtained from the 

optimizer, since it does little good in the decision-making moment 

of today to wait 15-20 years to see how the plan performed. In other 

words, there is no real lab-bench or other environment to examine a 

plan’s performance within a controlled environment.  

• It would be good to have a way to validate plans produced by the 

optimizer. Validate means to “check or prove the validity or accuracy of 

something.” That is, is the plan valid? Is it accurate? This is not 

possible to do, although there has been some effort towards 

evaluating tools by applying them using the system & relevant 

data for conditions 20 yrs ago (2004) to develop a 2004-‘24 plan. 

• It is possible to evaluate the plan. There are several features that 

could be evaluated, including: 
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1. Reliability 
▪ Resource adequacy (LOLE) 

▪ Congestion cost 

2. Resilience (to assess severity/duration of defined extreme events): 
▪ Energy not served (a distribution-related metric); 

▪ Increase in the total cost of electric energy (a transmission-related 

metric) 

3. Cost 
▪ Investment 

▪ Operational 

▪ Total 

4. Economic development impact 
▪ revenues from additional property tax 

▪ revenues from land lease payments 

▪ savings on industrial, commercial, and residential cost of energy 

5. Environmental impact 
▪ Impact on air (criteria pollutants) – those for which acceptable 

levels of exposure can be determined & for which an ambient air 

quality standard has been set: Ozone, CO, SO2, NOx, particulate  

▪ Mercury (Hg) 

▪ Greenhouse gases (CO2, methane, ozone, NOx,  

chlorofluorocarbons) 

▪ Impact on water 

In evaluating the above, it is necessary to choose conditions, i.e., 

futures (scenarios) under which we perform the evaluation. 

However, it is clear that there are many futures, and we do not know 

which one will actually take place. Therefore, we are interested in 

the robustness of the plan’s evaluation metrics to all possible 

futures. Reference to Figure 9 and Figure 10 earlier in these notes 

indicate that this is exactly what MISO was doing in the work of 

theirs that is displayed there.  

However, which futures should be used to evaluate the robustness 

of the plan’s evaluation metrics? One approach, when using ACEP, 

would be to evaluate this robustness using all of the futures that 

were used in the ACEP optimization. Yet, we would expect an 

ACEP-developed plan to perform well under these futures, since it 

was designed under these futures.   
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A better approach might be to evaluate the plan using futures that 

were not used in the ACEP optimization (and there are many such 

futures!). To this end, we have proposed the folding horizon 

simulation (FHS).  

 

FHS provides a computational means of simulating the time period 

associated with the decision horizon. In this approach: 

1. FHS uses as input the optimized plan throughout time together 

with uncertainty realizations to generate scenarios that were not 

used in the optimization; we refer to these scenarios as “out-of-

sample.” 

2. It simulates one year at a time using production simulation. 

3. Reliability is assessed within the production simulation, and if it 

is unacceptable, a re-investment step is taken and the production 

simulation performed again over that year. 

4. Once reliability is satisfied, the FHS moves to the next year and 

repeats until it has assessed all years of the decision-horizon.  

5. Metrics produced that provide an evaluation can be averaged over 

all out-of-sample scenarios and include the reliability values each 

year together with the cost of reinvestments. 

A key feature of all of this is how these tools relate to the RTO 

planning processes – see figure at the end. 
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Figure 34: Plan development and plan validation 
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14 Compare and contrast 

It would be good to compare and contrast the various ways of 

handling uncertainty.  
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